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Selinexor Enhances NK Cell
Activation Against Malignant B Cells
via Downregulation of HLA-E

Jack G. Fisher, Christopher J. Walker?, Amber DP. Doyle, Peter WM. Johnson?®,
Francesco Forconi®, Mark S. Cragg®, Yosef Landesman?, Salim. I. Khakoo
and Matthew D. Blunt"*

" School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom, 2 Research &
Translational Development, Karyopharm Therapeutics, Newton, MA, United States, ¢ School of Cancer Sciences, University
of Southampton, Southampton, United Kingdom

Selinexor is an FDA approved selective inhibitor of the nuclear export protein exportin-1
(XPO1) and causes specific cancer cell death via nuclear accumulation of tumor
suppressor proteins. Design of rational studies for the use of selinexor in combination
with other therapeutic agents, such as immunotherapies, requires a fundamental
understanding of the effects of selinexor on the immune system. One important
emerging area of immunotherapy are natural killer (NK) cell based therapeutics. NK cell
function is tightly regulated by a balance of signals derived from multiple activating and
inhibitory receptors. Thus in cancer, up-regulation of stress ligands recognised by
activating receptors or down-regulation of HLA class | recognised by inhibitory
receptors can result in an anti-cancer NK cell response. Changes in XPO1 function
therefore have the potential to affect NK cell function through shifting this balance. We
therefore sought to investigate how selinexor may affect NK cell function. Selinexor pre-
treatment of lymphoma cells significantly increased NK cell mediated cytotoxicity against
SU-DHL-4, JeKo-1 and Ramos cells, concurrent with increased CD107a and IFNy
expression on NK cells. In addition, selinexor enhanced ADCC against lymphoma cells
coated with the anti-CD20 antibodies rituximab and obinutuzumab. In probing the likely
mechanism, we identified that XPO1 inhibition significantly reduced the surface
expression of HLA-E on lymphoma cell lines and on primary chronic lymphocytic
leukemia cells. HLA-E binds the inhibitory receptor NKG2A and in accordance with this,
selinexor selectively increased activation of NKG2A+ NK cells. Our data reveals that
selinexor, in addition to its direct cytotoxic activity, also activates an anti-cancer immune
response via disruption of the inhibitory NKG2A:HLA-E axis.

Keywords: NK cells, natural killer cells, selinexor, NKG2A, HLA-E, XPO1, lymphoma, CLL (chronic
lymphocytic leukemia)
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INTRODUCTION

Natural killer (NK) cells are innate immune effectors which
induce direct cytotoxicity against tumor cells and mediate
antibody dependent cellular cytotoxicity (ADCC). Deficiency
of NK cell function and number is associated with increased
development of cancer (1). The infiltration of NK cells within
tumors is associated with improved outcome for a number of
cancers (2) whilst NK cells are also associated with survival
during anti-PD-1 antibody therapy (3, 4). In patients with
non-Hodgkin lymphoma receiving anti-CD20 based
chemoimmunotherapy, low number of NK cells is associated with
shorter progression free survival (5). In addition to their direct
cytolytic function, NK cells promote optimal CD8+ T cell responses
via release of tumor antigens, recruitment and maturation of
dendritic cells, as well as IFNy mediated upregulation of MHC I
expression (6, 7). Furthermore, IFNy production by NK cells has
also recently been shown to sustain dormancy of liver
metastases (8).

In contrast to T and B lymphocytes, NK cell activation against
malignant cells is tightly controlled via the integration of signals
from an array of germline encoded, non-rearranged, surface
receptors (2, 7, 9, 10). Downregulation of HLA molecules on
target cells is detected by the inhibitory killer cell
immunoglobulin-like receptor (KIR) family and NKG2A, which
specifically detects HLA-E, leading to loss of inhibition and NK cell
activation. In contrast, upregulation of cell stress associated ligands
is detected by a variety of activating receptors expressed by NK cells
including NKp30, NKp44, NKp46 and NKG2D. In addition, NK
cells express other activating receptors including CD16, NKG2C as
well as activating KIRs. Due to their potent anti-tumor functions,
the enhancement of NK cell activity against cancer is currently the
focus of multiple therapeutic strategies. These include CAR-NK
based approaches (11, 12), agonistic antibodies (13), cytokine
mediated stimulation (14) and checkpoint inhibitors (15). In
addition to these direct approaches, NK cells can also contribute
to the efficacy of other cancer therapies via the detection of altered
activating and inhibitory ligand expression patterns on stressed
tumor cells. For example, NK cell activation has been reported to be
enhanced following tumor exposure to cytostatic drug
combinations (16), proteasome inhibitors (17), genotoxic agents
(18) and ionizing radiation (19).

Exportin-1 (XPO1) is a nuclear export protein which
transports cargo proteins with a leucine-rich nuclear export
signal (NES) and ribosomal subunits from the nucleus to the
cytoplasm (20). This activity ensures that the correct cellular
location of proteins is achieved and is crucial for normal cell
translational activity and function (21). Upregulation of XPO1 is
common in human cancers and results in abnormal tumor
suppressor protein export with imbalance favoring proto-
oncogene activity. Increased XPO1 expression is negatively
associated with survival in various cancers including diffuse
large B cell lymphoma (DLBCL) (22, 23) and mantle cell
lymphoma (24). Targeted inhibition of XPO1 by the selective
inhibitor selinexor leads to cancer cell death through
accumulation of tumor suppressor proteins in the nucleus,
dysregulation of growth regulatory proteins and blockade of

oncogene protein translation (21). In addition, selinexor causes
degradation of XPO1 protein in a proteasome dependent
mechanism (25). The therapeutic efficacy of XPO1 inhibition
in patients has led to FDA approval of selinexor for the treatment
of patients with multiple myeloma and DLBCL in the USA, and
conditional marketing authorization by the European
Commission for patients with multiple myeloma. Various
clinical trials are also ongoing to assess selinexor for the
treatment of solid tumors and hematological malignancies
(20), including in combination with anti-CD20 antibodies for
patients with advanced B cell non-Hodgkin lymphoma
(NCT03147885) (26). In addition to its direct cytotoxicity
against tumor cells, selinexor has also been described to
sensitize breast cancer cells to T cell attack in combination
with a TRAIL-R2xCD?3 bispecific antibody (27) and to increase
CAR T cell activity against CD19 positive malignant B cells (28).
The effect of selinexor or XPO1 inhibition on cancer cell
sensitivity to NK cell activity however has not previously
been investigated.

In this study, we evaluated the effect of XPO1 inhibition on
human NK cell activation against lymphoma cells. Our data
identifies that XPO1 inhibition sensitizes lymphoma cell lines to
NK cell mediated killing via downregulation of HLA-E and
subsequent activation of NKG2A+ NK cells. This study
therefore reveals that selinexor, in addition to its direct
cytotoxic activity, also triggers an innate immune response via
disruption of the inhibitory NKG2A:HLA-E axis.

MATERIALS AND METHODS

Reagents and Cell Lines

SUDHL4 (ATCC, CRL-2957), JeKo-1 (ATCC, CRL-3006) and
RAMOS (ATCC, CRL-1596) cells were cultured in R10 medium
(RPMI 1640 [Gibco] with 1% penicillin-streptomycin [Life
Technologies] and 10% heat inactivated fetal bovine serum
[FBS; Sigma]). Cells were treated with 50, 500 or 2000nM
selinexor (KPT-330, provided by Karyopharm Therapeutics),
50nM leptomycin B (Sigma) or DMSO control (for the
indicated OnM negative controls) for 16 hours at 37°C before
use. To prevent drug-induced apoptosis, cell lines were incubated
with Q-VD-OPh (QVD) (10-20uM) (Sigma) for 30 minutes
prior to addition of XPOI inhibitors or DMSO control.

Peripheral Blood Mononuclear Cell
(PBMC) Isolation and NK Cell Purification
Healthy donor peripheral blood mononuclear cells (PBMC) were
obtained with full ethical approval from the National Research
Ethics Committee (reference 06/Q1701/120). PBMC from
patients with chronic lymphocytic leukemia (CLL) were
collected from patients attending clinic at Southampton
General Hospital. All patients provided written informed
consent and the study was approved by the Institutional
Review Boards at the University of Southampton (REC: H228/
02/t). PBMCs were cryopreserved and stored in liquid nitrogen.
CD56+CD3- NK cells were isolated from cryopreserved healthy
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PBMCs using the Miltenyi human NK cell isolation kit and
cultured in R10 medium at a density of 1.5x10° cells/mL and
incubated with 1 ng/mL IL-15 (R&D Systems) overnight before
use in functional assays.

NK Cell Cytotoxicity Assay

B cell lymphoma cell lines were stained with Cell Trace' " Violet
Cell Proliferation Kit (InvitrogenTM) following the manufacturer’s
instructions then incubated with QVD and selinexor or DMSO
control for 16 hours. Isolated NK cells were then co-cultured with
lymphoma cells at an effector: target (E:T) ratio of 5:1 for 4 hours at
37°C. After co-culture, cells were stained with 1.6 ug/mL propidium
iodide (InvitrogenTM) and NK cell specific lysis of Violet stained
target cells assessed by flow cytometry. Cells were acquired on a BD
FACS Aria II (BD Biosciences) machine using FACSDiva software
(BD Biosciences) and analysed with FlowJo v10.7.1 (BD
Biosciences). Lysis was defined as uptake of propidium iodide by
the target cells.

Assessment of NK Cell Degranulation and
Cytokine Production

PBMCs were incubated with 1 ng/mL IL-15 overnight at a cell
density of 2x10° cells/mL and then co-cultured with selinexor- or
leptomycin B-treated lymphoma cell lines at an E:T ratio of 5:1
for 4 hours at 37°C. Immediately before co-culture, 0.17 ug/mL
o-CD107a (LAMP)-eFluor660 (clone eBioH4A3, Invitrogen)
was added to PBMCs. After 1-hour of co-culture, GolgiStop
(per manufacturer recommendations, BD Biosciences) was
added. Following 4-hours of incubation, cells were incubated
with 10% human serum at 4°C for 15 minutes before surface
staining with antibodies against CD3-PerCP (clone UCHTI,
Biolegend), CD56-PE/Cy7 (HCD56, Biolegend) and NKG2A-
FITC (REA110, Miltenyi Biotech) in FACS buffer (PBS, BSA 1%,
Sodium Azide 0.05%) at 4°C for 30 minutes. Cells were then
permeabilized and fixed with BD Cytofix/Cytoperm (BD
Biosciences) per manufacturer recommendations and stained
with anti-IFNy-BV421 (BD Biosciences) at 4°C for 30 minutes.
Cells were then washed twice with 1X Perm/Wash buffer and
immediately assessed by flow cytometry using a BD FACS Aria II
(BD Biosciences) and FACSDiva software (BD Biosciences)
as above.

Assessment of NK Cell Ligand Expression
on Lymphoma Cells, Primary CLL Cells
and Normal Lymphocytes

Ramos, SU-DHL-4 and JeKo-1 cells were incubated with
selinexor (50-2000nM), leptomycin B (50nM) or DMSO
control for 16 hours in the presence of QVD. Cells were then
surface stained with antibodies against activating NK cell ligands
Vimentin-A488 (clone 280618, R&D Systems), ULBP-1-PE
(170818, R&D Systems), ULBP-2/5/6-PerCP (165903, R&D
Systems), CD54-PB (HCD54, Biolegend), B7H6-APC (875001,
R&D Systems) and MICA/B-PE/Cy7 (6D4, Biolegend); the
inhibitory NK cell ligand HLA-E-PE/Cy7 (3D12, Biolegend)
and pan-HLA class-I molecules (W6/32, Biolegend) for 30 min
at 4°C. CLL cells were incubated with selinexor (50-2000nM) or

DMSO control for 40 hours in the presence of QVD then
incubated with 10% human serum at 4°C for 15 minutes
before CD5+CD19+ CLL cells were surface stained with anti-
HLA-E-PE/Cy7 (3D12, Biolegend) for 30 min at 4°C. Normal
PBMC were incubated with selinexor (500-2000nM) or DMSO
control for 16 hours then surface stained with anti-HLA-E-APC
(3D12, Biolegend), anti-CD3-PerCP (UCHT1, Biolegend), anti-
CD19-PE (HIB19, Biolegend) and anti-CD56-PE/Cy7 (HCD56,
Biolegend) for 30 min at 4°C. Cells were then acquired on a BD
FACS Aria II (BD Biosciences) using FACSDiva software (BD
Biosciences) as above.

Immunoblotting

Ramos, SU-DHL-4 and JeKo-1 cells were incubated with
selinexor (50-2000nM) or leptomycin B (50nM) for 16 hours in
the presence of QVD then lysed in NP40 Cell Lysis Buffer (Fisher
Scientific UK) supplemented with PMSF (Sigma, 174 pg/mL) and
protease inhibitor (Sigma, 1:100 final dilution). Proteins were
separated on 10% polyacrylamide gels (Thermo Fisher
Scientific), transferred to nitrocellulose membranes (Amersham)
and blocked in 5% BSA (Sigma) before being probed with
antibodies against XPO1 (D6V7N, Cell Signalling Technology),
PARP (4C10-5, BD Pharmingen), HLA-E (Sigma), p53
(1C12, Cell Signalling Technology) or B-actin (8H10D10, Cell
Signalling Technology). Protein bands were detected following
incubation with HRP-linked secondary antibodies (Dako) and
chemiluminescence reagents (Thermo Scientific) and were
visualized using the ChemiDoc-It imaging system (UVP).
Primary and secondary antibodies were used at concentrations
recommended by the manufacturer.

Assessing the Impact of Selinexor

on ADCC

SU-DHL-4 cells were incubated with selinexor (50-2000nM) for
16 hours in the presence of QVD then incubated with the anti-
CD20 antibodies rituximab or obinutuzumab or isotype control
(1 pg/mL) for a further 20 minutes at 37°C prior to co-culture
with PBMC (degranulation assay) or isolated NK cells
(cytotoxicity assay) as described above.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism V.9.0
software. Paired t-test was used to compare differences between
the means of two groups and paired or unpaired one-way
ANOVA followed by Dunnett’s post-hoc test analysis was used
to compare differences in means between multiple groups.
Significance values are defined as: *P < 0.05, **P < 0.01, **P <
0.005 and ****P < 0.001.

RESULTS

Selinexor Enhances NK Cell Cytotoxicity
Against Lymphoma Cell Lines

To assess whether selinexor modulated NK cell activation against
malignant B cells, we incubated selinexor (50-2000 nM) for 16
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hours with SUDHL4 (DLBCL), JeKo-1 (mantle cell lymphoma) or
RAMOS (Burkitt lymphoma) cells and then assessed cytotoxicity
following co-culture with NK cells isolated from healthy human
donors. Selinexor increased NK cell cytotoxicity in a
concentration-dependent manner against SUDHL4 (p<0.005),
JeKo-1 (p<0.005) and RAMOS (p<0.01) cells (Figures 1A, B).
This lysis was specific to NK cell activity because in these
experiments apoptosis induced by selinexor was prevented by
addition of the caspase inhibitor QVD, as shown by no increase in
propidium iodide staining (Figures 1A, B) in the absence of NK
cells. These results indicate that blockade of intrinsic apoptosis in
lymphoma cells, and hence resistance to direct selinexor toxicity,
does not prevent NK mediated lysis stimulated by selinexor. This
is in agreement with previous reports of caspase independent cell
death induced by effector lymphocytes and purified granzyme B
(29, 30). Selinexor activity was confirmed by clear concentration-
dependent XPO1 degradation (Figure 1C), as previously reported
(31). In accordance with our observations that selinexor enhanced
NK cell activity against lymphoma cells, we measured
degranulation (CD107a) of CD56Y™ and CD56"8" NK cell
subsets when co-cultured with these target cells. This revealed
that selinexor significantly increased the degranulation of the more
mature and cytotoxic CD56%™ NK cell population against all cell
lines tested compared to untreated controls (Figures 1D, E).
Degranulation of the more regulatory and proliferative
CD56™8" subgroup of NK cells was significantly enhanced by
selinexor against SUDHL4 cells (Figure 1E). Together these data
demonstrate that the XPOI inhibitor selinexor increases NK cell
cytotoxicity against B lymphoma cell lines.

Selinexor Downregulates Surface HLA-E
Expression on Tumor Cells and Selectively
Activates NKG2A+ NK Cells

NK cell activity is tightly controlled by a plethora of activating
and inhibitory receptors which recognize and engage ligands
expressed on the surface membrane of infected, transformed or
stressed target cells (7, 10). Therefore, to investigate the
mechanism for enhanced NK cell activation and killing
following selinexor incubation with lymphoma cells, we
screened SUDHL4, JeKo-1 and RAMOS cells by flow
cytometry for changes in a panel of ligands for activating and
inhibitory NK cell receptors. Following selinexor incubation for
16 hours (50-2000nM), no significant change was evident in
expression of the activating ligands Vimentin and ULBP-2/5/6, a
trend to down-regulation for ULBP-1 and a significant reduction
in expression of MICA/B, B7-H6 and ICAM1 (Figure 2A).
Signals from these activating receptors do not account for the
increased NK cell activation noted following selinexor pre-
treatment of lymphoma cells (Figure 1). Therefore we assessed
expression of ligands for inhibitory NK cell receptors. The
surface expression of HLA-E as determined by the HLA-E
specific antibody 3D12 was downregulated by selinexor on
SUDHL4 (57% reduction, p<0.001), JeKo-1 (19% reduction,
p<0.01) and RAMOS (63% reduction, p<0.001) cells in a
concentration-dependent manner (Figures 2B, C). This was

not due to a decrease in cell size as there was no change in
forward scatter following selinexor treatment (Figures 2B, C). In
addition, selinexor caused a much lower, but statistically
significant, downregulation of total HLA molecules as
measured by the antibody clone W6/32 (Figures 2B, C). This
decrease likely corresponds to the downregulation of HLA-E as
the W6/32 antibody clone recognizes the HLA proteins HLA-A,
-B, -C in addition to HLA-E (32, 33). Consistent with this model,
HLA-E represents a relatively small fraction of total HLA on the
surface of cell. We then assessed whether selinexor modulated
the expression of HLA-E on primary tumor cells using samples
derived from patients with CLL. Selinexor reduced surface HLA-
E expression on CD5+CD19+ CLL cells in all four patient
samples tested, with a mean reduction of 49% at 2000nM after
40 hours in vitro incubation (Figure 2D, p<0.005). We then
addressed whether surface HLA-E downregulation by selinexor
was specific to malignant B cells or whether selinexor also
modulates expression of HLA-E on lymphocytes from healthy
donors. Incubation of selinexor (500-2000nM) for 16 hours with
healthy donor PBMC caused a significant downregulation of
surface HLA-E expression on normal B cells compared to both
normal T cells (p<0.0001) and NK cells p<0.0001) (Figure 2E).
This data indicates that XPO1 inhibition induces loss of surface
HLA-E expression on malignant B cells as well as on normal B
cells relative to other lymphocyte populations. Selinexor did not
reduce total protein levels of HLA-E in SUDHL4 lymphoma cells
(Figures 2F, G) and therefore XPO1 mediated downregulation
of surface HLA-E was not due to targeted inhibition of HLA-E
protein production, but more likely was a result of a reduction in
supply of other HLA-E binding substrates that lead to HLA-E
upregulation. Indeed, surface expression of HLA-E compared to
other HLA molecules is highly sensitive to blockade of newly
synthesized protein transport (34, 35) and selinexor potently
inhibits protein translation (36).

Taken together these data show that selinexor downregulates
HLA-E surface expression on lymphoma cell lines (SUDHLA4,
JeKo-1 and RAMOS) and primary CLL cells. HLA-E is the ligand
for the inhibitory receptor NKG2A and this suggests a potential
mechanism by which it may augment NK cell activity (37, 38).
We thus hypothesized that selinexor would selectively activate
NKG2A+ NK cells against lymphoma cells. Indeed, selinexor
induced activation of NKG2A+ and not NKG2A- NK cells
against SUDHLA4 cells as measured by CD107a expression and
IENY production (Figure 3). As previously described (39),
NKG2A+ NK cells compared to NKG2A- NK cells showed
enhanced CD107a and IFNYy expression against target cells in
the absence of selinexor, however this activation was further
enhanced in NKG2A+ cells by the addition of selinexor
(Figure 3). We noted substantial baseline variability between
donors in CD107a and IFNY expression in the absence of
selinexor as previously described (15), however selinexor
treatment increased CD107a in all donors tested, and overall
IFNy in three of the six donors tested (Figure 3B). These data
confirm that selinexor increases NK cell activation against
lymphoma cells through downregulation of surface HLA-E,
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cells were incubated for 40hrs with selinexor at indicated concentrations or DMSO control in the presence of the caspase inhibitor QVD then CD5+CD19+ CLL cells
were assessed for surface expression of HLA-E (clone 3D12). Shown is HLA-E % of DMSO control from four different CLL patient samples. Data was analysed using
one-way ANOVA followed by Dunnett’s post-hoc test analysis: *P < 0.05, **P < 0.005. (E) Healthy human PBMC were incubated with selinexor (500-2000nM) or
DMSO control for 16hrs then assessed for surface expression of HLA-E (clone 3D12) on B cell, T cell and NK cell populations. Summarized data as HLA-E % of
control is shown from six different donors. Data was analysed using two-way ANOVA: ***P < 0.0001. (F, G) SUDHL4 cells were incubated for 16hrs with selinexor
at indicated concentrations or DMSO control in the presence of the caspase inhibitor QVD. HLA-E and B-actin protein levels were then detected by immunoblotting.
Representative images are shown in (F) and summarized data mean + SD protein band intensity relative to B-actin (n=2) is shown in (G).
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FIGURE 3 | NKG2A+ NK cells are selectively activated by selinexor. (A, B) Healthy human PBMC were incubated with IL-15 overnight then co-cultured (E:T 5:1) for
4hrs with SUDHL4 cells pre-treated with selinexor at indicated concentrations or DMSO control for 16hrs. Degranulation (CD107a, n=10) and IFNy production (n=6)
were then assessed on NKG2A+ and NKG2A- CD3-CD56+ NK cells identified as indicated in the representative example A). A representative example of CD107a
and IFNy staining after co-culture of PBMCs with selinexor-treated SUDHL4 is shown in (A). CD107a and IFNy normalized to the ‘no target’ control is shown in (B).
Groups were analysed with repeated measure one-way ANOVA followed by Dunnett’s post-hoc test analysis: “P < 0.05; **P < 0.01; ns, not significant.

reducing the engagement of this inhibitory receptor and
promoting activation of NKG2A+ NK cells.

XPO1 Inhibition and Not Degradation

Is Required for Activation of

NKG2A+ NK Cells

To confirm XPO1 as the target for selinexor induced HLA-E
downregulation we utilized an alternative XPO1 inhibitor,
leptomycin B. This is a metabolite from Streptomyces which
potently inhibits XPO1 function but does not induce XPO1
degradation (40, 41). SUDHLA4 cells incubated with leptomycin B
(50nM) showed a significant reduction in surface HLA-E
expression, mirroring that mediated by selinexor (Figure 4A).
Decreased HLA-E expression was not caused by changes in cell

size as revealed by measurement of forward scatter (Figure 4B).
In accordance with this, SUDHL4 cells incubated with
leptomycin B significantly increased activation of NKG2A+ but
not NKG2A- NK cells as measured by CD107a expression
(Figures 4C, D). We then confirmed using immunoblotting
that leptomycin B did not reduce XPO1 protein levels, in
contrast to selinexor (Figure 4E) as previously reported (40).
Leptomycin B did however increase p53 expression, consistent
with previous reports (42). In addition, blockade of leptomycin
B-induced apoptosis by QVD was confirmed by the absence of
cleaved PARP (cPARP) (Figure 4E). This data demonstrates
that inhibition of XPO1, in the absence of its degradation, is
sufficient for HLA-E downregulation on tumor cells and
resultant NKG2A+ NK cell activation.
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FIGURE 4 | Enhanced NK cell activation is dependent on XPO1 inhibition, and not degradation, in lymphoma cells. (A, B) SUDHL4 cells were incubated for 16hrs
with leptomycin B (LMB) (50 nM), selinexor ((Sel) 2000 nM) or DMSO control in the presence of the caspase inhibitor QVD then assessed for surface expression of
HLA-E (clone 3D12) and cell size as measured by the FSC-A parameter. Summarized data mean + SEM is shown for HLA-E (A) and FSC-A (B). Data was analysed
using one-way ANOVA followed by Dunnett’s post-hoc test analysis: ***P < 0.0001. (C, D) Healthy human PBMC were incubated with IL-15 overnight then co-
cultured (E:T 5:1) for 4hrs with SUDHL4 (n=5), cells pre-treated with leptomycin B (50nM) or DMSO control for 16hrs in the presence of the caspase inhibitor QVD.
Degranulation (CD107a) was then assessed on NKG2A+ and NKG2A- CD3-CD56+ NK cells identified as indicated in the representative example (C). A representative
example of CD107a staining after co-culture of PBMCs with leptomycin B-treated SUDHL4 cells is shown in (C). CD107a normalized to the ‘no target’ control is
shown in (D). Groups were analysed with paired t-test: *P < 0.05. (E) SUDHL4 cells were incubated for 16hrs with selinexor at indicated concentrations, leptomycin B
(LMB, 50 nM) or DMSO control in the presence of the caspase inhibitor QVD. HLA-E, PARP, p53 and B-actin protein levels were then detected by immunoblotting.
Representative images are shown from two independent experiments. ns, not significant.

Selinexor Enhances ADCC in Combination
With Anti-CD20 Monoclonal Antibodies

Through their expression of the Fc gamma receptor CD16
(FcgRIITA), NK cells can elicit anti-tumor functions during
anti-CD20 monoclonal antibody (mAbs) treatments in
lymphoma (43). As selinexor is currently being clinically
evaluated in combination with anti-CD20 antibodies for
patients with advanced B cell non-Hodgkin lymphoma
(NCT03147885), we addressed whether selinexor could
potentiate activity of the anti-CD20 mAbs rituximab and
obinutuzumab. SUDHL4 cells were incubated with selinexor
(50-2000nM) for 16 hours then cultured with rituximab,
obinutuzumab or isotype control for 20 minutes prior to the
addition of healthy donor PBMC, containing NK cells. NK cell

degranulation in both the NKG2A+ and NKG2A- NK cell
populations was increased by the addition of rituximab or
obinutuzumab (Figure 5A) and in accordance with our
previous data, this activation was further increased by selinexor
in the NKG2A+ but not NKG2A- NK cell populations
(Figure 5A). This data indicates that selinexor enhances NK
cell activation in the presence of two separate clinically relevant
anti-CD20 antibodies. To confirm that this led to increased lysis
of lymphoma cells, we performed cytotoxicity assays with
isolated NK cells. NK cell specific cytotoxicity against SUDHL4
cells was significantly increased by selinexor (500nM) in the
presence of isotype control, rituximab and obinutuzumab
(Figure 5B). In summary, selinexor enhances ADCC against
lymphoma cells in combination with anti-CD20 antibodies.
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FIGURE 5 | ADCC of NKG2A+ NK cells is enhanced by selinexor. (A) Healthy human PBMC were incubated with IL-15 overnight then co-cultured (E:T 5:1) for 4hrs
with SUDHL4 cells pre-treated with selinexor (500nM) or DMSO control for 16hrs. 20 minutes prior to co-culture with PBMC, SUDHL4 was incubated with rituximab
(rit), obinutuzumab (obz) or isotype control at 1 pg/mL. Degranulation (CD107a) was then assessed on NKG2A+ and NKG2A- CD3-CD56+ NK cells (n=6). CD107a
was normalized to the ‘no target’ control and CD107a positivity between selinexor concentrations for each antibody treatment was analysed with paired t-test: *P <
0.05; **P < 0.01. (B) Isolated NK cells incubated with IL-15 overnight were co-cultured for 4 hours with SUDHL4 cells (E:T 5:1) that were pre-treated for 16hrs with
selinexor (500 nM) or DMSO control in the presence of the caspase inhibitor QVD. 20 minutes prior to co-culture with isolated NK cells, SUDHL4 was incubated with
rituximab (rit), obinutuzumab (obz) or isotype control at 1 pg/mL. Cytotoxicity was then assessed using propidium iodide staining on violet dye stained target cells.
Data (n=6) was normalized to the corresponding ‘no NK + antibody’ control and analysed with paired t-test: *P < 0.05; “*P < 0.01; ns, not significant.

DISCUSSION

NK cell dysfunction is a frequent occurrence in human cancers
and therapeutic strategies to overcome this are important for
sustained tumor regression. Our data identifies that the selective
XPO1 inhibitor selinexor disrupts the inhibitory NKG2A:HLA-E
axis to activate NK cells against cancer. NKG2A is a novel
immune checkpoint target and blocking antibodies against
NKG2A are currently in phase 3 clinical trials (15, 38, 44).
Selinexor blocks NKG2A mediated inhibitory activity via the
downregulation of its ligand HLA-E on the surface of tumor
cells. This study therefore reveals that selinexor stimulates an
anti-cancer response via activation of the immune system, in
addition to its known direct cytotoxic activity.

NKG2A is an ITIM containing inhibitory receptor expressed
by both NK cells and T cells which binds to HLA-E on the
surface membrane of target cells (37, 45). Ligation of NKG2A
results in recruitment of the tyrosine phosphatase SHP-1 and
subsequent inhibition of NK and T cell effector function (15, 46).
Downregulation of HLA-E on lymphoma cells by selinexor
therefore removes this inhibitory signal and leads to enhanced
cytokine production and cytotoxicity of NK cells. We saw no
evidence for selinexor induced degradation of HLA-E protein, as
total HLA-E protein levels remained unchanged. In contrast,
selinexor caused a selective reduction in HLA-E expression at the
surface membrane. HLA-E stabilisation at the surface membrane
requires constant transport of newly synthesized molecules from
the ER, this contrasts with other HLA molecules which are more
stable at the surface membrane when transport of new molecules
is blocked (34, 35). XPO1 transports ribosomal subunits from the
nucleus to the cytoplasm and in accordance with this, selinexor
inhibits protein translation selectively in tumor cells with

upregulated XPO1 expression (36). Disruption of constant de
novo protein synthesis has previously been shown to selectively
downregulate HLA-E surface expression (34) and this therefore
provides a potential mechanism for selective HLA-E
downregulation on lymphoma cells by selinexor and
leptomycin B. Interestingly, HLA-E has also been shown to be
downregulated by bortezomib via ER stress in multiple myeloma
(34) and by the CDK inhibitor dinaciclib in AML (47).

HLA-E is frequently overexpressed in solid tumors and
hematological malignancies including CLL and multiple
myeloma (15, 48-50). Therefore selinexor mediated HLA-E
downregulation may have broad relevance for activation of NK
cells against solid tumors and multiple myeloma, in addition to
lymphoma. Indeed, antibody mediated blockade of NKG2A:
HLA-E interactions has been shown to activate NK cells in
vitro and in vivo against both lymphoma and solid tumor cells
(15) and the blocking anti-NKG2A antibody monolizumab is
currently in phase 3 clinical trials for Head and Neck cancer in
combination with the anti-EGFR antibody cetuximab
(NCT04590963). In addition, NKG2A blockade acted in
concert with anti-PD-1 antibodies to enhance tumor regression
and promoted ADCC in combination with cetuximab (15).
These combination strategies highlight the utility of the results
from this study showing that selinexor enhanced ADCC against
lymphoma cells coated with obinutuzumab and rituximab.
Selinexor is currently being assessed in a clinical trial in
combination with anti-CD20 antibodies for patients with
advanced B cell non-Hodgkin lymphoma (NCT03147885) and
HLA-E downregulation by selinexor may therefore contribute to
ADCC in this setting. A recent study identified that HLA-E
suppresses NK cell sensitivity to tumor cells and that resistance
to immune checkpoint blockade therapy in multiple clinical
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studies correlates with an NK sensitivity gene signature,
including HLA-E (51). This data indicates that therapies which
can stimulate NK activation, for example by disruption of
NKG2A:HLA-E interactions, may overcome immune
checkpoint blockade resistance. Selinexor is currently in
clinical trials in combination with anti-CTLA-4 and anti-PD-1
antibodies (NCT04850755) and it would therefore be of interest
to assess the contribution of NK cells to efficacy in this setting.
Importantly, the concentration of selinexor required to
downregulate HLA-E is achievable in patients during selinexor
treatment, with a Cmax of 1-2uM in patient plasma reported
during clinical trials (52).

Because XPO1 is upregulated in tumors and selinexor
selectively blocks translation in tumor cells (36), a potential
advantage for blocking NKG2A:HLA-E interactions via
selinexor rather than antibodies is that selinexor may retain
expression of HLA-E on non-tumor cells. This is important
because NKG2A:HLA-E interactions are crucial for NK cell
education and the prevention of lysis of healthy cells (53).
Selinexor downregulated HLA-E expression on both malignant
and normal B cells to a greater extent than on normal T cells or
NK cells. In addition, auto-immune side-effects are not seen in
patients treated with selinexor (54), indicating that selinexor
does not promote NK cell directed killing of non-malignant cells.

In murine models, selinexor increased the frequency of both
T cells and NK cells (55) however the mechanism for this is
unknown. This data implies however that XPO1 inhibition may
have a dual role in promotion of NK activity via sensitizing
tumors to NK mediated destruction and simultaneously
increasing NK cell frequency. Furthermore, we found that
selinexor increased IFNY production by NK cells. This is
important because IFNY has key roles in the promotion of
adaptive immunity (7), stimulation of macrophage activation
and antibody-dependent cellular phagocytosis (ADCP) (56), as
well as in the suppression of liver metastases (7, 8). Importantly,
XPO1 inhibition did not significantly affect human NK cell
mediated ADCC, direct cytotoxicity or viability (57). In
addition, selinexor increased NK cell frequency in a murine
tumor model in vivo (55). Together, this indicates that the
findings from this study may be relevant in vivo, where both
target cells and NK cells will simultaneously be exposed to
selinexor. In addition to NK cells, inhibition of NKG2A has
also been shown to enhance the efficacy of cancer vaccines in
murine tumor models via CD8+ T cell activation (58) and
therefore selinexor mediated HLA-E downregulation may also
promote T cell activity. Interestingly, previous studies have
revealed that selinexor pre-treatment increase T cell activation
against B cell malignancies (28) and breast cancer cells (27)
however the contribution of HLA-E/NKG2A interactions in
these settings were not investigated. Based on our data, it is
plausible that this may have been due to disruption of the
NKG2A:HLA-E axis by selinexor.

In addition to its role in tumors, XPOL1 is also crucial for
COVID-19 infection, with selinexor recently shown to inhibit
COVID-19 mediated pathology and neutrophilic rhinitis (59).

The contribution of NKG2A:HLA-E interactions in this model
was not investigated however it is interesting to note that
inhibition of NKG2A increases IFNy mediated suppression of
neutrophils (60). Antibody mediated blockade of NKG2A has
been proposed as a novel COVID-19 treatment (61) and
therefore selinexor mediated downregulation of HLA-E may
also potentially participate in the anti-viral efficacy of selinexor.

In conclusion, we identify a novel anti-tumor mechanism for
XPO1 inhibitors via HLA-E downregulation and resultant
activation of NKG2A+ NK cells. This data indicates that NK
cells may contribute to the therapeutic efficacy of selinexor and
that selinexor may synergize with NK cell targeted therapies for
the treatment of patients with cancer. Whether NK cells are
associated with patient outcome following selinexor treatment is
currently under investigation.
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