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Pituitary adenomas (PAs) are a group of tumors with complex and heterogeneous clinical
manifestations. Early accurate diagnosis, individualized management, and precise
prediction of the treatment response and prognosis of patients with PA are urgently
needed. Artificial intelligence (AI) and machine learning (ML) have garnered increasing
attention to quantitatively analyze complex medical data to improve individualized care for
patients with PAs. Therefore, we critically examined the current use of AI and ML in the
management of patients with PAs, and we propose improvements for future uses of AI
and ML in patients with PAs. AI and ML can automatically extract many quantitative
features based on massive medical data; moreover, related diagnosis and prediction
models can be developed through quantitative analysis. Previous studies have suggested
that AI and ML have wide applications in early accurate diagnosis; individualized
treatment; predicting the response to treatments, including surgery, medications, and
radiotherapy; and predicting the outcomes of patients with PAs. In addition, facial
imaging-based AI and ML, pathological picture-based AI and ML, and surgical
microscopic video-based AI and ML have also been reported to be useful in assisting
the management of patients with PAs. In conclusion, the current use of AI and ML models
has the potential to assist doctors and patients in making crucial surgical decisions by
providing an accurate diagnosis, response to treatment, and prognosis of PAs. These AI
and ML models can improve the quality and safety of medical services for patients with
PAs and reduce the complication rates of neurosurgery. Further work is needed to obtain
more reliable algorithms with high accuracy, sensitivity, and specificity for the
management of PA patients.

Keywords: pituitary adenomas, artificial intelligence, machine learning, radiomics, individualized treatment
INTRODUCTION

Pituitary adenomas (PAs) account for approximately 10%–15% of all intracranial neoplasms and
are the second most common primary brain tumors (1). PAs are a group of tumors with complex
and heterogeneous clinical manifestations that can be classified based on hormone secretion status,
clinical features, and radiologic and pathological results. Some PAs are microadenomas (<10 mm)
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but secrete excess hormones, whereas others are invasive giant
PAs (≥40 mm), leading to mass effects but without excessive
hormone secretion. Some PAs are asymptomatic and remain
stable with long-term follow-up, but others have obvious clinical
symptoms at initial diagnosis and need to be treated in a timely
manner (2). A subset of PAs is responsive to surgery, medical
therapy, and radiotherapy, while others do not respond to these
treatments. After standard treatment, some benign PAs achieve
long-term remission, whereas other aggressive PAs are refractory
to conventional treatments and recur (3). Therefore, it is
essential to accurately diagnose PAs early, individually manage
PAs, precisely predict the response to treatments, and predict the
outcomes of patients with PAs. However, there currently exist no
clinical models that can accurately predict the early diagnosis,
therapeutic response, and outcomes of patients with PAs.
ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

Artificial intelligence (AI) is a methodology of computer systems
that uses algorithms to tirelessly process data, automatically learn
and understand its meaning, generate computer models, and
identify the best predictive features present in training data (4).
As a domain of AI, machine learning (ML) is defined as
performing automated learning from the input or data
(experience) that it has been presented, and it converts these
data to expertise or knowledge. ML can be used to design and
train software algorithms to learn from and act on data (5). ML
has gained wide applicability to develop sophisticated tools in
various areas of data processing, such as images, natural language
processing, data mining, gaming, robotics, and big data in
general (6). In the past few years, the applications of AI and
ML in the healthcare sector have shown ever-increasing growth
owing to the rapid progress made possible by deep ML (7).
APPLICATIONS OF AI AND ML IN PAs

With the rapid advancement of computer technology, AI and
ML have more widely been used in the diagnosis and
management of patients with PAs. AI and ML have seen a
resurgence with specific application areas in PAs, which involve
radiomics, facial imaging, pathological images, electronic
medical records including texts, and medical image analyses (6).
MAGNETIC RESONANCE IMAGING-
BASED RADIOMICS AND ML IN PAs

As one of the standard examinationmethods, magnetic resonance
imaging (MRI) has been considered one of the most useful tools
for detecting PAs. MRI-based radiomics and ML have been used
for early screening, differential diagnosis, grading and staging of
Frontiers in Oncology | www.frontiersin.org 2
tumors, clinical decision-making, predicting outcomes, and
identifying pathological subtypes (8, 9). The details of the
reviewed studies are summarized in Table 1. Acromegaly is
usually caused by a pituitary growth hormone (GH)-secreting
adenoma. Transsphenoidal surgery (TSS) is the first-choice
treatment for acromegaly, and tumor consistency is one of the
important factors that affect the surgical resection rate. Therefore,
it is pivotal to predict the tumor consistency before surgery and to
identify individualized surgical strategies for patients with
acromegaly. Fan and colleagues (10) enrolled 158 patients with
acromegaly and randomly divided them into primary cohort (n =
100) and validation cohort (n = 58). The preoperative clinical
characteristics were collected, and the consistency of the tumor
was classified as soft or firm according to the neurosurgeon’s
evaluation. The most valuable clinical characteristics were then
selected based on the multivariable logistic regression analysis.
The critical radiomics features were determined using the elastic
net feature selection algorithm, and the radiomics signature was
established based on the radiomics features selected from the
primary cohort through the support vector machine method.
Furthermore, differences in the signature distribution between
soft and firm tumors were compared using a violin plot. The
radiomics model was then obtained to precisely predict tumor
consistency, and the AUC was 0.83 (95% confidence interval,
0.81–0.85) and 0.81 (95% confidence interval, 0.78–0.83) in the
primary and validation cohorts, respectively. The authors found
that radiomics model is more effective in the prediction of the
tumor consistency comparing with the clinical characteristics.
Zeynalova and colleagues (11) also enrolled 55 patients with 13
hard and 42 soft pituitary macroadenomas and used an open-
source Python package named PyRadiomics for texture feature
extraction from coronal T2-weighted original. They reduced the
high dimensionality of the histogram texture features with
reproducibility analysis, collinearity analysis, and feature
selection. Reference standard (hard versus soft) for the
classifications of macroadenomas was based on surgical and
histopathological findings. The artificial neural network using
multilayer perceptron algorithm was utilized for classifications.
The authors found that using the ML-based histogram analysis,
about three-fourths of pituitary macroadenomas can be correctly
classified in term of tumor consistency with an AUC value of
0.710. Furthermore, the ML-based histogram analysis performed
better than the signal intensity ratio (SIR) evaluation with an
AUC value of 0.551. They indicated that ML-based T2-weighted
MRI histogram analysis might be a better technique in predicting
the consistency of pituitary macroadenomas than that of
conventional SIR evaluation.

Zhu and colleagues (12) also used 152 patient data with labels
(including 112 T1 MRI spatial sequences and 40 T2 MRI spatial
sequences) and presented an automatic method for accurately
determining the softness level of pituitary tumors preoperatively.
Because their pituitary tumor MRI image dataset where T1 and
T2 sequence data are unbalanced (due to data missing) and
undersampled. They first obtained fully sampled MRI spatial
sequence by using a CycleConsistent Adversarial Networks
(CycleGAN) model. They then used a Densely Connected
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TABLE 1 | Summary of recent studies related to artificial intelligence and machine learning applications in the pituitary adenomas.

Author
and ref.

Tumor subtypes Sample size Task Models (parameters) Prediction
performance (AUC)

Fan et al.
(10)

Acromegaly Training (n = 100)
Test datasets (n = 58)

Predicting consistency Elastic net feature selection
algorithm

0.83

Zeynalova
et al. (11)

Pituitary
macroadenoma

N = 55 Predicting consistency Artificial neural network 0.710

Zhu et al.
(12)

PAs N = 152 Determining the softness CRNN (DenseNet+ResNet) 0.9178

Niu et al.
(13)

PAs Training set (n = 97)
Test set (n = 97)

Predicting CSI Linear support vector
machine and nomogram

Training (0.899)
Test (0.871)

Fan et al.
(14)

Invasive functional
PAs

Primary (n = 108)
Validation (n = 55)

Predicting treatment response Support vector machine Training (0.832)
Validation (0.811)

Staartjes
et al. (15)

PAs N = 140 Predicting gross-total resection Deep neural network 0.96

Fan et al.
(16)

Acromegaly Training (n = 534) Test datasets (n =
134)

Predicting TSS response Forward search algorithm Training (0.8555)
Validation (0.8178)

Qiao et al.
(17)

Acromegaly Training (n = 833) Test datasets (n = 99)
Predicting early remission of TSS

Partial model, full model Partial
model

Full
model

Penalized logistic
regression

0.781 0.867

Gradient boost machine 0.752 0.789
Support vector machine 0.759 0.850
Neural network 0.790 0.787
Ensemble algorithm 0.775 0.853

Validation cohort
0.759 0.897

Hollon
et al. (18)

PAs Training (n = 300)
Test datasets (n = 100)

Predicting early outcomes Naive Bayes 0.795
Support vector machines 0.826
Random forest 0.848
LR-EN regularization 0.827

Dai et al.
(19)

Acromegaly Training (n = 244)
Test dataset (n = 62)

Predicting delayed remission Logistic regression 0.7945
Adaptive boosting 0.7013
GBDT 0.8061
Extreme gradient boost 0.8260
Categorical boosting 0.8239
Random forest 0.7338

Fan et al.
(20)

Acromegaly N = 57 Predicting radiotherapeutic response Support vector machine 0.96

Kocak
et al. (21)

Acromegaly N = 47 Predicting response to SA Wrapper-based algorithm 0.847

Park et al.
(22)

Prolactinoma Training (n = 141)
Test dataset (n = 36)

Predicting the DA response Random forest 0.78 (0.63–0.94)
Extra-trees 0.79 (0.63–0.95)
Light GBM 0.74 (0.57–0.93)
QDA 0.66 (0.48–0.84)
LDA 0.66 (0.46–0.86)
Soft voting ensemble 0.81 (0.67–0.96)

Zoli et al.
(23)

Cushing disease Training (n = 121)
Test dataset (n = 30)

Predicting outcomes of TSS Training and test
Support vector machine 0.681 and 1.00
GBM 0.719 and 0.783
K-nearest neighbor 0.993 and 0.988

Zhang
et al. (24)

Cushing disease Training (n = 836)
Test dataset (n = 209)

Predicting postoperative immediate
remission

Extreme gradient boost 0.712
GBDT 0.734
Random forest 0.726
Adaptive boost 0.699
Naïve Bayes 0.681
Logistic regression 0.701
Decision tree 0.664
Multilayer perceptron 0.700
Stacking 0.743

Fan et al.
(25)

Cushing disease Training (n = 836)
Test dataset (n = 209)

Predicting
Postoperative
Delayed remission

Logistic regression 0.7262
Adaptive boosting 0.7619
GBDT 0.7262
XGboost 0.7262
Catboost 0.7

(Continued)
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Convolutional Networks (DenseNet)-Deep Residual Networks
(ResNet)-based Autoencoder framework to optimize the feature
extraction process for pituitary tumor image data. Finally, they
used a Convolutional Recurrent Neural Network (CRNN) model
to classify pituitary tumors based on their predicted softness
levels. They found that this semisupervised deep neural network
model can accurately determine the softness level of pituitary
tumors with high accuracy (91.78%).

Although these ML-based radiomics have been shown a very
high accuracy in predicting consistency of the pituitary tumors,
each approach has its own pros and cons. Firstly, all the studies
were a retrospective analysis with a relatively small number of
patients, which would lead to bias in ML-based classifications.
Secondly, Zeynalova and colleagues (11) only used histogram
analysis with few texture features, two dimensional
segmentations, and conventional T2-weighted MRI, which
were not comprehensive. More ML and feature selection
algorithms and more comprehensive MRI data including
contrast-enhanced MRI scans may have a potential for
developing better ML-based models. Thirdly, the data samples
used in Zhu’s (12) study were unbalanced sequence image data
and insufficient; it is easy to produce the overfitting
phenomenon. Although the loss of feature extraction model
training was low and convergence was achieved, the accuracy
was still not high enough. Taken together, these ML-based
radiomics models performed better than conventional methods
in predicting the consistency of the pituitary tumors; further
Frontiers in Oncology | www.frontiersin.org 4
large-scale and more comprehensive studies are needed to
confirm and improve these approaches.

Invasive PAs are complicated and difficult to treat; therefore,
it is critical to predict cavernous sinus (CS) invasion and
treatment response for these patients preoperatively. Niu and
colleagues (13) predicted CS invasion preoperatively for patients
with Knosp grades II and III PAs using a radiomics method
based on MR, which might contribute to designing surgical
strategies. Fan and colleagues (14) developed and validated a
radiomic model incorporating an MRI-based radiomic signature
using a support vector machine, which predicts the treatment
response and help doctors determine individual treatment
strategies for these patients with invasive functional PAs.
Gross-total resection is often the primary surgical goal in TSS
for PAs. Staartjes and colleagues (15) demonstrated that a deep
ML model could be used to preoperatively predict the likelihood
of GTR with excellent performance, which would be a valuable
addition to risk stratification and surgical decision-making.
Accurate prediction of postoperative remission may be helpful
for decision-making and prognosis regarding treatment
strategies for patients with acromegaly. Fan and colleagues (16)
enrolled 668 patients with acromegaly and divided them into a
training set of 534 cases and a test set of 134 cases. The author
used six machine learning methods in Python, including random
forest, logistic regression, logistic GAMs, gradient boosting
decision tree (GBDT), adaptive boosting, and extreme gradient
boost, to construct a predictive model for postoperative
TABLE 1 | Continued

Author
and ref.

Tumor subtypes Sample size Task Models (parameters) Prediction
performance (AUC)

Liu et al.
(26)

Cushing disease Training (n = 283)
Test dataset (n = 71)

Predicting recurrence after TSS Decision tree 0.629
Random forest 0.779
Logistic regression 0.684
Naïve Bayes 0.608
GBDT 0.694
Adaptive boost 0.716
Extreme gradient boost 0.735

Voglis et al.
(27)

PAs N = 207 Predicting postoperative
hyponatremia

Random forest 0.637
Naïve Bayes 0.646
Boosted GLMs 0.671
GLMs 0.595

Machado
et al. (28)

NFP
macroadenomas

N = 27 Predicting recurrence after the first
surgery

2D
radiomics

3D
radiomics

Multilayer perceptron 0.92.9 0.962
Random forest 0.877 0.962
Support vector machine 0.860 0.946
Logistic regression (LR) 0.929 0.946
K-nearest neighbor 0.979 0.945

Meng et al.
(29)

Acromegaly 62 patients with acromegaly and 62
matched controls

Identifying facial features and
predicting patients of acromegaly

Linear discriminant analysis 0.9286

Wei et al.
(30)

Acromegaly and
Cushing disease

642 Cushing disease, 896 acromegaly,
and 11,447 normal images

Identifying facial anomalies Convolutional neural
networks

Cushing
disease

0.9647

Acromegaly 0.9556
Normal 0.9393

Peng et al.
(31)

PAs 235 patients with pathologically
diagnosed PAs

Immunohistochemically classify PAs
subtypes

Support vector machine 0.9549
K-nearest neighbor 0.9266
Naïve Bayes 0.932

Ugga et al.
(32)

PAs 89 patients with available Ki-67 labeling
index

Predicting of high proliferative index K-nearest neighbors 0.87
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remission. By comparing the six models, the GBDT model has
the best predictive performance, can obtain quantitative
predictive value, has a higher accuracy rate than clinicians, and
can better assist the preoperative clinical diagnosis and treatment
decision-making of patients with acromegaly. Qiao (17) included
833 patients with GH-secreting PAs as a training cohort and
trained a partial model (using only preoperative variables) and a
full model (using all variables) to predict off-medication
endocrine remission at the 6-month follow-up after TSS using
multiple ML algorithms. These models have been validated to
accurately predict early endocrine remission after TSS in patients
with GH-secreting PAs. The prediction accuracy of the ML-
trained models was better than those using single variables.
Hollon (18) also demonstrated that early surgical outcomes of
PAs can be predicted with 87% accuracy using a machine
learning approach.

For patients with acromegaly who do not reach immediate
remission after surgery, a subset of them achieves delayed
remission during long-term follow-up without further
postoperative therapy. Therefore, it is necessary to predict the
delayed remission of acromegaly after surgery (33). We used the
recursive feature elimination algorithm to select features and
applied six ML algorithms to establish an ML model for
predicting delayed remission of acromegaly. As an effective
noninvasive approach, ML-based models can predict delayed
remission and aid in determining individual treatment and
follow-up strategies for patients with acromegaly who have not
achieved remission within 6 months of surgery (19).

For acromegaly patients who do not achieve remission after
TSS, radiotherapy is a third-line treatment. Fan and colleagues
developed a radiomics model using preradiotherapy clinical and
MRI data to noninvasively predict the radiotherapeutic response
of acromegaly, which may help doctors identify acromegaly
patients who will benefit from radiotherapy (20). Somatostatin
analogs (SAs) are widely used in the medical treatment of
patients with acromegaly, and it is necessary to predict the
response to SA for these patients. Kocak (21) demonstrated
that ML-based high-dimensional quantitative texture analysis
on T2-weighted MRI has the potential to predict the response to
SAs in patients with acromegaly, and it performs better than
quantitative and qualitative T2-weighted relative signal intensity
or immunohistochemical granulation pattern evaluation.

For prolactinomas, medical treatment with dopamine
agonists (DAs) is the first- l ine therapy. However ,
approximately 10%–30% of patients with prolactinomas show
resistance to DA (34). Therefore, it is crucial to identify DA-
resistant prolactinomas early because then the patients would
not have to endure a prolonged therapeutic trial. Park (22)
developed a radiomics model using an ensemble machine
learning classifier with conventional MRIs and demonstrated
that radiomics features might be useful biomarkers to predict the
DA response in patients with prolactinoma.

Cushing disease (CD) is a devastating condition that is usually
caused by excessive secretions arising from pituitary corticotroph
adenomas (35). It remains challenging to accurately diagnose
and individually manage CD due to the disease complexity and
Frontiers in Oncology | www.frontiersin.org 5
heterogeneity (36). It is especially important to preoperatively
predict the treatment outcomes of these patients due to variable
rates of remission and a high risk of recurrence (37). In recent
years, AI and ML have been increasingly reported in the
diagnosis and management of CD (38). TSS is the first-line
treatment for patients with CD; however, surgical outcomes are
usually the most difficult to predict preoperatively. Zoli and
colleagues (23) trained and internally validated robust models
using ML algorithms to make accurate preoperative surgical
outcome predictions for CD patients. Zhang (24) also developed
a readily available ML-based model for the preoperative
prediction of immediate remission in patients with histology-
positive CD. After TSS, a subset of patients with CD do not
achieve immediate remission but achieve remission without
further postoperative therapy during long-term follow-up,
which is defined as postoperative delayed remission (39).
Among these patients with persistent hypercortisolism after
TSS, some patients will achieve delayed remission without the
need for further treatment. To identify patients who have the
potential to achieve delayed remission, Fan (25) developed ML-
based models to predict delayed remission or persistent active
disease in patients with CD whose remission status is uncertain.
Use of this model could help doctors judge the surgical response
and determine whether the patient needs postoperative adjuvant
therapy, thus avoiding unnecessary additional treatments.
According to previous studies, recurrence after TSS for CD
ranges from 15% to 66% (40), whereas no valid predictor for
recurrence has been developed. Liu (26) reported that using ML-
based models was feasible for predicting CD recurrence after
initial TSS, which was significantly better than that of some
conventional models.

After TSS, postoperative hyponatremia is one of the common
procedural complications in patients with PAs. Voglis (27)
demonstrated that a trained ML model was able to learn
complex risk factor interactions and could predict
postoperative hyponatremia, thus potentially reducing
morbidity and improving patient safety.

After the first surgery, 12% to 66% of patients with clinically
nonfunctioning pituitary adenoma (NFPA) experience a tumor
recurrence. Nevertheless, there is still no factor that could
concisely predict the recurrence of NFPA. Machado (28)
reported that a combination of radiomics with machine-
learning algorithms could offer computational models capable
of noninvasive, unbiased, and quick assessment that might
improve the prediction of NFPA recurrence.

Taken together, these ML-based and MRI-based radiomics
analytical methods are playing an increasingly important role in
early accurate diagnosis, individualized treatment, predicting the
response to treatments, including surgery, medications and
radiotherapy, and the prognosis of patients with PAs.
However, there is significant variability in the applied ML
paradigms and prediction performance (AUC) at different
studies (Table 1). The main reasons for that include variation
in data extraction and lack of consistency among the statistical
methodologies and ML algorithms used in the varied studies. In
the future, ML-based and MRI-based radiomics will have great
December 2021 | Volume 11 | Article 784819
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promise for potentially improving patients’ individualized
treatment and prognosis.
FACIAL IMAGING-BASED AI AND
ML IN PAs

Facial changes are common among nearly all patients with
acromegaly and CD. It is difficult to notice such facial changes
early because they are a slow and gradual process. The diagnosis
and treatment of these diseases are often delayed until these
clinical symptoms become obvious. Meng (29) demonstrated
that combining 3D imaging and ML techniques could accurately
identify and predict early facial changes in patients with
acromegaly, which might be beneficial for the early detection
of acromegalic patients, enabling immediate treatment. Wei (30)
also developed a deep-learning model to recognize facial
anomalies with underlying endocrine disorders, and its
performance was comparable with that of professional medical
practitioners. These models have the potential to assist in the
diagnosis and follow-up of these patients with hypersecretion
statuses, which may be helpful for the early detection of
the disease.
PATHOLOGICAL PICTURES-BASED
AI AND ML IN PAs

The type of PA cannot be clearly recognized by preoperative MRI
but can be classified by immunohistochemical staining of
resected tumor samples after surgery. Recently, PAs have been
classified based on a combination of tumor hormonal content
and pituitary transcription factors. The correct PA classification
before surgery can help doctors decide on the right treatment
strategy. Peng (31) developed a classification model using
ML-based radiomics, which can potentially precisely
immunohistochemically classify PA subtypes. This model
exhibited good performance and might offer potential guidance
to doctors in clinical decision-making before surgery. The Ki-67
labeling index, representing a proliferative marker, has been
reported as a marker of aggressiveness in PAs (41), and it is
crucial to identify the Ki-67 labeling index early to allow timely
diagnosis and treatment. Ugga and colleagues (32) proved that
ML analysis of texture-derived parameters from preoperative T2
MRI could effectively predict the Ki-67 proliferation index class
in pituitary macroadenomas. This might provide a more accurate
preoperative lesion classification for doctors before surgery and
help neurosurgeons develop surgical strategies.
SURGICAL MICROSCOPIC VIDEO-BASED
AI AND ML IN PAs

In pituitary surgery, segmentation of the surgical workflowmight
be helpful for providing context-sensitive user interfaces or
generating automatic reports. Moreover, neurosurgeons must
Frontiers in Oncology | www.frontiersin.org 6
deal with intraoperative adverse events, which come from not
only the patients but also surgical management. It is very
important to be aware of these difficulties quickly and
efficiently, to better handle risky situations and to relieve the
neurosurgeons’ responsibilities. It is necessary to assist
neurosurgeries through the understanding of operating room
activities, increase medical safety, and support decision-making.
Lalys (42) recognized surgical phases of every unknown image by
computing their signatures and then simulating them with
machine learning techniques and validated this methodology
with a specific type of neurosurgery. Currently, this methodology
could be used for postoperative video indexation as an aid to
surgeons, which contains relevant surgical phases of each
procedure for easy browsing.
TOTAL CHARGES AND DRIVERS OF COST
IN PAs

The effective allocation of resources in the healthcare system
enables providers to care for an increasing number of needier
patients. It is necessary to identify drivers of total charges for TSS
for PAs, which may help neurosurgeons reduce waste and
provide higher-quality care for patients. Muhlestein and
colleagues (43) used a large, national database to develop ML
ensembles that directly predict total charges for PA patients with
good fidelity. They identified extended length of stay,
postoperative complications, private investor hospital
ownership, etc. as drivers of total charges and potential targets
for cost-lowering interventions. Minimizing the effects of these
variables may improve efficiency in the resource-limited
healthcare system and lead to higher-quality care and
improved outcomes for more patients.
FUTURE PERSPECTIVES OF AI AND ML
IN PAs

To date, AI and ML are promising in the diagnosis, prediction of
therapy response, and prognosis, as well as the pathological
classification of PAs. AI-based radiomics has especially made
the greatest contributions to bridging the gap of AI-assisted
diagnostics and prognostics to individualized treatment.
However, the sample sizes included in the previous studies
were relatively small, and the accuracy of the algorithms is not
yet very high. Therefore, future studies including larger sample
sizes may obtain more reliable algorithms with high accuracy,
sensitivity, and specificity. Currently, there is a lack of
consistency among the statistical methodologies and ML
algorithms incorporated by the studies described. The wide
variety of methodologies and ML models always leads to
inconsistent conclusions. Given this lack of standardization, a
consensus is required to standardize the extrapolation of data
and model development. Moreover, it appears that there are
many aspects for future researchers to include contributions of
AI and ML in PAs. First, it is important to accurately predict the
December 2021 | Volume 11 | Article 784819
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disability and mortality risks among patients with PAs using ML
algorithms. Accurately predicting these risks, such as heart
failure risk in patients with acromegaly and fracture risk in
patients with CD, enables an individualized approach to
prevention, monitoring, and therapy strategies. Second, there is
currently a lack of healthcare policy generated by AI technologies
on PAs. Making appropriate medical policies by analyzing big
data from public healthcare using AI technologies would be
helpful to improve the accuracy and personalized medical care of
the entire medical community. Third, more interdisciplinary
studies are necessary to strengthen AI links with medical big
data management and enable the creation of publicly available
datasets for neuroimaging- and visual imaging-guided diagnosis
and treatment of PAs.
CONCLUSIONS

As an emerging field, AI and ML method research has displayed
great prospects in patients with PAs. The current use of AI and
ML models has the potential to assist doctors and patients in
making crucial surgical decisions by providing an accurate
diagnosis and predicting the response to treatment and the
outcomes of PAs. These AI and ML models have more
Frontiers in Oncology | www.frontiersin.org 7
individual specificity and accuracy than traditionally used
models, and AI-based clinical decision support systems are
likely to improve further the quality and safety of medical
services for patients with PAs and reduce the complication
rates of neurosurgery. Additional work is necessary to obtain
more reliable algorithms with high accuracy, sensitivity, and
specificity for the management of PA patients.
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