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As local disease control improves, the public health impact of brain metastases (BrM)
continues to grow. Molecular features are frequently different between primary and
metastatic tumors as a result of clonal evolution during neoplasm migration, selective
pressures imposed by systemic treatments, and differences in the local
microenvironment. However, biomarker information in BrM is not routinely obtained
despite emerging evidence of its clinical value. We review evidence of discordance in
clinically actionable biomarkers between primary tumors, extracranial metastases, and
BrM. Although BrM biopsy/resection imposes clinical risks, these risks must be weighed
against the potential benefits of assessing biomarkers in BrM. First, new treatment targets
unique to a patient’s BrM may be identified. Second, as BrM may occur late in a patient’s
disease course, resistance to initial targeted therapies and/or loss of previously identified
biomarkers can occur by the time of occult BrM, rendering initial and other targeted
therapies ineffective. Thus, current biomarker data can inform real-time treatment options.
Third, biomarker information in BrM may provide useful prognostic information for
patients. Appreciating the importance of biomarker analyses in BrM tissue, including
how it may identify specific drivers of BrM, is critical for the development of more effective
treatment strategies to improve outcomes for this growing patient population.
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HIGHLIGHTS

• The genomic status of BrM can alter treatment plans for patients by providing new targetable
options.

• Molecular profiling of BrM can indicate that a therapy is no longer effective for a patient.
• Biomarker information in BrM may provide useful prognostic information for patients.
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INTRODUCTION

Far exceeding primary central nervous system (CNS) neoplasms
in number, metastases to the brain pose a significant societal
burden. Of an estimated 1.7 million new cancer diagnoses per
year in the United States, approximately 6%–14% of these
patients are expected to ultimately develop a metastasis to the
brain (1–3). Brain metastases (BrM) most commonly arise in
patients with primary lung, breast, and melanoma neoplasms but
are also observed in patients with renal cell carcinoma, prostate
cancer, colorectal cancer, and many other primary cancer
histologies (4).

Patients with BrM face a dismal prognosis, with a median
overall survival of <6 months regardless of primary cancer type
based on historical data (5, 6). Clinically actionable molecular
biomarkers, such as genetic alterations and aberrant gene
expression, have been increasingly identified and translated
into treatment options for cancer patients, with more specific
emphasis placed on patients with BrM in recent years (7).
Identifying accurate molecular biomarkers for BrM is crucial to
developing more effective therapies and advancing personalized
oncology care.

Modern management of BrM involves multidisciplinary
consideration of surgery, radiation therapy, and systemic
therapy options. Surgical resection of BrM provides a survival
advantage for patients with a single metastasis (8). In modern
practice, neurosurgical resection is considered for patients with a
limited number of BrM, for larger metastases, for metastases that
can be safely resected, when tissue is needed for diagnosis, and
when debulking is needed to alleviate symptoms. Historically,
patients were treated with whole-brain radiation therapy
(WBRT) either alone or after surgical management given the
ability for WBRT to extend intracranial progression-free survival
(9). However, modern radiation treatments have shifted toward
approaches that seek to mitigate the neurocognitive side effects of
WBRT, such as hippocampal avoidant WBRT with memantine
(10) or stereotactic radiosurgery (SRS) directed only at the BrM
without WBRT. This is due to the ability for SRS to mitigate the
neurocognitive side effects of WBRT, while providing comparable
overall survival and local intracranial control outcomes (albeit at a
cost of decreased distant intracranial control) (11). Increasingly,
systemic therapies including chemotherapy, targeted therapies,
and immunotherapies are applied for BrM patients. The
identification of select BrM patients for whom surgery or
radiotherapy can be deferred while the patients are treated with
systemic therapies is a topic of investigation for many
cancer subtypes.

When surgical management is a primary BrM treatment
strategy, biomarker analyses of BrM tissues can offer additional
clinical gains. Surgical intervention is often indicated for BrM
that are >3 cm, situated in an accessible and/or superficial
location, or causing mass effect on the brain (12). Currently,
obtaining a tissue biopsy for the primary or sole indication of
assessing biomarker information in BrM is not routinely
performed due to associated clinical risks in a patient
population with a relatively poor prognosis. Biopsies of BrM,
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including concurrent biopsies obtained during laser interstitial
thermal therapy (LITT) (13), are routinely sent to pathology for
diagnostic confirmation and/or differentiation from radiation
necrosis. However, these biopsies are rarely sent for broad
molecular profiling despite an overall increase in the use of
commercial and in-house genomic and transcriptomic
sequencing services as part of routine oncology care (14, 15).

It has been generally accepted that cancer progression
involves somatic clonal evolution (16). Biomarkers identified
from primary tumor resections are often assessed years prior to
development of BrM and may not reflect emergence of resistance
mechanisms that arise during the metastatic process and under
treatment pressures. Molecular biomarkers presenting in distant
metastases are frequently different from those initially presenting
in primary sites. Studies demonstrate that biopsies of other
extracranial metastatic sites also do not fully recapitulate the
molecular features of BrM—due in part to clonal evolution
during neoplasm migration and systemic treatment (16–19).
Comparisons of the somatic landscape across visceral metastases
may fail to take into account the unique requirements for BrM,
such as enabling extravasation through non-fenestrated capillaries,
hypoxia-induced neoangiogenesis, and adaptation to the CNS
metabolic microenvironment (20). Newer and less invasive
techniques for biomarker testing have emerged in recent years
(e.g., liquid biopsies). In a recent study, next-generation
sequencing of cell-free DNA (cfDNA) from cerebrospinal fluid
was shown to be more sensitive than cytologic analysis for
diagnosing leptomeningeal disease (21). In the future, cfDNA
may be a beneficial tool to detect potential actionable biomarkers
in BrM. The use of liquid biopsies to evaluate the response of
metastatic tumors to treatment and to provide prognostic
information still warrants future investigation (22).

Here, we review the discordance of clinically actionable
biomarkers measured in BrM from lung cancer, breast cancer,
and melanoma compared to primary sites and extracranial
metastases. We discuss these emerging data within the
framework of three principal motivations for increased
molecular profiling in BrM. First, new treatment targets may be
identified as unique actionable mutations emerge in BrM
compared to the primary tumor or extracranial metastases.
Second, BrM molecular profiling may identify biomarkers of
resistance or loss of actionable alterations, thereby excluding
ineffective therapies from a treatment plan. Third, new
biomarker information in BrM could provide useful prognostic
information to aid clinicians and patients in discussing
expectations for care.

Obtaining genomic sequencing data on BrM will also help to
identify novel drivers that may play a key role in promoting BrM.
In a recent report where the authors performed whole-exome
sequencing of brain metastases from lung adenocarcinomas
(BM-LUAD) and primary lung adenocarcinomas using case–
control analysis to identify genomic alterations that promote
BrM, they identified three regions (MYC, YAP1, MMP13) that
had significantly higher amplification frequencies and one region
(CDKN2A/B) that had higher deletion frequencies in BM-LUAD
as compared to primary lung adenocarcinoma (23). Additional
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investigations will be needed to identify driver somatic
alterations that promote brain metastases in other types of
primary tumors.

While some clinicians may be daunted by the variety and
complexity of biomarker testing options available, the impact of
this hurdle is rapidly diminishing as “omics” data are
increasingly incorporated into oncology practice. However,
comprehensive molecular profiling of BrM tissues remains an
underutilized option in most health systems, especially outside of
dedicated multidisciplinary BrM services. The development of a
common understanding among healthcare professionals of the
importance of biomarker analysis in BrM will be critical for the
development of more effective treatment strategies against BrM
and the advancement of precision oncology approaches in this
growing patient population.
IDENTIFICATION OF NEW,
ACTIONABLE TARGETS

BrM tissue, obtained through either biopsies or surgical resection
during standard care, can provide additional opportunities to
identify new targets that were not present in primary tumors and
that diverge from paired extracranial metastases. In seminal
work on the molecular divergence of BrM, Brastianos et al.
observed that more than half of BrM studied harbored at least
one potentially actionable biomarker that was not present in the
paired primary neoplasm (24). Their data from lung, breast, and
renal cell cancers further demonstrated that these alterations
were often unique to BrM when compared to lymph node and
other extracranial metastases (24). These results have been
supported by other recent analyses identifying potentially new
and actionable biomarkers in BrM arising from non-small cell
lung cancer (NSCLC), breast cancer, and melanoma, described
below and summarized in Table 1.

Non-Small Cell Lung Cancer
Among the various biomarkers associated with lung cancer,
genetic alterations in epidermal growth factor receptor (EGFR)
are perhaps the most notable biomarker affecting the
management of NSCLC patients with BrM. Previous reports
have observed a discordance rate of EGFR mutation status
between paired BrM and corresponding primary lung tumor
samples from 19% to as high as 67% (25, 26), with BrM typically
displaying a higher frequency of EGFR mutations than primary
NSCLC tumors (79). Identification of EGFR mutations in BrM
presents treatment opportunities, as studies suggest that first-
generation EGFR tyrosine kinase inhibitors (TKIs), such as
gefitinib and erlotinib, have CNS activity (80–83). It is
important to note that patients with NSCLC BrM who received
erlotinib or gefitinib plus radiotherapy or chemotherapy have
exhibited significant intracranial responses and experienced
longer progression-free survival (PFS) and median overall
survival (OS) compared with patients who received erlotinib or
gefitinib alone (27, 28). Similar considerations can be entertained
Frontiers in Oncology | www.frontiersin.org 3
for patients receiving the third-generation EGFR TKI
osimertinib, which has emerged as an attractive first-line
treatment for NSCLC and for NSCLC harboring EGFR
Thr790Met (T790M) mutations (29).

Anaplastic lymphoma kinase (ALK) is another notable
biomarker in the management of NSCLC patients with BrM
(84, 85). The most prevalent ALK alteration involves the fusion
of ALK with the microtubule-associated protein-like 4 gene
(EML4). The fusion event results in the autophosphorylation
and constitutive activation of ALK kinase, which contributes to
tumorigenesis and progression (86, 87). Current data suggest
that the concordance for ALK gene fusion between the primary
neoplasm site and the matched BrM appears high (33). Knowing
the ALK mutation status in BrM is critical, as several drugs
exhibiting CNS penetrance, in particular alectinib, brigatinib,
and lorlatinib, have been approved by the FDA for the treatment
of ALK-fusion-positive metastatic NSCLC (34, 35). Alectinib,
brigatinib, and lorlatinib have all been demonstrated in clinical
trials (Alex, ALTA-1L, and Crown) to have superior efficacy to
crizotinib in the primary treatment of ALK-positive NSCLC (36–
38). Intracranial response rates in these and other trials indicate
that brigatinib and lorlatinib have significant efficacy against
ALK-positive BrM (38, 39, 88), although the effectiveness of these
agents on ALK-amplified BrM requires further investigation.

Many biomarkers demonstrate a significant rate of
concordance between primary tumor sites and BrM.
Nevertheless, routine molecular profiling of BrM will help
identify possible new actionable biomarkers, especially when
there are approved therapeutic options that exhibit good
blood–brain barrier permeability, which were recently elegantly
reviewed by Soffietti and colleagues (7). These targets include
ROS Proto-Oncogene 1 (ROS1), MET Proto-Oncogene (MET)
exon 14 skipping mutation, RET Proto-Oncogene (RET),
Neurotrophic Receptor Tyrosine Kinase (NTRK), B-Raf Proto-
Oncogene (BRAF), and KRAS Proto-Oncogene (KRAS). Both
crizotinib and entrectinib, multi-targeted TKIs, are now U.S.
Food and Drug Administration (FDA)-approved for treatment
of NSCLC patients with ROS1-rearranged mutations (40, 43).
However, as noted above, crizotinib has demonstrated limited
intracranial efficacy in the clinic, while studies with entrectinib
have reported intracranial response rates of up to 55% (89).
Studies with lorlatinib and ceritinib in ROS1-positive NSCLC
have also demonstrated high rates of intracranial response in
patients with BrM (41, 88). In a Phase 2, open-label study,
approximately 50% of NSCLC patients with MET exon 14
skipping mutations had some response to treatment with
tepotinib and capmatinib (43, 44). Both capmatinib and
tepotinib are FDA-approved for treatment of patients with
MET exon 14 skipping mutant metastatic NSCLC, and recent
studies report promising intracranial responses to both agents in
patients with this mutation (44, 45). Selpercatinib and
pralsetinib, two highly selective inhibitors of RET kinase, have
been recently approved by the FDA for use in NSCLC patients
with RET mutations (51, 52) and have both shown robust
intracranial activity in patients with BrM (53, 54). KRAS is
frequently altered in NSCLC, either through activating
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mutations or through amplification (55). The FDA approved in
2021 the first KRAS inhibitor, sotorasib, which specifically
targets the G12C mutant form of KRAS, for metastatic NSCLC.
Recent work in matched lung adenocarcinoma primary and BrM
tissues reported that KRAS alterations were present in 13% of
BrM tissues that were not present in the matched primary, with
enrichment of G12C and G13C mutations (55). Given the
potential intracranial efficacy of sotorasib (56) and ongoing
trials to address this question, identification of a KRAS G12C
Frontiers in Oncology | www.frontiersin.org 4
mutation in a BrM may provide a potential new avenue for
directed therapy in these patients.

Breast Cancer
Among a host of biomarkers important for the clinical
management of breast cancer (BC), estrogen receptor (ER),
progesterone receptor (PR), and HER2 are the most crucial.
Hormone receptor (HR; ER or PR)-negative, HER2-positive, and
triple-negative (TNBC; ER-, PR-, HER2-) statuses are associated
TABLE 1 | Summary of therapeutic possibilities and prognostic information associated with biomarkers in brain metastases.

Biomarkers
(types)

Mechanisms
of Actions

Discordance Rates
Between BrM and

Primary And Extracranial
Neoplasm Sites

Therapeutic Options
if Biomarkers Are
Present In BrM

Alternative Therapeutic Options if
Drug Resistance Has Occurred

Associated
Prognostic
Information

NSCLC EGFR
(mutation)

Receptor
tyrosine kinase

19%–66.7% (25, 26) TKIs: afatinib; erlotinib
or gefitinib +
radiotherapy or
chemotherapy (27–29)

Osimertinib targeting EGFR T790M
(30, 31)

↑ PFS in EGFR-
mutant tumors
treated with icotinib
vs. uncommon
EGFR mutations (32)

ALK
(rearrangement)

Receptor
tyrosine kinase

ALK fusion: rare TKIs: ceritinib,
alectinib, brigatinib, or
lorlatinib (34–39)

ALK amplification w/o
fusion: 12.5% (33)

ROS1
(rearrangement)

Receptor
tyrosine kinase

ROS1 fusions enriched in
BrM (26)

TKIs: entrectinib,
lorlatinib, ceritinib
(40, 41)

MET (mutation/
overexpression)

Receptor
tyrosine kinase

Mutations and
amplifications enriched in
BrM (42)

TKIs: tepotinib,
capmatinib (43–45)

Possibly contributing to EGFR
treatment resistance; combination
therapies under investigation
(42, 46–50)

RET (mutation/
rearrangement)

Receptor
tyrosine kinase

TKIs: selpercatinib,
pralsetinib (51–54)

KRAS
(overexpression/
mutation)

GTPase 13% (55) TKIs: sotorasib (G12C)
(56)

Breast
cancer

ER/PR
(expression/
mutation)

Hormone
receptor

ER: 13.6%–29.2% (57–59) Endocrine therapy:
tamoxifen (57, 58)PR: 4.2%–44.4%

HER2
(overexpression/
mutation)

Receptor
tyrosine kinase

2.3%–23.8% (57–60) Anti-HER2:
trastuzumab,
pertuzumab, lapatinib
(14, 61)

↑ OS likely attributed
to treatment effects
(59)

anti-AR: bicalutamide
or enzalutamide
(62, 63)

PTEN (loss) Regulation of
PI3K/AKT/
mTOR pathway

Loss of PTEN is often seen
in BrM, but is less
commonly seen in
extracranial sites (64–66)

PARP inhibitors:
olaparib, veliparib
(7, 67, 68)

Single-targeting therapies often found
ineffective; combination therapies
currently under investigation (e.g.,
HER3+PI3K or PI3K+mTOR) (69, 70)

↓ time to tumor
recurrence in a
distant site (63)
↓ OS in TNBC
subtypes (71, 72)

CDK pathway
(mutation/loss)

Serine/threonine
protein kinase;
regulation of G1
checkpoint

Clinically actionable
alterations in the CDK
pathway genes in 28% of
BrM not seen in primaries
(24)

CDK4/6 inhibitors:
abemaciclib,
palbociclib, ribociclib
(24, 73, 74)

RB1 (loss) Regulation of
G1 checkpoint

RB1 loss more commonly
observed in BrM (24)

May contribute to CDK4/6 inhibitor
treatment resistance (24, 73, 74)

HK2
(overexpression)

Glucose
metabolism

↓ post-craniotomy
survival in breast
cancer patients w/
BrM (75)

Melanoma BRAF (mutation) Serine–threonine
kinase

7% (76, 77) TKIs: vemurafenib,
dabrafenib (78)
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with increased risk for BCBrM (90). High discordance in these
biomarkers exists between primary BC and BrM: ER: 13.6%–
29.2%, PR: 4.2%–44.4%, and HER2: 2.3%–23.8% (57–59). In a
recent large analysis, this discordance led to subtype switching
between primary tumors and BrM in 22.8% of patients (91, 92).
Furthermore, pathology and mRNA expression analyses have
revealed a downregulation of ER (ESR1) and PR (PGR) gene
expression and an upregulation of HER2 (ERBB2) gene
expression in BrM, particularly in those arising from TNBC
(19, 60, 91, 92).

Since HR and HER2 status are frequently used to determine
eligibility for therapeutic options, it is important to analyze BrM
tissues to obtain accurate biomarker information for appropriate
treatment selection (58, 93). Importantly, most patients (63.6%)
with biomarker discordance between the primary neoplasm and
BrM also show discordance between extracranial metastases and
BrM, with the primary and extracranial neoplasms typically
being concordant (91, 92). Thus, different treatment options
may have therapeutic activity in BrM that can currently only be
identified by profiling BrM. For instance, anti-HER2 therapy
(e.g., trastuzumab, pertuzumab, or lapatinib) can be used for
HER2 amplification, which are frequently increased in BrM
compared to primaries and extracranial metastases. Recently,
newer HER2-targeted agents have shown an ability to reach BrM
and generate intracranial responses (61). Excitingly, a recent
exploratory analysis of 291 patients with BrM who were included
in the HER2CLIMB randomized controlled trial demonstrated
that the addition of tucatinib to trastuzumab and capecitabine
doubled the intracranial response rate, highlighting a regimen
that may be especially effective against HER2-positive BrM (14).
Similarly, endocrine therapy (e.g., tamoxifen or aromatase
inhibitors) can be applied to tumors with positive HR status
(94, 95). While treatment options for TNBC BrM have
historically been limited to chemotherapy, there is emerging
evidence of effectiveness of androgen receptor (AR)-targeted
therapies (e.g., bicalutamide or enzalutamide) in TNBC (62, 63).

Deletion of phosphatase and tensin homologue (PTEN) on
chromosome 10 has been found in a significant portion of
BCBrM (96). Furthermore, significantly decreased PTEN
mRNA and protein expression has been observed in BCBrM
compared to primary tumors (71, 97). Loss of PTEN may be a
critical factor for BrM development, a possibility that is
supported by research suggesting that the loss of PTEN is
often exhibited in intracranial malignancies but less commonly
in extracranial sites (64–66). Downregulation of PTEN
expression has not been observed in bone metastases,
suggesting that PTEN dysfunction may be uniquely supportive
to metastatic growth in the brain microenvironment (97–99).
PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/
AKT/mTOR pathway, with loss of PTEN resulting in aberrant
activation of the pathway and enhanced tumor cell proliferation
(100). Identifying PTEN loss in BrM opens the door to potential
therapeutic modalities, including PI3K inhibition (7). It has also
been suggested that loss of PTEN sensitizes malignant cells to
polyadenosine diphosphate ribose polymerase (PARP) inhibition
(67). Importantly, BrM profiling could potentially identify
Frontiers in Oncology | www.frontiersin.org 5
resistance mechanisms for PARP inhibitors to help rationally
guide the selection of the next line of therapy. Additional
therapeutic options targeting loss of PTEN in BrM require
further investigation (68).

CDK4/6 inhibitors, including abemaciclib, palbociclib, and
ribociclib, are another major class of treatment for BC metastases
(7). Abemaciclib is the most brain permeable of the class and has
been tested in a recent clinical trial of patients with HR-positive,
HER2-negative BrM with promising results (101). Palbociclib
has also demonstrated intracranial efficacy in patients with CDK
pathway alterations and BrM in a basket trial, including in
patients with BrM from breast cancer (102). However, clinical
studies have linked homozygous retinoblastoma protein 1 (RB1)
loss to resistance to CDK4/6 inhibitors (24, 73, 74). Homozygous
RB1 loss has been observed more frequently in metastatic BC,
especially BCBrM, as compared to primary tumor sites (24). RB1
mutations are linked to chromosomal rearrangements that
subsequently disrupt genes that inhibit tumor growth and
progression. Thus, molecular profiling of BCBrM may present
additional treatment options, or may indicate potential
resistance to additional options, for these patients.

Melanoma
BRAF is a gene that encodes the B-Raf protein, which is a serine–
threonine kinase. Activating mutations in BRAF, the majority of
which are BRAFV600E, occur in approximately half of cutaneous
melanomas (103). Previous studies have reported that up to 7% of
BRAFmutations found inBrMare not found inprimarymelanoma
sites (76, 77). Highly selective BRAF and MEK inhibitors (e.g.,
vemurafenib and dabrafenib) are now approved and demonstrate
clinically meaningful activity in the brain (78). These results
indicate that biopsies of BrM for subsequent BRAF analysis
should be considered in select patients to guide treatment decisions.

Immune Checkpoint Blockade
The treatment of patients with a variety of solid tumors has
benefitted from immune checkpoint blockade (ICB). While
patients with intracranial metastases were historically excluded
from systemic and immunotherapy trials, intracranial responses
are increasingly observed following ICB, prompting newer
interest in harnessing immunotherapy for these patients. In
particular, agents targeting the programmed cell death-1 (PD-
1)/programmed cell death ligand-1 (PD-L1) axis, as well as
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), have
been used clinically now across BrM from a number of
primary disease indications and have been approved for use in
melanoma and NSCLC (104, 105). Most famously, perhaps, dual
checkpoint inhibitor therapy with ipilimumab and nivolumab
demonstrated intracranial response rates of 52% in selected
asymptomatic patients with active melanoma BrM (106).
Overall survival (OS) in this study was 81.5% at 12 months,
and median survival had not been reached at 30 months (106).
Meanwhile, an early combined analysis of both lung and
melanoma BrM patients from a further phase II study
illustrated intracranial response rates to pembrolizumab (anti-
PD-1) monotherapy of 33% and 22%, respectively, with nearly
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identical extracranial response rates (107). This may shift the
indication for ICB to up front rather than salvage therapy, as a
number of these studies were conducted in patients receiving no
prior therapy for their intracranial disease, and high
concordances between intracranial and extracranial disease
were typical.

Despite some notable successes, optimal biomarkers to guide
therapeutic decision-making are lacking. Previous studies have
reported that up to 50% of PD-1 expression that was found in
BrM was not found in the primary melanoma site (108). This has
prompted the search for additional predictive biomarkers for ICB,
including tumormutational burden (TMB).TMB, the total number
of non-synonymous mutations in the coding regions of genes, has
recently emerged as a potential biomarker to select patients for
immunotherapy. The FDA granted accelerated approval to
pembrolizumab (KEYTRUDA, Merck & Co., Inc.) for the
treatment of adult and pediatric patients with unresectable or
metastatic TMB-high (TMB-H) solid tumors that have
progressed following prior treatment and who have no
satisfactory alternative treatment options (109). Metastatic
tumors have increased TMB at recurrence, and BrM is found to
have the highest level of TMB among metastatic sites (110, 111).
Given emerging evidence of response to ICB in intracranial tumors
(112–114), specifically evaluating TMB as a predictive biomarker is
a priority that will require increased molecular profiling or BrM.

Radiation Therapy Considerations
Radiation therapy has long been applied for BrM in a fashion that is
largely agnostic to tumor histology. However, emerging evidence
suggests that the genetic configuration of BrM could dramatically
impact its response to radiation therapy. For instance, a recent pan-
cancer analysis found that tumors containing pathologic genetic
alterations in the apical DNA-damage response gene Ataxia
telangiectasia mutated (ATM) have dramatically improved local
control after radiation therapy compared to control tumors
(incidence of irradiated tumor control 13% vs. 28% at 2 years)
(115). This link between ATM pathogenic variants and
radiosensitivity seems to extend to primary brain tumors (116).
Thus, the mutational status of genes such as ATM may be one of
several factors that, in the setting of a multidisciplinary BrM tumor
board, could guide whether to approach a BrM with primary SRS,
with surgery, or to reimage the brain following a trial of systemic
therapy. Given the discordance between BrM and primary tumor
genotype (24), sampling of the BrM ATM genotype would be
expected to provide the most robust biomarker for radiosensitivity.
Further validation of this finding and investigation of other genetic
biomarkers thatmaybe linked to radiosensitivity arewarranted in the
BrM setting.
IDENTIFICATION OF INEFFECTIVE
TREATMENT STRATEGIES

Molecular profiling of BrM can help indicate whether certain
targeted therapies are likely ineffective in this setting. First,
resistance to molecularly targeted therapies can occur over the
course of treatment and render therapies ineffective against
Frontiers in Oncology | www.frontiersin.org 6
late-stage disease, including BrM. Drug resistance can develop
through multiple mechanisms, including but not limited to
restoration/reactivation of downstream targets, activation of
alternative signaling pathways, and mutations in the binding
site of a targeted protein that alter binding of the drug (117). This
therapeutic resistance may develop after initial treatments of the
primary neoplasm and other metastatic sites. As a result,
treatment for BrM based on tissue samples from the primary
tumor or other metastatic sites alone may misinform clinical
decision-making. Second, actionable targets that were once
present in the primary and/or extracranial tumors may be lost
in the BrM. Thus, continued treatment with the original matched
targeted therapy would be ineffective in the BrM and subject the
patient to unnecessary side effects and costs. In this section, we
discuss mechanisms of drug resistance and loss of biomarkers in
BrM from NSCLC, breast cancer, and melanoma and discuss
how knowledge of BrM biomarkers can guide therapy away from
ineffective therapies.

Non-Small Cell Lung Cancer
Although most NSCLC harboring an EGFR mutation are
initially responsive to treatment with first-generation TKIs, the
majority of patients develop drug resistance within 1–2 years
(30). Approximately 60% of acquired resistance to early-
generation TKIs is due to the acquiring of the EGFR T790M
mutation (118). Tumors may also acquire resistance through
activation of signaling molecules downstream of EGFR. Indeed,
MET (N-methyl-N′-nitroso-guanidine human osteosarcoma
transforming gene), a receptor tyrosine kinase that is considered
an oncogenic driver inNSCLC (119–121), is suggested to be closely
linked to the EGFR pathway (46–49) and its resistance to inhibitors
(42, 50), and has been observed to have a higher rate ofmutation in
BrM versus primary NSCLCs (69, 70). Providers treating patients
who progress after an EGFR TKI should consider molecular
analyses of BrM tissue to confirm whether continued treatment
with an EGFR inhibitor, or switching to a different TKI like the
T790Mmutant-specific, brain-penetrant inhibitor osimertinib (30,
31), will be effective this setting.

Breast Cancer
As discussed above, activation of the PI3K/AKT/mTOR pathway,
such as through loss of PTEN, has been suggested to play a role in
the mechanisms underlying poor responses to anti-HER2 therapy
in BC metastases (122, 123) and has been found to be altered in
more than half of BCBrM (122, 124). However, targeting a single
biomarker of the PI3K/AKT/mTORpathway (e.g., PI3K, HER2, or
HER3) is often ineffective (125, 126). Combination therapies aimed
against multiple molecular targets (e.g., HER3+PI3K or PI3K
+mTOR) appear to be more efficacious against BCBrM than
monotherapy in preclinical models (125, 126).

HR-positive BC has a lower frequency of metastasizing to the
brain compared to other BC subtypes (127). However, in those
patients that do develop BrM, their disease has frequently
become resistant to hormone therapy at this late stage of the
disease through acquisition of HR mutations (7). Furthermore,
BCBrM also frequently demonstrates loss of ER and PR. Indeed,
a recent analysis showed that 14.8% and 22.4% of BCBrM had
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loss of ER and PR, respectively, contributing to the 22.8% of cases
that had a subtype switch between primary or extracranial
tumors and BrM (91, 92). Thus, hormone therapy may be
ineffective in treating a significant portion of BrM given their
frequent acquired resistance and/or loss of HR expression.

Melanoma
Melanoma patients often develop treatment resistance within 1
year of receiving BRAF/MEK-targeted therapy. Agents which
target the BRAF/MEK pathway have shown meaningful clinical
activity in patients with melanoma BrM, although resistance has
been observed to develop within a shorter period of time (78).
Several mechanisms for treatment resistance have been
suggested, including receptor tyrosine kinase upregulation (e.g.,
PDGFRß, IGF1R), acquisition of MEK alterations, and activation
of the RAS/RAF/MAPK pathway (128).

A recent report comparing melanoma BrM to matched
primary and extracranial melanoma tumors demonstrated
biomarker discordance between BrM and extracranial sites in
5/8 patients, including loss of mutant NRAS (111). Of note, 2
patients with multiple BrM also showed some differences in
potentially actionable alterations between the individual BrM.
While overall concordance with extracranial metastases is felt to
be high with respect to driver mutations, studies have revealed
important molecular differences in melanoma BrM, such as
increased activation of the PI3K/AKT pathway (129).
PROGNOSTIC INFORMATION

Assessing the biomarker status of BrM is not only valuable for
informing the treatment plan—both by adding new potential
strategies and by ruling out ineffective ones—but can also
provide prognostic information to improve patient and
provider expectations for care. Prognostic information is
particularly important to patients with BrM, as BrM symptoms
are often associated with decreased functional status and severe
reductions in quality of life.

Non-Small Cell Lung Cancer
Studies suggest that BrM with driver mutations, including EGFR
andALK, were associated with longer overall survival when treated
with surgery, radiosurgery, and non-surgical interventions
(5, 130–138). Specifically, Zhou et al. report that BrM patients
with common EGFR mutations treated with icotinib exhibited a
prolonged PFS compared to those with uncommon EGFR
mutations (32). There is a solid body of evidence suggesting that
significant survival increases are associated with NSCLC BrM with
EGFRmutations compared to those without EGFR mutations (80,
131, 137–139). A recent meta-analysis of 18 studies supports this
conclusion andposits that this is likely due to treatment sensitivities
of the metastatic lesions (131).

Breast Cancer
A number of biomarkers hold prognostic value for BCBrM.
Approximately 20%–25% of breast cancers have amplified HER2
status (140–142), which is associated with longer survival among
Frontiers in Oncology | www.frontiersin.org 7
BC patients with BrM (59). Clinical data suggest that increased
survival associated with HER2 positivity is likely a reflection of
treatment effects related to anti-HER2 therapy rather than a
reflection of the HER2-associated biological composition of
BrM (59).

As previously discussed, loss of PTEN may be a critical factor
for BC metastases to develop in the brain parenchyma (64–66).
Studies have shown that loss of PTEN was associated with
decreased time to tumor recurrence in distant sites, including
the brain, in BC metastases (71). Furthermore, loss of PTEN has
been associated with worse overall survival in patients with
TNBC (71, 72).

Hexokinase (HK2), which plays an essential role in glucose
metabolism (143, 144), is overexpressed in BrM compared with
primary breast tumors. Increased HK2 expression has been
associated with decreased post-craniotomy survival in BC
patients with BrM (75).
CHALLENGES AND FUTURE
CONSIDERATIONS

Biomarker analyses of BrM offer potential clinical gains by
identifying and/or eliminating candidate targeted therapies.
Currently, clinicians do not always obtain biopsies or send
resected BrM tissues for biomarker analyses, resulting in a missed
opportunity to better inform patient care and potentially improve
outcomes. Clinicians may also be daunted by the variety and
complexity of biomarker testing options or not be aware of recent
work in the genetics of BrM demonstrating biomarker discordance
and sometimes unique genetic profile in these metastases.
Furthermore, the application of targeted therapies to treatment of
BrM is currently limited to those which can penetrate the
blood–tumor/blood–brain barrier, providing an additional layer
of complexity in screening potential therapeutic modalities.
Providing clinicians access to biomarker testing, clearly
summarized and annotated results, and to molecular tumor
boards may help them to better appreciate the value and interpret
results of biomarker profiling in BrM.

There are at least two potential reasons why clinicians may not
seek to test BrMtissues for biomarkers despite thepotential utilityof
this information. First, clinicians may not realize that biomarker
analyses from BrM resections or biopsies can provide valuable
information that is different from that obtained from the primary
tumoror extracranialmetastasis sites. Evenwhenclinicians attempt
to analyze BrM tissue for biomarkers, a large and growing
number of complex testing options can present practical
difficulties, particularly in resource-limited settings (145). Whole-
transcriptome sequencing (WTS) and whole-exome sequencing
(WES) platforms that are currently used for research purposes have
recently become standard of care at many institutions and
commercial providers. Pan-cancer whole-genome analyses of
metastases have revealed therapy-associated mutations that
contribute to drug resistance in individual patients (146–148).
However, such analyses can be complex to interpret and utilize
(149). Furthermore, practical considerations, such as which genetic
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testing platforms are FDA approved, and whether genetic tests are
coveredby insurance, canmake itdifficult to recommendadditional
genomic profiling in BrM. The growing number of testing options,
and practical considerations for each, makes it increasingly difficult
for clinicians to order and select the most appropriate biomarker
analyses. In the future, development of targeted panels for types of
primary tumors thatmetastasize to the brain could be considered to
augment accessibility of BrM biomarker analyses for clinicians.

The optimal use of targeted BrM therapies depends largely on
the expertise of clinicians (150), many of whom have limited
experience considering the efficacy of targeted therapies in
crossing the blood–brain barrier (151). As a result, management
of BrM often requires a multidisciplinary approach (12), with
molecular tumor boards being a vital venue for discussion of
treatment plans with input from multiple specialties (152). Access
to molecular tumor boards would likely improve and increase the
application of genomically guided cancer care for patients with
BrM, including targeted clinical trial enrollment. Data suggest that
less than half of all hospitals and only 5%of non-academichospitals
have access tomolecular tumorboards (149).Clinicians at hospitals
treating patients with BrMmay face logistical obstacles in accessing
molecular tumor boards, such as long distances to in-person
meetings, low local patient volume, and limited personnel,
although the recent global shift toward increasing comfort with
web-based conferencingmay serve to accelerate adoption of online
multidisciplinary tumor boards. Organizing molecular tumor
boards across multiple hospitals or hospital systems to provide
clinicians access to relevant expertise is a logical and critical step
forward in advancing use of molecular tumor boards across
sites (149).
CONCLUSION

Targeted therapeutic strategies and prognostic stratifications for
treatment of patients with BrM are increasingly common.
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Despite the fact that discordance often exists between BrM and
both primary tumors and distant extracranial metastases,
molecular profiling of resected BrM is not currently routine,
and biopsies for the purpose of biomarker evaluation are rare.
Biomarker information from BrM can identify new mutations
with viable targeted therapies, eliminate agents from
consideration when resistance or loss of actionable biomarkers
has developed in the BrM, and improve prognostication.
Clinicians may be initially dismayed by the variety and
complexity of biomarker testing options, but this challenge can
be overcome by (virtual) molecular-tumor boards to guide
decision-making and advance personalized oncology care for
patients with BrM.
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