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Purpose: To evaluate whether multiparametric magnetic resonance imaging (MRI)-based
logistic regression models can facilitate the early prediction of chemoradiotherapy
response in patients with residual brain gliomas after surgery.

Patients and Methods: A total of 84 patients with residual gliomas after surgery from
January 2015 to September 2020 who were treated with chemoradiotherapy were
retrospectively enrolled and classified as treatment-sensitive or treatment-insensitive.
These patients were divided into a training group (from institution 1, 57 patients) and a
validation group (from institutions 2 and 3, 27 patients). All preoperative and postoperative
MR images were obtained, including T1-weighted (T1-w), T2-weighted (T2-w), and
contrast-enhanced T1-weighted (CET1-w) images. A total of 851 radiomics features
were extracted from every imaging series. Feature selection was performed with univariate
analysis or in combination with multivariate analysis. Then, four multivariable logistic
regression models derived from T1-w, T2-w, CET1-w and Joint series (T1+T2+CET1-w)
were constructed to predict the response of postoperative residual gliomas
to chemoradiotherapy (sensitive or insensitive). These models were validated in the
validation group. Calibration curves, receiver operating characteristic (ROC) curves,
and decision curve analysis (DCA) were applied to compare the predictive performances of
these models.

Results: Four models were created and showed the following areas under the ROC
curves (AUCs) in the training and validation groups: Model-Joint series (AUC, 0.923 and
0.852), Model-T1 (AUC, 0.835 and 0.809), Model-T2 (AUC, 0.784 and 0.605), and Model-
CET1 (AUC, 0.805 and 0.537). These results indicated that the Model-Joint series had the
best performance in the validation group, followed by Model-T1, Model-T2 and finally
Model-CET1. The calibration curves indicated good agreement between the Model-Joint
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series predictions and actual probabilities. Additionally, the DCA curves demonstrated
that the Model-Joint series was clinically useful.

Conclusion: Multiparametric MRI-based radiomics models can potentially predict tumor
response after chemoradiotherapy in patients with postoperative residual gliomas, which
may aid clinical decision making, especially to help patients initially predicted to be
treatment-insensitive avoid the toxicity of chemoradiotherapy.
Keywords: radiomics, magnetic resonance imaging, residual gliomas, chemoradiotherapy, early prediction
INTRODUCTION

Glioma is the most common tumor of the brain and is associated
with high rates of disability and death, which is part because the
tumor lesion is difficult to completely remove surgically due to its
invasive growth characteristics. Presently, according to the
international guidelines for the treatment of neurological
tumors, concurrent postoperative chemoradiotherapy is
recommended for some grade 2, grade 3 and grade 4 glioma
patients to treat residual tumor lesions. Radiotherapy and
chemotherapy have a definite therapeutic effect on gliomas, but
there are also some negative effects, such as hair loss, vomiting,
decreased immunity and high cost. Clinical practices have shown
that not all gliomas are sensitive to chemoradiation due to the
heterogeneity of tumor tissues. Therefore, some patients not only
are unable to benefit from the treatment but also unnecessarily
suffer from the effects of chemoradiation. Therefore, identifying
treatment-insensitive patients has become a critical area
of research.

Previously, most studies predicting the response of tumors to
radiotherapy and chemotherapy have been based on conventional
computed tomography/magnetic resonance imaging (CT/MRI),
functional MRI or positron emission tomography (PET), but the
predictive performances have not been satisfactory. One of the
important reasons is because the deep information within images
cannot be comprehended with the naked eye. However, radiomics,
an emerging method, can acquire the detailed characteristics from
medical imaging data of the entire lesion in a high-throughput
manner with computer technology (1–3). These extracted data can
then be deeply mined and analyzed, correlated with the clinical or
biological information of the disease, and finally used to construct
prediction models.

Some studies evaluating tumor response with radiomics have
been reported, but the research has mainly focused on colorectal
cancer, nasopharyngeal cancer, breast cancer and lung cancer
(4–7), showing improved predictive performance with
radiomics. However, to the best of our knowledge, few studies
predicting the curative effect of chemoradiotherapy for residual
gliomas with a radiomics approach have been reported, but
this area is very important for choosing treatment for
glioma patients.

Thus, the purpose of this study was to extract high-throughput
radiomics features from conventional multiparametric MR images,
screen for features highly correlated with chemoradiation sensitivity,
and establish logistic regression models based on the selected
2

features to predict the treatment sensitivity of gliomas. Ultimately,
the model was expected to accurately identify treatment-insensitive
patients and thus aid clinicians in optimizing treatment regimens
for such patients.
MATERIALS AND METHODS

Patients
This is a retrospective study approved by our institution’s review
board, and the requirement for informed consent was waived. In
total, the images and pathological data of 231 consecutive
patients were collected from three institutions from January
2015 to September 2020 (institution 1: The Second Affiliated
Hospital of Nanchang University; institution 2: The First
Affiliated Hospital of Gannan Medical College; and institution
3: Hsiang-ya Hospital). In total, 84 glioma patients with residual
gliomas after surgery who were treated with concurrent
chemotherapy and radiotherapy were enrolled in this study
(institution 1, 57 patients; institution 2, 8 patients; and
institution 3, 19 patients). The inclusion criteria were as
follows: 1) tumors located above the cerebellar tentorium;
2) pathologically confirmed grade II-IV gliomas; 3) a definite
residual tumor confirmed by conventional and advanced MRIs
acquired within 72 hours after surgery, as well as clear surgical
records of a residual lesion; 4) treatment with concurrent
radiotherapy and chemotherapy after surgery within 3 weeks;
and 5) available and complete preoperative and postoperative
images, pathological data and clinical data. The exclusion criteria
were as follows: 1) unclear presence of a residual tumor after
surgery; 2) atypical postoperative treatment; and 3) missing or
incomplete imaging or pathological data. All patients from
institution 1 (57 patients), with a treatment-sensitive-to
-treatment-insensitive ratio of 16:41, were defined as the
training cohort. Patients from institution 2 and institution 3
(a total of 27 patients), with a treatment-sensitive-to-treatment-
insensitive ratio of 9:18, were defined as the validation cohort.

Image Acquisition
Preoperatively and postoperatively, conventional MR scans and
contrast enhancement scans were acquired for the 84 glioma
patients using different devices with similar scanning protocols.
In institution 1, 57 patients underwent head MRI using a 1.5-T
(Signa HDxt;GE Medical System, Inc, Waukesha, WI, USA) or
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3.0-T device (Discovery 750; GE Healthcare, Milwaukee, WI,
USA) with an 8-channel head coil. In institution 2, 8 patients
underwent head MRI using 3.0-T device (Discovery 750; GE
Healthcare, Milwaukee, WI, USA). In institution 3, 19 patients
underwent head MRI using a 1.5-T (Avanto Magnetom;
Siemens, Erlangen, Germany) or 3.0-T device (Discovery 750;
GE Healthcare, Milwaukee, WI, USA). Preoperative MR images
were taken within 2 weeks before the operation. Postoperative
images were taken within 72 hours after surgery and 3 months
after recurrent concurrent chemotherapy and radiotherapy. All
of the scanning protocols and imaging parameters were similar
among the different MR machines. Axial T1-weighted (T1-w),
T2-weighted (T2-w) and axial contrast-enhanced T1-weighted
(CET1-w) images in Digital Communications in Medicine
(DICOM) format were selected for further analysis. Pathology
results and clinical data were obtained from the Electronic
Hospital Information System (EHIS).
Image Normalization
To eliminate the heterogeneity among the MR scan parameters
and devices, all images were resampled to 1*1*1 mm³ voxels, and
their intensity range was normalized to 0 to 255 using the open-
source 3D-Slicer 4.10.2 platform (https://www.softpedia.com/
get/Science-CAD/3D- Slicer. shtml).
Treatment and Response Evaluation
All 84 glioma patients from the three institutions began
chemoradiotherapy within 3 weeks after surgery. Regarding,
radiation range and dose, the gross tumor volume (GTV)
included areas of abnormal enhancement and the lumen
shown by postoperative MR CET1-w images and areas with
abnormal signal on T2-w/FLAIR images. The clinical target
volume (CTV) was defined as the GTV plus a margin of 1–2
cm. The radiotherapy dose was 60 Gy/30 fractions, avoiding any
organs at risk. The chemotherapy regimen was implemented
simultaneously and composed of temozolomide (75 mg/m2). The
Response Assessment in Neuro Oncology (RANO) criteria (8)
was currently widely used around the world to evaluate the effect
of therapy on brain tumors and was also applied in this study to
evaluate the treatment sensitivity of residual gliomas. The details
of the RANO criteria were shown in the Supplementary
Material (1). Partial remission and complete remission were
defined by the presence of treatment-sensitive tumors that
disappeared or decreased by ≥ 50% on CET1-w images. Stable
disease and progressive disease were defined by the presence of
treatment-insensitive tumors that increased or decreased by
-25% ~ +25% on CET1-w images, lesions that increased by
≥ 25% and any new lesions. The therapeutic sensitivity of a tumor
was defined by a combination of imaging findings and some
clinical indexes. The approximate evaluation formula for tumor
volume change was as follows: Tumor volume ≈ (Maximum long
diameter) * (Vertical Maximum short diameter) * (Sum of all layer
spacing and layer thickness). The first follow-up MRI was
conducted within 72 hours postoperatively and applied as the
baseline data.
Frontiers in Oncology | www.frontiersin.org 3
ROI Segmentation and Feature Extraction
Regions of interest (ROIs) were segmented on preoperative
images (T1-w, T2-w, and CET1-w images) using the 3D-Slicer
4.10.2 platform, which was also used for feature extraction. All
ROI boundaries in each tumor were delineated on every slice of
the T1-w, T2-w and CET1-w images. Twenty random patients’
MR images were chosen and manually segmented by a
radiologist with 10 years of experience in diagnosing central
nervous system diseases (reader 1), and this process was repeated
after 3 weeks to evaluate intraobserver reproducibility. The same
segmentation procedure was conducted by another radiologist
(reader 2) with 15 years of clinical experience to evaluate
interobserver reproducibility.

Four types of radiomics features, shape, first-order, textural,
and filter-based features (wavelet features), were extracted from
the ROIs through the 3D-Slicer 4.10.2 platform. Additionally,
four groups of features were extracted from the T1-w, T2-w,
CET1-w and Joint series images.

Semantic features of the lesions, such as enhancement grade,
cystic grade and edema grade were extracted from the
conventional images. The enhancement, cystic and edema
features were all graded into three levels, and the details were
shown in Table 1.

Feature Selection, Radiomics Model
Development, Model Performance
Evaluation
The feature data from T1-w, T2-w, CET1-w and Joint series (T1-
w+T2-w+CET1-w) were loaded into the GE IPMs platform. The
synthetic minority oversampling technique (SMOTE) algorithm
was used to balance the training datasets, and Z-score
standardization was used for data normalization. After
SMOTE, the training cohort contained 82 samples, with a
treatment-sensitive -to -treatment-insensitive ratio of 41:41. To
establish the radiomics signature, we used univariate analysis and
multivariate analysis, including the Student’s t test, Rank sum
test, Variance analysis, Correlation_analysis, Univariate
_Logistic analysis and multivariate logistic analysis, to select
feature sets from the normalized data. The detailed extraction
process was showed in the Supplementary Materials (2–5).

R-4.0.3 (https://www.r-project.org/) and the R studio
platform (https://rstudio.com/products/rstudio/download/#
download) were used to develop the radiomics models.
Features selected from the T1-w, T2-w, CET1-w, and Joint
series were analyzed with multiple logistic regression to
construct the radiomics models. Model validation was
conducted in the validation cohort. Calibration plots and
receiver operating characteristic (ROC) curves were generated
to evaluate model performance. Decision curve analysis (DCA)
was performed to evaluate the clinical utility of the models.

Statistical Analysis
Statistical analysis was performed with IBM SPSS Statistics 25
and R software (version 4.0.3). Student’s t test, Chi-square tests
and Fisher’s exact tests were used to compare the clinical
characteristics, image and pathology data of the training and
November 2021 | Volume 11 | Article 779202
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validation cohorts. The Delong test was used to compare
differences in the ROC curves among various models. The
intraclass correlation coefficient (ICC) was applied to assess
the stability of each extracted radiomics feature. ICCs were
calculated through the ‘irr’ package. Multivariate binary logistic
regression was performed with the ‘glmnet’ package. The
‘pROC’, ‘rms’ and ‘rmda’ packages were used to obtain ROC
curves, calibration curves and DCA curves, respectively. A two-
tailed P-value < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
No significant differences in patient characteristics were observed
between the training and validation cohorts (age, sex, sensitivity
to treatment, pathological grade, enhancement grade, cystic
grade, and edema grade, Table 1, all P > 0.05), indicating that
it was reasonable to use external data from institutions 2 and 3
for validation.

Intraobserver and Interobserver
Reproducibility of the Radiomics Features
A total of 2553 (851×3) radiomics features were extracted from
the ROIs of the T1-w, T2-w and CET1-w images, respectively,
Frontiers in Oncology | www.frontiersin.org 4
including 18 first-order features,14 shape features, and 75 texture
features [gray level dependence matrix (GLDM, 14), gray-level
co-occurrence matrix (GLCM, 24), gray-level run length matrix
(GLRLM, 16), gray-level size zone matrix (GLSZM, 16) and
neighborhood gray-tone difference matrix (NGTDM, 5)], and
744 wavelet features [(18 + 14+24+16+16+5)*8]. Features with
intraobserver and interobserver ICCs <0.75 were discarded.
Therefore, 467 features from the T1-w images, 380 features
from the T2-w images, and 490 features from the CET1-w
images were obtained.

Radiomics Signature and Model
Construction
After univariate analysis with or without multivariate analysis,
several features highly correlated with sensitivity to
chemoradiation were identified (6 features from the T1-w
images, 7 features from the T2-w images, 6 features from the
CET1-w images, and 5 features from the Joint series images). The
detai led screening procedures were showed in the
Supplementary Materials (2–5). The data acquisition and
analysis workflow was showed in Figure 1. These final features
were introduced to build four radiomics models through
multivariate binary logistic regression:

Model(T1-w)=-0.1262+(0.9157*wavelet-LLL_glcm_Idmn)-
(0.1732*wavelet-LHL_glcm_Imc2)
TABLE 1 | Clinical characteristics of the patients and semantic image features in the training and validation cohorts.

Characteristic All patients Training cohort Validation cohort P-value Training and Validation cohort P-value

(n = 84) (n = 57) (n = 27) Sensitive (n = 25) Insensitive (n = 59)

Age (years) 48.452 (12.619) 49.491 (11.386) 46.259 (14.891) 0.276 47.360 (12.312) 48.915 (12.823) 0.609
Gender: 0.840 0.535
male 48 (57.1%) 33 (57.9%) 15 (55.6%) 13 (52.0%) 35 (59.3%)
female 36 (42.9%) 24 (42.1%) 12 (44.4%) 12 (48.0%) 24 (40.7%)
Pathological grade: 0.262 0.330
grade 2 16 (19.0%) 12 (21.1%) 4 (14.8%) 7 (28.0%) 9 (15.3%)
grade 3 19 (22.6%) 10 (17.5%) 9 (33.3%) 4 (16.0%) 15 (25.4%)
grade 4 49 (58.3%) 35 (61.4%) 14 (51.9%) 14 (56.0%) 35 (59.3%)
Enhancement grade: 0.605 0.474
grade 1 11 (13.1%) 8 (14.0%) 3 (11.1%) 5 (20.0%) 6 (10.2%)
grade 2 40 (47.6%) 25 (43.9%) 15 (55.6%) 11 (44.0%) 29 (49.2%)
grade 3 33 (39.3%) 24 (42.1%) 9 (33.3%) 9 (36.0%) 24 (40.7%)
Cystic grade: 0.936 0.747
grade 1 20 (23.8%) 14 (24.6%) 6 (22.2%) 6 (24.0%) 14 (23.7%)
grade 2 29 (34.5%) 20 (35.1%) 9 (33.3%) 10 (40.0%) 19 (32.2%)
grade 3 35 (41.7%) 23 (40.4%) 12 (44.4%) 9 (36.0%) 26 (44.1%)
Edema grade: 0.246 0.765
grade 1 10 (11.9%) 8 (14.0%) 2 (7.4%) 2 (8.0%) 8 (13.6%)
grade 2 33 (39.3%) 19 (33.3%) 14 (51.9%) 10 (40.0%) 23 (39.0%)
grade 3 41 (48.8%) 30 (52.6%) 11 (40.7%) 13 (52.0%) 28 (47.5%)
Sensitive: 0.622
yes 25 (29.8%) 16 (28.1%) 9 (33.3%)
no 59 (70.2%) 41 (71.9%) 18 (66.7%)
November 2021 | Volume 11 | Article
Continuous variables were presented as the mean (SD). Categorical variables were presented as absolute numbers (n) and proportions (%). Student’s t-test, c2 test and Fisher’s exact test
were used for comparisons of continuous variables and categorical variables, respectively.
Enhancement grade, according to visual enhancement:
grade 1 (mild enhancement); grade 2 (moderate enhancement); grade 3 (severe enhancement).
Cystic grade, according to the ratio of cystic volume to total lesion volume:
grade 1 (none); grade 2 (<50%); grade 3 (>50%).
Edema grade, according to the distance between the edge of the area of edema and lesion:
grade 1 (none); grade 2 (<2 cm); and grade 3 (>2 cm).
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+(0.8470*original_firstorder_Skewness)-(0.3914*wavelet-
HLL_glcm_DifferenceAverage)

+(0.5724*wavelet-LHH_firstorder_Median)+(0.4312*wavelet-
LHH_glcm_SumEntropy)

M o d e l ( T 2 - w ) = 0 . 0 2 6 7 - ( 0 . 2 4 4 3 * w a v e l e t - L H L _
g l dm _ L a r g e D e p e n d e n c e Em p h a s i s ) - ( 0 . 6 1 4 8 *
original_glr lm_LongRunHighGrayLevelEmphasis)
+(0.6830*wavelet-HHL_glcm_SumEntropy)

-(0.0707*original_glcm_Idn)+(0.7691*wavelet-HHL_glcm_
Contrast)+(0.1583*wavelet-LHH

_firstorder_Maximum) -(0.1271*wavelet-LLL_glcm_Imc1)

M o d e l ( C E T 1 - w ) = - 0 . 0 9 8 3 + ( 0 . 1 9 2 7 * w a v e l e t -
LHL_g l r lm_RunVar iance ) - (0 .9772*wave l e t -LHH
_ g l c m _ I d m n ) + ( 0 . 3 4 1 1 * w a v e l e t -
HLH_glszm_HighGrayLevelZoneEmphasis)-(0.8397*wavelet

- L HH _ fi r s t o r d e r _ K u r t o s i s ) + ( 0 . 5 2 7 8 * w a v e l e t -
HLH_glszm_SmallAreaHighGrayLevelEmphasis)

-(0.5460*wavelet-HHL_firstorder_Kurtosis)

Model(Joint series)=-0.7185-(2.0591*T1_wavelet-LLL_glszm_
GrayLevelNon

Un i f o rm i t yNo rma l i z e d ) - ( 1 . 9 8 2 6 *CET1_wa v e l e t -
LHH_glcm_Idmn)-(2.5979*CET1_wavelet

- LHH_fi r s t o r d e r _Ku r t o s i s ) + ( 1 . 2 404 *T1_wav e l e t -
LLH_firstorder_Kurtosis)-(1.2912*CET1

_wavelet-LLH_firstorder_Median)
Model Performance Evaluation
The ROC curves (Figure 2) showed the Model-Joint series and
Model-T1 had better performances, with areas under the ROC
curves (AUCs) of 0.923 and 0.835 in the training cohort and
Frontiers in Oncology | www.frontiersin.org 5
0.852 and 0.809 in the validation cohort, whereas Model-CET1
and Model-T2 had poor performances with low AUCs in the
validation cohorts. Model-T1 had the best sensitivity, specificity
and accuracy compared to the other models. The detailed
performance results of the different models were listed in
Table 2. The Delong tests did not find significant differences
between the ROC curves of the Model-Joint series and Model-T1
(p values of 0.113 and 0.738 in the training and validation sets,
respectively). However, the differences between the Model-Joint
series and Model-CET1-w and between the Model-Joint series
and Model-T2 were significant in the training sets, with p values
of 0.014 and 0.012, respectively. Nonsignificant unreliability U
test (P=0.982 and 0.052) and Hosmer-Lemeshow test results
(P=0.7303 and 0.9084) showed good calibration in the training
cohort and validation cohort regarding Model-Joint series. The
calibration curves were showed in Figure 3. The DCA curves
indicated that the Model-Joint series had the most clinical utility,
as showed in Figure 4.
DISCUSSION

In our study, four MRI-based radiomics logistic regression
models were established, derived from T1-w, T2-w, CET1-w
and Joint series. Model-Joint series and Model-T1 yielded
better predictivity in determining whether glioma patients were
sensitive to chemoradiation. Hence, MRI-based radiomics
models may help clinicians identify treatment-sensitive
and treatment-insensitive patients to tailor treatment to
each individual.

Radiotherapy and chemotherapy are important adjuvant
treatments for patients with residual tumors postoperatively.
FIGURE 1 | Data acquisition and analysis workflow. All patients were divided into treatment-sensitive and treatment-insensitive groups. (A) Pictures a and d showed
the original images before treatment, b and e showed the postoperative images acquired within 24–72 hours, and c and f showed the postoperative images
acquired after approximately 3 months of follow-up. (B) ROIs were defined, and feature extraction, including for first-order, shape-, high-order texture-, and filter-
based features, was performed. (C) Feature selection, model building and model evaluation were used to predict the response of glioma patients to chemoradiation
by multiple logistic regression analysis.
November 2021 | Volume 11 | Article 779202
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Multiparameter MRI, a noninvasive and repeatable examination
method, has been widely used to evaluate the efficacy of
chemoradiotherapy for tumors. However, there are few studies
predicting the curative effect of chemoradiotherapy for residual
gliomas before treatment, which is crucial for choosing the right
therapeutic schedule. We know that not all glioma patients are
susceptible to chemoradiotherapy. Therefore, if we can detect poor
responders early,many unnecessary injuries and side effects can be
avoided. Additionally, alternative treatments can be chosen earlier,
such as targeted therapy (9–12), immunotherapy (13–16),
interstitial brachytherapy (17, 18), or even sonodynamic therapy
based on ultrasound stimulation and a sonosensitizer (19). In our
study, we used radiomics models to predict the sensitivity of
residual gliomas to chemoradiotherapy and compared the
histopathological grade and conventional MR semantic features
between treatment-sensitive and treatment-insensitive patients.
The results showed no significant difference in the
histopathological grade of gliomas between the treatment-
sensitive and treatment-insensitive groups. This may be because
the histological grade was determined by the degree of
differentiation of a small specimen, which cannot represent the
whole tumor, whereas radiomics features provide the tumor’s
overall biological information (20, 21). The pretreatment
Frontiers in Oncology | www.frontiersin.org 6
conventional MR semantic features of the tumor lesions,
including enhancement, cystic and edema grades, also showed
nodifference between the two groups. Therefore, conventionalMR
semantic features may not predict the sensitivity of the tumor
to chemoradiation.

Radiomics, an emerging and noninvasive research method, is
used to extract high-throughput imaging features that cannot be
recognized by the human eye and to evaluate and quantify
biological information such as tumor heterogeneity, tumor cell
growth and the surrounding microenvironment (22, 23).
According to previous studies on locally advanced rectal cancer,
radiomics features, including skewness, entropy and several
GLCM parameters, extracted from MRI have can be highly
significant predictors for the response to neoadjuvant
chemoradiotherapy (24–27). In our present work, four groups of
radiomics features were selected to establish predictive models,
including first-order features, shape-based features, textural
features, and wavelet features. The wavelet features were
extracted by a three-dimensional discrete wavelet transform
using high-frequency and low-frequency filters, which can
accurately obtain the detailed features of the images. In the four
models (Table 3), the wavelet_firstorder_Kurtosis feature
appeared four times, indicating that kurtosis was closely
TABLE 2 | The performances of the four logistic regression models in predicting sensitivity to treatment in the training and validation cohorts.

Modality Features screening Remainedfeatures Cohorts AUC (95%CI) Sen Spe Acc

Model-Joint series univariate analysis+
multivariate analysis

5 training 0.923 (0.866-0.979) 0.829 0.829 0.829
validation 0.852 (0.644-1.000) 0.778 0.722 0.741

Model-T1 univariate analysis 6 training 0.835 (0.743-0.927) 0.805 0.756 0.780
validation 0.809 (0.638-0.979) 0.889 0.778 0.815

Model-CET1 univariate analysis 6 training 0.805 (0.712-0.899) 0.780 0.683 0.732
validation 0.537 (0.284-0.790) 0.778 0.389 0.519

Model-T2 univariate analysis 7 training 0.784 (0.685-0.883) 0.732 0.707 0.720
validation 0.605 (0.381-0.829) 0.444 0.556 0.519
November 2
021 | Volume
 11 | Article 7
AUC, area under the curve; Sen, sensitivity; Spe, specificity; Acc, accuracy.
Univariate analysis included ‘General_Univariate_analysis’ (Student’s t test or Rank sum test), ‘Variance’, ‘Correlation_xx’ and ‘Univariate _Logistic’analysis.
The multivariate analysis used in this study was ‘MultiVariate_Logistic’ analysis.
A B

FIGURE 2 | (A, B) showed the ROC curves of the four prediction models in the training and validation cohorts: the blue curve represented the Model(Joint series),
the orange curve represented Model(T1-w), the purple curve represented Model(CET1-w), and the turquoise curve represented model(T2-w).
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associated with chemoradiotherapy in gliomas; this feature
described the overall distribution curve of voxel intensity in the
ROI with a flat or sharp peak. However, this result was different
from that ofDinapoliN et al. (26), who conducted a study based on
an intensity histogram signature to predict the probability of
achieving a pathologic complete response using a Laplacian of
Gaussian (LoG) filter. We inferred that there may be two reasons
for the different results: one was the different types of tumors
studied, and the otherwas the different feature extractionmethods.
The wavelet_glcm_Idmn feature was the second most repeated
feature in all models. GLCM described the joint gray-level
distribution of any two pixels in the ROI with some spatial
positioning information, and the gray-level distribution can be
mined with repetitive regularity. Idmn measured the local
variations in the image texture and reflected the homogeneity
of the texture. The more uniform the local image was, the
stronger the texture regularity, and the larger the Idmn value.
The Wavelet_firstorder_Median, wavelet_glcm_Imc and
Frontiers in Oncology | www.frontiersin.org 7
wavelet_glcm _SumEntropy features were repeated twice in the
models.Median represented themedian gray level intensity within
the ROI, which was likely related to chemotherapeutic efficacy
according theNgSH’ study (28). Imc assessed the correlationof the
probability distributions, quantifying the complexity of the texture.
SumEntropy was the sum of the neighborhood intensity value
differences. In theModel-Joint series, the Idmn andmedian values
from the CET1-w scans were both inversely proportional to the
sensitivityof glioma tochemoradiation.Thismeaned that themore
heterogeneous the image texture, the smaller the median gray
value, and the more sensitive the tumors were to treatment. In our
four models, no shape-based features appeared, suggesting that
tumor morphology was not closely related to sensitivity to
treatment. Additionally, it was noteworthy that no feature was
selected from the T2-w images to construct theModel-Joint series.
We found most of the features selected from T1-w, T2-w and
CET1-w images were texture features, which reflected the internal
distribution law of image pixels. Usually, T2-w was significantly
A B

FIGURE 4 | (A, B) showed the DCA results for four models in the training cohort and validation cohort. The blue curve was for the Model(Joint series), the orange curve was
for Model(T1-w), the purple curve was for Model(CET1-w), and the turquoise curve was for Model(T2-w). The x- and y-axes indicated the high-risk threshold and net benefit,
respectively. The gray curve represented the assumption that all patients were sensitive to treatment; the black line represented the assumption that all patients were insensitive
to treatment.
A B

FIGURE 3 | (A, B) showed the calibration curves of the Model(Joint series) in the training cohort and validation cohort. The y-axis represented the actual probability
of treatment-sensitive patients. The x-axis represented the predicted probability of treatment-insensitive patients. The diagonal gray line represented a perfect
prediction by an ideal model. The black solid line represented the prediction performance of the Model(Joint series), and the closer the black line was to the gray line,
the better the prediction performance of the model.
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superior to T1-w in depicting lesions, but it may focus more on
differences in signal strength. However, in analyzing the deep
texture structure of the image, T1-w seemed to perform better
thanT2-wbased onmachine vision. In future studies, wewill focus
on this problem and further verify it.

Among all four models, the Model-Joint series had the best
prediction performance for the sensitivity of residual gliomas to
treatment, followed by Model-T1, but the Delong test showed
that the difference in AUC was not significant between these two
models. The reason for this may be because the sample size was
not large enough. However, the Delong tests for the comparisons
between the Model-Joint series and Model-CET1(p=0.014) and
between the Model-Joint series and Model-T2(p=0.012) in the
training cohort showed significant differences. In addition, more
samples and more complex deep learning algorithms need to be
used to further improve the sensitivity, specificity and accuracy
of the Model-Joint series in the validation cohort. Nonetheless,
one strength of this study was that MRI was used to
noninvasively predict both radiotherapy and chemotherapy
outcomes for gliomas before treatment beginning, which was
worthy of further study in the future.

There are several limitations to this work. First, although the
RANO criteria are the current standard for evaluating clinical
therapeutic effects in tumors, there are still a few cases that are
difficult to classify. Therefore, we asked a chief physician with 30
years of experience to confirm the results. Second, it is more
reasonable to enlarge sample in future to compare differences in
clinical, pathological, and semantic features between treatment-
sensitive and treatment-insensitive patients. In addition, many
previous studies have shown that genotype, such as IDH
mutation, 1p19q codeletion and MGMT promoter methylation
status, has a great correlation with therapeutic effect and tumor
prognosis (29, 30). Due to the absence of genetic tests in some
patients, genetic phenotype was not included as a predictor of
treatment response in this study. However, in the future, it is
necessary to conduct prospective studies that integrate additional
genetic information into the predictive models.

In conclusion, we explored the potential role of radiomics-
based models derived from preoperative multiparametric MRI in
predicting the response to concurrent radiotherapy and
chemotherapy in residual glioma patients. These models may
help clinicians personalize patient treatment and help treatment-
insensitive patients avoid unnecessary injuries and side effects
from chemoradiotherapy.
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