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Although salvage prostate bed radiotherapy is highly effective in biochemically-relapsing
prostate cancer patients following prostatectomy, relapses remain frequent and
improvements are needed. Randomized phase 3 trials have shown the benefit of
adding androgen-depriving therapy to irradiation, but not all patients benefit from this
combination. Preclinical studies have shown that novel agents targeting the androgen
receptor, DNA repair, PI3K/AKT/mTOR pathways, or the hypoxic microenvironment may
help increase the response to prostate bed irradiation while minimizing potential side
effects. This perspective review focuses on the most relevant molecules that may have an
impact when combined with salvage radiotherapy, and underlines the strategies that need
to be developed to increase the efficacy of salvage post-prostatectomy radiotherapy in
prostate cancer patients.

Keywords: radiosensitizing agents, PARP inhibitors, androgen receptor (AR) antagonist, combined treatment,
salvage prostate bed radiotherapy
INTRODUCTION

Despite adequate surgery, biochemical relapse following prostatectomy for locally advanced
prostate cancer occurs in up to 50% of cases (1). One interesting result of adjuvant radiotherapy
trials is that treatment failure is mainly a result of lack of local control (2, 3). This corroborates the
results of salvage radiotherapy trials that showed that prostate bed radiotherapy is efficient in most
cases, suggesting that the invisible relapsing cells are mostly located within the prostate bed (4, 5). In
cases of biochemical relapse, it is currently recommended that the prostate bed be irradiated before
the PSA reaches 0.5 ng/ml (6), as a higher risk of relapse has been shown in patients with more than
this threshold (7). Radiotherapy also plays a role in the management of metastatic lymph nodes (8, 9).
The NRG Oncology/RTOG 0534 SPPORT Trial showed that irradiating the pelvic lymph nodes in
addition to the prostate bed improved progression-free survival compared to the prostate bed alone
(10). This important result could be interpreted as radiotherapy being capable not only of reducing
local relapses but also of slowing down or even blocking the metastatic process. Altogether, these
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findings have led to a new appreciation of local and regional
control as a determining factor in survival and emphasize the
role of combined modality approaches in the treatment of
biochemically-relapsing prostate cancer.

Despite adequate salvage prostate bed radiotherapy,
retrospective studies suggest that relapses following this
technique are still localized in the prostate bed in up to 22% of
patients (11–13), which suggests that combatting radioresistance
pathways may decrease relapse rates. Moreover, after prostate
bed radiotherapy, most relapses occur within the patients’ pelvic
lymph nodes (11–13). The dose of radiotherapy to the pelvic
lymph nodes is limited by the vicinity of the small bowel.
Therefore, the maximum dose to the whole pelvic lymph node
is limited to 54-55 Gy in conventional fractionation (14, 15). This
dose is lower than the dose usually validated to eradicate
microscopic tumor cells within the prostate bed (60 to 66 Gy)
(1), which further reinforces the need to biologically escalate the
dose to the pelvic lymph nodes by adding radiosensitizing agents.

To improve the efficacy of post-prostatectomy radiotherapy
both locally and distantly, androgen-depriving therapy is one
partner of choice as it can radiosensitize prostate cancer cells by
both reducing the hypoxic fraction (16) and decreasing
testosterone-induced increased DNA repair mechanisms (17,
18). Two major studies combined ADT with radiotherapy to
the prostate bed +/- pelvic lymph nodes (4, 5). Both studies
showed improved biochemical relapse-free survival, metastasis-
free survival and even overall survival in the RTOG 9601 study
(4, 5). The recommendation is now to combine ADT and post-
prostatectomy radiotherapy in patients with a high risk of
biochemical relapse following prostatectomy (6).

Despite combined ADT and irradiation, up to 30% may
relapse at 10 years (4, 5). To improve survival, one major area
of research is to combine irradiation with active drugs capable of
inhibiting micrometastatic cells outside the pelvis, thus
improving metastatic control, and ideally also capable of
targeting radioresistance pathways to decrease locoregional
relapses. The mechanisms behind the aggressiveness and
radioresistance of prostate cancer are progressively being
Abbreviations: DNA, deoxyribonucleic acid; PI3K, phosphatidylinositol 3-
kinases; AKT, protein kinase B; mTOR, mammalian target of rapamycin; NRG,
cancer clinical cooperative group including the National Surgical Adjuvant Breast
and Bowel Project (NSABP), the Radiation Therapy Oncology Group (RTOG),
and the Gynecologic Oncology Group (GOG); SPPORT, short term androgen
deprivation with pelvic lymph node or prostate bed only radiotherapy; ADT,
androgen-depriving therapies; DLT, dose-limiting toxicity; ARE, androgen
response element; ETS, erythroblast transformation-specific; AR, androgen
receptor; DHT, di-hydrotestosterone; LH-RH, luteinising hormone-releasing
hormone; CYP17A1, cytochrome P450 17A1; TMPRSS2, transmembrane
protease, serine 2; ERG, ETS-related gene; hK2, hexokinase 2; GETUG, groupe
d’étude des tumeurs urogénitales; CARLHA, combined abiraterone, radiotherapy
and LH-RH agonists; AA, abiraterone acetate; SRT, salvage radiotherapy; PTEN,
phosphatase and tensin homolog; RAS, rat sarcoma virus protein; RAF, rapidly
accelerated fibrosarcoma serine/threonine-protein kinase; MEK, mitogen-
activated protein kinase; ERK, extracellular signal-regulated kinases; VEGF,
vascular endothelial growth factor; DNA-PK, DNA-dependent protein kinase;
DDR, DNA damage response; BRCA2, breast cancer 2; BER, base excision repair;
PARPi, polyADP ribosylpolymerase inhibitors; SAKK, Die Schweizerische
Arbeitsgemeinschaft für Klinische Krebsforschung; PSA, prostate-specific antigen.
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revealed. Localized hormone-sensitive prostate cancer is a
highly heterogeneous disease (19). Large genomic and
transcriptomic studies highlighted several major mechanisms
of aggressiveness relating to either the tumor itself (20, 21) or its
microenvironment (22, 23), but specific information regarding
the genomic mechanisms of radioresistance in prostate cancer is
scarce (24, 25). Although several studies have reported
histological factors that predict survival after radiotherapy to
the intact prostate gland [reviewed in (26, 27)], less information
is available on predicting relapse after prostate bed radiotherapy.
Recent transcriptomic analyses have described the first test
capable of distinguishing low- and high-risk biochemically-
relapsing forms of prostate cancer (28). These genomic and
transcriptomic analyses can help identify novel mechanisms in
prostate cancer progression, and suggest radiosensitizing drugs
that target DNA repair, survival pathways, or the tumor
microenvironment (29). Based on this better understanding of
the mechanisms behind the aggressiveness and radioresistance of
prostate cancer, this article describes current and future
strategies for drug intensification that aim to improve the
efficacy of post-prostatectomy radiotherapy.

Targeting Microtubule Assembly
In a first attempt to increase the efficacy of prostate bed
radiotherapy, multiple studies tried to combine chemotherapeutic
agents, such as docetaxel or cabazitaxel, which target microtubule
assembly. The combination of docetaxel/prednisone and sunitinib
prior to salvage radiotherapy was evaluated in biochemically-
relapsing prostate cancer patients (30) (Table 1). This study had
to be stopped because of excess dose-limiting toxicity (DLT). The
progression-free survival rate at 2 years was 51%.Weekly docetaxel
combined with prostate bed radiotherapy was better tolerated, but
grade 3 neutropenia was noted in almost 50% of patients in a
small series of 17 patients (34). At 4 years, progression-free survival
was 42% and similar to matched-paired controls. Another
taxane derivative, cabazitaxel, was also tested in a Phase II
trial (NCT01650285) in combination with radiotherapy after
prostatectomy, the results of which are pending. Strategies
combining chemotherapy and radiotherapy may result in
increased toxicity, with nomajor improvement in terms of survival.

Targeting the Androgen Receptor
The androgen receptor (AR) predominantly acts as a
transcription factor regulating the expression of genes that
maintain cellular homeostasis and normal prostate function
(35). Dihydrotestosterone (DHT) binds to the androgen
receptor, which then translocates from the cytoplasm to the
nucleus, where it binds target genes with an androgen response
element (ARE) to provoke a transcriptional response (35). Gene
fusions of AR-regulated promoter regions with regions encoding
members of the ETS (erythroblast transformation-specific)
family of transcription factors are found in 40-60% of localized
cases of prostate cancer (36, 37). AR amplification, alternative
splicing of the AR, post-translational modifications to the AR,
alteration of factors that control AR expression, or somatic gain-
of-function mutations which are the hallmark of late-stage
castration-resistant prostate cancer, are typically absent in
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TABLE 1 | Summary of the various molecules currently associated with post-prostatectomy radiotherapy, either in adjuvant situations on anatomopathological criteria (2 studies) or – in most cases – depending on the

adiotherapy Outcomes Results Recruitment Results

IMRT Daily CBCT 10 mg is safe Completed Published (31)

radiotherapy IMRT 66Gy/ B: not recommended
Dose: 750 mg

Completed Published (19)

2-year PFS: 65% Completed Published (20)

/enzlutamide and 2
and before

FFPP (freedom from
PSA progression)

Not recruiting Not published

PFS Recruiting Not published

,8-2 Gy daily fractions
f 6-8 weeks

PFS Not recruiting Not published

: 66Gy/33FPelvic node:
IB 69,3/33F to local
IRM)

PFS Recruiting Not published

EPIC-26 sexual
domain score

Recruiting Not published

bPFS2nd: stratification
by PAM50 gene
expression

Not recruiting Not published

PFS Not recruiting Not published

after docetaxel
/33F

PFS Completed Published (32)

DMTDLT Completed Not published

tumor bed No increase in
toxicityNo clinical
benefit

Completed Published (33)

TAdjuvant DMT Completed Not published

t DMT Closed Closed
TTP (time to
progression)

Completed Not published
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elevation in PSA after prostatectomy.

Systemic
treatment

Study ID Population Study Arm

mTOR
inhibitor

NCT01548807
Phase I
(5-7,5-10mg)

Biochemical recurrence after
prostatectomy

Rapamycin + RT 66,6Gy/37F

Abirateron
acetate (AA)

NCT01780220 Phase I,II
(CARLHA)

Biochemical recurrence after
partial response

A: AA-Prednisolone-ADT-
RTB: AA-Prednisolone-RT

Prostate bed
33F

Enzalutamide NCT02057939 Phase II(
STREAM)

Biochemical relapse after partial
response

Enza-ADT-RT 66Gy/33F

Enzalutamide NCT02203695 Phase II (SALV-
ENZA)

Biochemical relapse after partial
response

A: RT-PlaceboB: RT-
Enzalutamide

66,6-70,2 G
(daily placeb
months after

Enzalutamide NCT03809000
Phase II
(STEEL)

Biochemical relapse after
prostatectomy

A: Enza-ADT-RTB: ADT-RT 66-70.2 Gy

Apalutamide NCT03311555 Phase II
(STARTAR)

Biochemical complete response
after radical prostatectomy

Apalutamide-ADT-RT +
adjuvant cocetaxel

66-74 Gy in
over a total o

Apalutamide NCT04181203
Phase III
(CARLHA-2)

High-risk postprostatectomy
biochemically relapsed prostate
cancer patients

A: apalutamide-RT-ADTB:
RT-ADT

Prostate bed
56,1Gy/33FS
relapse (TEP

Apalutamide NCT03899077 Phase II (SAVE) Biochemical progression after
radical prostatectomy

A: ADT-RTB: ADT-RT-
Apalutamide

NA

Apalutamide NCT03371719NRG-GU006
Phase II (BALANCE)

Biochemical progression after
radical prostatectomy

A: RT-placeboB: RT-
apalutamide

NA

AA
+Apalutamide

NCT03141671 Phase II
(FORMULA-509)

Rising PSA after prostatectomy
with adverse features

A: ADT-AA-apalutamide-RTB:
ADT-RT

NA

Docetaxel
Sunitinib

NCT00734851 Phase II Rising PSA after prostatectomy 4 cycles D1-D21:Docetaxel-
Sunitinib D1-D14

Radiotherap
sunitinib66G

Satraplatin NCT00480623
Phase I

Rising PSA after prostatectomy Satraplatin+RT concomittant NA

Taxotere NCT00480857Phase II Rising PSA after prostatectomy Docetaxel 20mg/m2 weekly
during RT

64,9-70.3 to

Cabazitaxel NCT01650285 Pathological determined stage 3
and/or PSA rising

CabazitaxelDay 1,22,43 64,8 Gy IMR

Ixabepilone NCT01079793 Pathological determined stage 3 Ixabepilone IB D1-D8D1=D21 IMRTAdjuva
Metformin NCT02945813 Phase II

PROMET
Rising PSA after prostatectomy A: Metformin 850mg/12h +

RTB: RT
70Gy/35F

NA, not assessable.
R
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localized cases of prostate cancer (35). This dependence on AR
makes localized prostate cancer highly sensitive to blockading
AR signaling by drugs that target DHT production, such as LH-
RH agonists, or CYP17A1 inhibitors, such as abiraterone acetate,
or drugs directly inhibiting the AR such as enzalutamide,
darolutamide, or apalutamide.

The interaction between androgens and their receptor triggers
intra- and interchromosomal rearrangements by double-stranded
breaks. The fusion genes generated this way first initiate, and then
promote, prostate cancer (38). This is the case, for example, for the
TMPRSS2-ERG fusion gene, which results from a rearrangement
mediated by topoisomerase 2B, itself regulated by the androgen
receptor pathway (39). However, radiotherapy increases the
expression of androgen receptors and stimulates their activity
both in vitro and in vivo, where an increase in the level of hK2, a
protein involved in the androgenpathway, ismeasured in the serum
of patients treatedwith radiotherapy (32). In addition, upregulation
of theTMPRSS2genementionedabove is observed in the irradiated
prostate cell lines. It is therefore understood that radiotherapy may
stimulate the androgen receptor pathway, which is thwarted by
androgen suppression. Moreover, AR targeting impairs DNA
double-strand break repair by inhibiting non-homologous end
joining (17, 18), thereby increasing the radiosensitivity of prostate
cancer cells.

Two randomized phase 3 studies, GETUG 16 and RTOG 9601,
showed there was a strong clinical benefit to combining ADT and
prostate bed radiotherapy (4, 5). As preclinical experiments showed
that AR-targeting drugs such as enzalutamide are better
radiosensitizers than ADT (33), it is expected that combining
novel AR-targeting agents may increase the benefits of salvage
radiotherapy. Several phase 1 and phase 2 trials have already
investigated the combination of radiotherapy and second-
generation hormone therapy: abiraterone acetate (AA),
enzalutamide, apalutamide, and darolutamide (Table 1). The
phase 1 CARLHA study was the first to combine salvage prostate
bed radiotherapy and AA with or without LH-RH agonists (31).
When AA was administered without LH-RH agonists, only 78%
achieved castration levels. AA combinedwith SRTand goserilin did
not increase pelvic toxicity but led to an unexpectedly high
frequency of grade 3 liver toxicity. The phase II recommended
dose of AA combined with goserelin and SRT was 750 mg. Phase 2
results are pending. Enzalutamide was also evaluated in
combination with salvage prostate bed radiotherapy (40). Grade 3
toxicities,mostly fatigue andhypertension,were observed in 29%of
patients. After a median follow-up time of 37.5 months, 2-year
progression-free survival was 65%. Other phase 2 studies are
ongoing or closed to accrual. The randomized phase 3 study that
compares salvage prostate bed and lymph node radiotherapy
combined with 6 months of ADT +/- apalutamide, CARLHA 2
GETUG 33 (NCT04181203), is actively recruiting patients.

Targeting the Pi3K/Akt/mTOR Pathway
Themammalian target of rapamycin (mTOR) is a protein central to
the regulation of cell metabolism and proliferation. mTOR is a
downstream effector in the phosphatidylinositol 3-kinase/protein
kinase B PI3K/AKT pathway, which regulates metabolism, protein
synthesis, growth, cell cycle progression, and survival (41).
Frontiers in Oncology | www.frontiersin.org 4
The Pi3K/AKT pathway is the most frequently activated intra-
cellular signaling pathway in prostate cancer, responsible
for important signals for malignant transformation, tumor
progression, and metastatic invasion. PI3K/AKT is negatively
regulated by the PTEN tumor suppressor (phosphatase and
tensin homolog) and PTEN deletions are observed in up to 20%
of localized cases of prostate cancer. The PI3KAKT crosstalk with
the androgen receptor (AR) pathway and AR signaling blockade
results in compensatory activation of the PI3KAKT pathway (42).
The PI3KAKT pathway also has close links with the RAS/RAF/
MEK/ERK pathway and with VEGF (41).

The Pi3K/Akt/mTOR pathway plays a key role in
radioresistance through different mechanisms: increased
metabolism and proliferation (43), increased DNA repair as AKT
regulates DNA-PK activity (44), and mTOR signaling which also
plays a key role in hypoxia-triggered angiogenesis and HIF1alpha
overexpression (45).

Given the role of PI3K and mTOR in the response of
prostate cancer cells to radiation and hypoxia, preclinical
studies investigated whether PI3K/AKT/mTOR inhibitors
radiosensitized prostate cancer cells of different PTEN status.
Several drugs targeting the PI3K/AKT pathway have been
developed: Pi3K inhibitors (LY294002, WORTMANNIN,
BKM120, GSK2636771), AKT inhibitors (Palomid 539,
erufosine, perifosine, ipatasertib), mTOR inhibitors (sirolimus,
temsirolimus, everolimus) and dual PI3K/mTOR inhibitors
(BEZ235, PI103, GDC-0980). The radiosensitizing properties
of these agents have been investigated in several studies in
prostate cancer models (46–48). Because of the non-selective
profiles of certain drugs in this family, especially with regard to
DNA repair, the combination may however be toxic.

The combination of themTOR inhibitor everolimus and prostate
bed radiotherapywithout addingADTwas tested in a phase I clinical
study (49). The maximum tolerated dose of everolimus in
combination with fractionated post-prostatectomy radiation
therapy was 10 mg daily, leading to no unexpected toxicity. An
undetectable prostate-specific antigen nadir was achieved in more
than 50% of patients but information on the PTEN status of
responding patients was lacking. With the promising results of
ipatasertib in metastatic castration-resistant prostate cancer (50),
this area of research warrants further investigation.

Targeting DNA Repair Pathways
DNA damage response (DDR) genes play an important role in
prostate cancer. Men with germline BRCA2 mutations have a
higher risk of aggressive prostate cancer because of MYC
activation in combination with inactivation of TP53 and PTEN
(51), leading to worse clinical outcomes (52). DDR also plays a
major role in the response to radiotherapy, where DNA double
strand-breaks are mostly repaired by homologous recombination
(HR) and non-homologous end joining (NHEJ). Drugs targeting
DDR are very potent radiosensitizers but may increase the
likelihood of normal tissue toxicity. In cells lacking efficient
HR, such as BRCA2-deficient cells, other DNA repair
pathways, such as base excision repair (BER), are responsible
for high-fidelity DDR. Combining inhibitors of BER such as
polyADP ribosylpolymerase (PARP) inhibitors may therefore
December 2021 | Volume 11 | Article 780507

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cailleteau et al. Radiosensitizing Drugs for Prostate Bed Radiotherapy
radiosensitize HR-deficient cells while not radiosensitizing
normal cells with regular HR function. Several PARPi, such as
veliparib, olaparib, rucaparib, or talazoparib, were tested in
combination with irradiation in prostate cancer models
[reviewed in (53)]. Encouraging results suggest increased
radiosensitization and limited combined toxicity. To date, no
clinical studies have currently addressed the combination of
PARPi or any drug targeting DDR in combination with salvage
prostate bed radiotherapy.

Targeting Hypoxia and
Glucose Metabolism
Many primary tumors have low levels of molecular oxygen.
Hypoxia plays a role in both dissemination, by increasing the
genes involved in metastasis, and angiogenesis (e.g. VEGF), and
hypoxic tumors respond poorly to radiotherapy. Prostate cancer
is strongly hypoxic (54, 55) and a hypoxic signature is a predictor
of poor response to radiotherapy (22, 23). The oxic status of the
prostate bed following prostatectomy has not been explored,
but it is expected that lack of vasculature will render residual
tumor cells hypoxic. There are several mechanisms to combat
hypoxia: increase oxygen with hyperbaric oxygen or use hypoxic
cell radiosensitizers such as tirapazamine for example. Another
mechanism is to reduce glucose consumption to force aerobic
cells to consume more glucose and reduce glucose concentrations
in lesser perfused cells. One of the molecules studied in this sense
is metformin, which has already shown its clinical value in
retrospective series (56). The SAKK 08/15 – PROMET/GETUG
34 trial (NCT02945813) is a randomized phase II trial that closed
recently. It tested salvage radiotherapy +/- metformin in patients
with prostate cancer relapsing after prostatectomy. Other
inexpensive drugs, such as menadione, could be repurposed to
serve as novel radiosensitizers in the treatment of hypoxic
prostate cancer (57).
PERSPECTIVES

Not all biochemically-relapsingpatients arepotential candidates for
salvage radiotherapy combined with radiosensitizing drugs (58).
The median time from the time of PSA level elevation to the
occurrence of metastases is 8 years (59). Strengthening prostate
bed radiotherapy by adding drugs can be detrimental in fragile
patientswith a limited risk of dying of their biochemically-relapsing
prostate cancer.Theoverall benefits ofADTcombinedwithSRTare
lost in patients with a lower PSA because of ADT-related
cardiovascular toxicity (60). A key point is therefore patient
selection, and transcriptomic signatures can help select patients at
higher risk of relapse following salvage therapy (28). The European
Association of Urology high-risk group of patients with a
biochemical relapse following prostatectomy (PSA-doubling time
less than 1 year or ISUP grade 4–5 tumors) (58) could help both
identify the patients who need treatment intensification and in
particular define the use of novel agents in addition to RT+/-ADT.
To improve patient selection, the NRG GU006 (NCT03371719)
trial is stratifying patients basedon their transcriptomic signature to
Frontiers in Oncology | www.frontiersin.org 5
evaluate the benefits of apalutamide combined with ADT and
prostate bed radiotherapy. Similarly, genomic characterization of
the prostate tumor may help select the best radiosensitizing drug,
such asDNArepair inhibitors or immunotherapy inDDR-deficient
tumors, or AKT pathway inhibitors in PTEN mutated tumors. As
the overall prognosis of biochemically-relapsing patients is good,
radiosensitizing candidates should present a strong benefits/risk
ratio, which precludes toxic combinations such as certain PI3K
inhibitors or chemotherapeutic agents. Lastly, improved
phenotypic imaging may help better reduce the target volumes
and thereby decrease the likelihood of combined toxicity.
CONCLUSION

In this review, we have described therapeutic pathways under
investigation in the management of patients experiencing
biochemical failure after prostatectomy. However, clinical
efficacy remains to be demonstrated for many of the molecules
and signaling pathways. In the near future, given the large
number of trials, the role of AR-targeting agents should be
given a significant role in the management of these patients.
Although therapeutic control is an essential point, it is important
to take the absence of additional toxicity into account in these
long surviving patients with few symptoms.
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