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Background: The current clinical workflow for esophageal gross tumor volume (GTV)
contouring relies on manual delineation with high labor costs and inter-user variability.

Purpose: To validate the clinical applicability of a deep learning multimodality esophageal
GTV contouring model, developed at one institution whereas tested at multiple institutions.

Materials and Methods: We collected 606 patients with esophageal cancer
retrospectively from four institutions. Among them, 252 patients from institution 1
contained both a treatment planning CT (pCT) and a pair of diagnostic FDG-PET/CT;
354 patients from three other institutions had only pCT scans under different staging
protocols or lacking PET scanners. A two-streamed deep learning model for GTV
segmentation was developed using pCT and PET/CT scans of a subset (148 patients)
from institution 1. This built model had the flexibility of segmenting GTVs via only pCT or
pCT+PET/CT combined when available. For independent evaluation, the remaining 104
patients from institution 1 behaved as an unseen internal testing, and 354 patients from
the other three institutions were used for external testing. Degrees of manual revision were
further evaluated by human experts to assess the contour-editing effort. Furthermore, the
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deep model’s performance was compared against four radiation oncologists in a multi-user
study using 20 randomly chosen external patients. Contouring accuracy and time were
recorded for the pre- and post-deep learning-assisted delineation process.
Keywords: deep learning, PET/CT (18)F-FDG, radiotherapy, segmentation, delineation, esophageal cancer
INTRODUCTION

Gross tumor volume (GTV) contouring is an essential task in
radiotherapy planning. GTV refers to the demonstrable gross
tumor region. Accurate contouring improves patient prognosis
and serves as the basis for further clinical target volume
delineation (1). For precise GTV delineation, radiation
oncologists often need to consider multimodality imaging of
MRI, FDG-PET, contrast-enhanced CT, and radiology reports
and other relevant clinical information. This manual process is
both labor-intensive and highly variable.

For esophageal cancer, neoadjuvant concurrent chemoradiation
therapy is the recommended primary treatment for locally
advanced disease in our institution, as relatively fewer patients
are first diagnosed at asymptomatic early stages eligible for
esophagostomy. Compared to other types of cancers,
esophageal GTV contouring has its unique challenges: 1) The
esophagus possesses a long cranial to caudal anatomical range,
where tumors may appear at any location along this tubular
organ. Multifocal tumors are also not uncommon (2, 3).
Accurately identifying the tumor location needs significant
efforts and expertise from radiation oncologists by referring to
multiple examinations, such as panendoscopy, contrast
esophagography, or FDG-PET/CT. 2) Assessing the
longitudinal esophageal tumor extension is difficult on CT,
even with additional information from PET. This leads to
considerable GTV contouring variations at the cranial-caudal
border (4, 5). 3) Treatment planning CT (pCT) exhibits poor
contrast between the esophageal tumor and surrounding tissues.
This limitation is addressed by frequently manually referring to
adjacent slices to delineate GTV’s radial borders, further
increasing the manual burden and time. Therefore, current
manual esophageal GTV contouring is labor-intensive and
requires extensive experiences of radiation oncologists,
otherwise leading to inconsistent delineation. Accurate and
automated GTV contouring is of evidently great benefits.

Deep learning methods have been demonstrated as
potentially clinically relevant and useful tools in many medical
image analysis tasks (6–10). The deep learning-based target
volume and organ at risk contouring were also increasingly
studied recently (11–17). Nevertheless, for esophageal GTV,
the clinical applicability of deep learning-based auto-
contouring is still unclear under a multi-institutional
evaluation setup.

In this study, we developed and validated a two-streamed
three-dimensional (3D) deep learning esophageal GTV
segmentation model, which had the flexibility to segment the
GTV using only pCT or pCT and PET/CT combined when
available. The deep model was developed using 148 patients with
in.org 2
pCT and PET/CT imaging from institution 1 and independently
validated using 104 unseen patients from institution 1 and 354
patients from three external institutions. Furthermore, using 20
randomly selected patients from external institutions, the deep
model performance was compared under a multi-user setting
with four board-certified radiation oncologists experienced in
esophageal cancer treatment.
MATERIALS AND METHODS

Datasets
A total of 606 patients with esophageal cancer from four
institutions were collected in this retrospective study under each
institutional review board approval. Requirements to obtain
informed consent were waived. All patients had undergone
concurrent chemoradiation therapy before surgery between 2015
and 2020. The exclusion criteria are shown in Figure 1. All
patients had available pCT scans and the corresponding manual
GTV contours used for clinical treatment. According to the
availability of PET scanner and the staging protocol of different
institutions, patients from institution 1 (252 patients total)
received additional diagnostic FDG-PET/CT scan, whereas 354
patients from other institutions collected only pCT. Imaging
details are described in Appendix. A subset of 148 patients from
institution 1 was used as the training/validation cohort, while the
remaining 104 patients from institution 1 and 354 patients from
the other three institutions were treated as unseen internal and
external testing cohorts, respectively (Figure 1). One hundred
forty-eight (institution 1) of the 606 patients were previously
reported (18). This prior work dealt with segmentation method
developments, whereas in this article, we constructed the deep
model using a different implementation (Appendix) and evaluated
the performance on 458 unseen multi-institutional patients (104
from institution 1; 354 from the other three institutions).
Model Development
We implemented a two-streamed 3D esophageal GTV
segmentation method based on the process described in Jin
et al. (18, 19), which consisted of a pCT stream to segment
GTVs using only pCT input (denoted pCT model) and a pCT
+PET stream using an early fusion module followed by a late
fusion module to segment GTVs leveraging the joint information
in pCT and PET multimodalities (denoted pCT+PET model).
The overall segmentation flowchart is illustrated in Figure 2. In
the pCT+PET stream, PET was aligned to pCT by first
registering the diagnostic CT (accompanying the PET) to pCT
and applying the deformation field to map PET to pCT. For
January 2022 | Volume 11 | Article 785788
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FIGURE 2 | The two-streamed 3D deep learning model for esophageal gross tumor volume (GTV) segmentation using treatment planning CT (pCT) and FDG-PET/
CT scans. pCT stream takes the pCT as input and produces the GTV segmentation prediction. The pCT+PET stream takes both pCT and PET/CT scans as input.
It first aligns the PET to pCT by registering diagnostic CT (accompanying PET scan) to pCT and applying the deformation field to further map PET to pCT. Then,
it uses an early fusion module followed by a late fusion module to segment the esophageal GTV using the complementary information in pCT and PET. This workflow
can accommodate to the availability of PET scans in different institutions. Although 3D inputs are used, we depict 2D images for clarity.
FIGURE 1 | Study flow diagram of esophageal gross tumor volume (GTV) segmentation in a multi-institutional setup. CCRT, concurrent chemoradiation therapy;
pCT, treatment planning CT.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 7857883
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segmentation backbone, 3D progressive semantically nested
network (18) was adopted. Details of the registration, two-
streamed formulation, and network architecture are included
in Appendix.

To obtain the final models for testing, we conducted 4-fold
cross-validation (split at the patient level) on the 148 training-
validation patients from institution 1. Thereby, 148 patients were
randomly partitioned into four equal-size subgroups (25% of
patients). Of the four subgroups, a single subgroup was retained
as the validation data for model selection, while the remaining
three subgroups were used for training. The cross-validation
process was repeated four times/4-fold, with each of the four
subgroups used once as the validation data. Finally, four deep
models were obtained from the four rounds of training. They
were ensembled to predict the final GTV contours in all the
unseen testing data.

Quantitative Evaluation of
Contour Accuracy
The contouring accuracy was quantitatively evaluated using
three common segmentation metrics (11, 12), i.e., Dice
similarity coefficient (DSC), 95% Hausdorff distance (HD95),
and average surface distance (ASD). For the internal testing, the
performance of pCT or pCT+PET model was separately
computed. During external testing, the pCT model
performance was reported. We also explored the comparison
of these metrics in subgroups with different characteristics:
clinical T stages and different tumor locations [cervical and
upper, middle, and lower third of esophagus according to
Japan Esophageal Society (20)].

Additionally, the performance of our two-streamed models
was compared with the previous state-of-the-art method (21)
using a 3D denseUnet (22, 23) for pCT-based esophageal GTV
segmentation. For the model development of Yousefi et al. (21),
the same 4-fold cross-validation protocol was applied to ensure a
neutral comparison.

Human Experts’ Assessment of
Contour Accuracy
An assessment experiment by human experts was further
conducted to evaluate the contour editing efforts required for
deep model predictions to be clinically accepted. Specifically,
deep learning predictions of 354 patients from three external
multi-institutions were distributed to two experts (both >15
years of experience) to assess the degree of manual revision
that was defined as the percentage of GTV slices that needed
modification for clinical acceptance. Five categories were
designated as no revision required, revision required in <10%
slices, revision required in 10%–30% slices, revision required in
30%–60% slices, and unacceptable (revision required in >60%
slices or prediction completely missed the tumor). We analyzed
the correlations between different quantitative metrics and
degrees of manual revision.

Note that esophageal GTV may appear at any esophageal
location spanning an extensive longitudinal range, which is
Frontiers in Oncology | www.frontiersin.org 4
different from the more spatially constrained anatomical
location such as head and neck or prostate (11, 12). Hence,
automated esophageal GTV segmentation may identify wrong
tumor locations. These scenarios could lead to large or undefined
distance errors. Therefore, for the quantitative evaluation, we
additionally report the number of patients identified as
unacceptable by clinical experts and calculated the DSC,
HD95, and ASD metrics using the remaining patients.

Multi-User Evaluation
We further conducted a multi-user study involving four
board-certified radiation oncologists (3–6 years’ experience
in treating esophageal cancer) from 4 different institutions.
First, pCT of 20 randomly selected patients in the external
testing cohort along with their clinical, radiological, and
panendoscopy reports and any other useful information
were extracted and provided to these four radiation
oncologists for manual contouring. Next, after a minimum
interval of 1 month, deep model-predicted GTV contours
were distributed to these four radiation oncologists for editing
along with previously available information. All radiation
oncologists were blinded to the ground truth contours and
their first-time contours. Accuracy of our deep model
predictions was compared to the multi-user performance in
terms of DSC, HD95, and ASD. Similar to Lin et al. (11),
interobserver variations were assessed using multi-user DSC
and volume coefficient of variation (the ratio between
standard deviation and mean). Times used for the pre- and
post-deep learning-assisted contouring were recorded.

Statistical Analysis
The Wilcoxon matched-pairs signed rank test was used to
compare 1) DSC, HD95, and ASD scores between the pCT
model and pCT+PET model in the internal testing set and
between the proposed model and 3D DenseUNet method in
the external testing set; 2) DSC, HD95, ASD, and time taken of
pre- vs. post-deep learning-assisted contouring in multi-user
evaluation. Mann–Whitney U test was used to compare DSC,
HD95, and ASD at different clinical T stages. Multiple linear
regression with stepwise model selection was used to compare
the metrics at different tumor locations, since a large tumor may
locate across multiple esophagus regions. Spearman correlation
coefficients were assessed for mean DSC, HD95, and ASD vs.
degrees of manual revision, respectively. The c2 test was used to
compare the difference in degrees of manual revision between
subgroups. All analyses were performed by using R (24).
Statistical significance was set at two-tailed p < 0.05.
RESULTS

A total of 606 esophageal cancer patients were included. Table 1
summarizes the main characteristics of the entire cohort, and the
separated training-validation, internal testing, and external
testing cohorts. Characteristics of the 20 randomly selected
January 2022 | Volume 11 | Article 785788
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patients used in multi-user evaluation are presented in Appendix
Table A1.

Performance in the Internal Testing Set
Quantitative performance of our deep model in the internal
testing set is summarized in Tables 2, 3. For the pCT model, we
observed the mean and 95% confidence interval of DSC, HD95,
and ASD as 0.81 (0.79, 0.83), 11.5 (9.2, 13.7) mm, and 2.7 (2.2,
3.3) mm, respectively. In the subgroup analysis (Appendix
Figures A3, A4), the pCT model achieved a significantly
higher mean DSC for advanced T stage patients (cT3, cT4)
than those in the early cT2 patients (0.82 and 0.82 vs. 0.76, p <
0.05). The tumor locations exhibited no significant performance
differences. With additional PET scans, the pCT+PET model
significantly increased the performance to 0.83 (0.81, 0.84), 9.5
(8.0, 10.9) mm, and 2.2 (1.9, 2.5) mm with p < 0.01 in DSC,
Frontiers in Oncology | www.frontiersin.org 5
HD95, and ASD, respectively. Figure 4A shows several
qualitative examples for GTV segmentation in the internal
testing set.

Performance in the External Testing Set
In the external multi-institutional testing, we observed the mean
and 95% CI of DSC, HD95, and ASD as 0.80 (0.78, 0.81), 11.8
(10.1, 13.4) mm, and 2.8 (2.4, 3.2) mm, respectively, using the pCT
model (Table 4). These values did not show significant differences
compared to those during the internal testing. Our pCT-based
GTV segmentation model generalized well to patients of three
other institutions. In the subgroup analysis, a similar trend was
observed as internal testing: deep model obtained markedly
improved DSC and HD95 in advanced cT3 and cT4 patients vs.
early cT2 patients (mean DSC 0.81 and 0.82 vs. 0.71, p < 0.001;
mean HD95 11.4 and 11.4 mm vs. 13.8 mm, p ≤ 0.001).
TABLE 2 | Quantitative results of esophageal GTV segmentation by the pCT model in the unseen internal testing data.

Institution 1 (Unseen Internal Testing) Using pCT Model

Unacceptable Number (percentage) DSC mean (95% CI) HD95 (mm) Mean (95% CI) ASD (mm) Mean (95% CI)

Total patients (n = 104) 8 (8%) 0.81 (0.79, 0.83) 11.5 (9.2, 13.7) 2.7 (2.2, 3.3)
Clinical T stage
cT2 (n = 18) 4 (22%) 0.76 (0.67, 0.86) 12.0 (5.5, 18.4) 3.0 (1.0, 5.1)
cT3 (n = 58) 3 (5%) 0.82 (0.80, 0.84) 10.7 (7.9, 13.5) 2.5 (1.9, 3.2)
cT4 (n = 28) 1 (4%) 0.82 (0.79, 0.85) 12.8 (7.9, 17.7) 3.0 (2.0, 4.0)

Tumor location
Cervical (n = 10) 1 (10%) 0.82 (0.75, 0.89) 9.2 (6.5, 12.0) 2.2 (1.5, 2.8)
Upper third (n = 35) 1 (3%) 0.83 (0.81, 0.85) 9.6 (7.4, 11.9) 2.2 (1.8, 2.5)
Middle third (n = 63) 5 (8%) 0.80 (0.78, 0.83) 12.0 (8.9, 15.0) 2.9 (2.2, 3.6)

Lower third (n = 35) 2 (6%) 0.81 (0.77, 0.85) 13.3 (8.6, 18.0) 3.3 (2.1, 4.5)
January 2022 |
GTV, gross tumor volume; CI, confidence interval; DSC, Dice similarity coefficient; HD95, 95% Hausdorff distance; ASD, average surface distance; cT2, clinical T stage 2; cT3, clinical T
stage 3; cT4, clinical T stage 4; pCT, treatment planning CT.
TABLE 1 | Subject and imaging characteristics.

Characteristics Entire cohort Institutions 1–4
(n = 606)

Training-validation Institution 1
(n = 148)

Internal testing Institution 1
(n = 104)

External testing Institutions 2–4
(n = 354)

Sex … … … …

Male 537 (89%) 135 (91%) 98 (94%) 304 (86%)
Female 69 (11%) 13 (9%) 6 (6%) 50 (14%)
Diagnostic age 65 [57–72] 55 [50–61] 56 [50–62] 67 [61–75]
Clinical T stage … … … …

cT2 116 (19%) 24 (16%) 18 (17%) 74 (21%)
cT3 306 (51%) 71 (48%) 58 (56%) 177 (50%)
cT4 184 (30%) 53 (36%) 28 (27%) 103 (29%)
Tumor location … … … …

Cervical 81 (13%) 11 (7%) 10 (10%) 60 (17%)
Upper third 204 (34%) 26 (18%) 35 (34%) 143 (40%)
Middle third 325 (54%) 84 (57%) 63 (61%) 178 (50%)
Lower third 174 (29%) 69 (47%) 35 (34%) 70 (20%)
BMI … … … …

<18.5 121 (20%) 22 (15%) 15 (14%) 84 (24%)
18.5–23.9 393 (65%) 94 (63%) 59 (57%) 240 (68%)
>24 92 (15%) 32 (22%) 30 (29%) 30 (8%)
Imaging available … … … …

pCT 606 (100%) 148 (100%) 104 (100%) 354 (100%)
PET/CT 252 (42%) 148 (100%) 104 (100%) 0 (0%)
Patients may have tumors located across multiple esophagus regions; hence, total numbers summed at various tumor locations for the entire and sub-institution cohorts are greater than
the corresponding total patient numbers. Age is presented as median and [interquartile range].
cT2, clinical T stage 2; cT3, clinical T stage 3; cT4, clinical T stage 4; BMI, body mass index; pCT, treatment planning CT.
Volume 11 | Article 785788
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When compared with the previous leading 3D DenseUNet
(21), its DSC, HD95, and ASD scores were all inferior to our
model performance, e.g., mean DSC 0.75 vs. 0.80, p < 0.001
(Appendix Table A2).

Human Experts’ Assessment
Human experts’ assessment showed that the majority (311 of 354,
88%) of deep learning predictions in the external testing set were
clinically accepted or required only minor editing (no revision, n =
220; 0%–30% revision, n = 91). Ten (3%) patients had contouring
errors in 30%–60% slices, and 33 (9%) patients had unacceptable
predictions that required substantial editing efforts. Figure 3 details
the assessment results. The mean DSC, HD95, and ASD were
correlated to the degrees of manual revision (DSC: R = -0.58, p <
0.001; HD95: R = 0.60, p < 0.001; ASD: R = 0.60, p < 0.001). These
results indicated the reliability of using DSC, HD95, and ASD as
contouring accuracy evaluation criteria, consistent with the contour
editing effort necessitated in actual clinical practice. Thirty-three
(9%) patients had unacceptable predictions where our model failed
to accurately locate the tumor, leading to small dice and large
distance errors. Among 33 unaccepted cases, 23 (70%) patients had
cT2 tumors. Other cases often exhibited relatively uncommon
scanning position or anatomies (see the rightmost column in
Frontiers in Oncology | www.frontiersin.org 6
Figure 4B). In the subgroup analysis (Appendix Table A3), a
significantly smaller percentage of patients required major revision
(>30% slice revision) in advanced cT3 and cT4 stages as compared
to that in early cT2 stage (5% and 8% vs. 35%, p < 0.01). Tumor
locations did not significantly impact the degrees of manual revision.

Multi-User Evaluation
Performance evaluation of our pCTmodel with four board-certified
radiation oncologists is shown in Figure 5 andAppendix Table A4.
Among 20 testing cases, our model performed comparably to these
four radiation oncologists in terms of DSC and ASD (mean DSC:
0.82 vs. 0.82, 0.83, 0.79, 0.82; mean ASD: 2.0 mm vs. 1.9, 1.8, 2.6,
2.0 mm). For HD95, our model achieved the lowest mean HD95
errors among all results (significantly smaller than R3, mean HD95
7.9 mm vs. 12.0 mm, p = 0.01).

Next, we examined if the accuracy of manual contouring
could be improved with assistance of deep model predictions. It
is observed that when editing upon deep model predictions, 2 out
of 4 radiation oncologists’ performance had been significantly
improved in DSC and HD95 (Figure 5 and Appendix Table
A5). The inter-user variation was also reduced (Figure 6). Mean
multi-user DSC was improved from 0.82 to 0.84 (p < 0.001), and
mean volume coefficient of variation was reduced by 37.6%
TABLE 3 | Quantitative results of esophageal GTV segmentation by the pCT+PET model in the unseen internal testing data.

Institution 1 (Unseen Internal Testing) Using pCT+PET Model

Unacceptable Number (percentage) DSC Mean (95% CI) HD95 (mm) Mean (95% CI) ASD (mm) Mean (95% CI)

Total patients (n = 104) 4 (4%) 0.83 (0.81, 0.84) 9.5 (8.0, 10.9) 2.2 (1.9, 2.5)
Clinical T stage
cT2 (n = 18) 3 (17%) 0.77 (0.69, 0.85) 11.4 (6.3, 16.6) 2.7 (1.3, 4.2)
cT3 (n = 58) 0 (0%) 0.84 (0.82, 0.85) 9.0 (7.0, 11.0) 2.0 (1.7, 2.4)
cT4 (n = 28) 1 (4%) 0.84 (0.82, 0.86) 9.3 (7.3, 11.4) 2.3 (1.9, 2.6)
Tumor location
Cervical (n = 10) 1 (10%) 0.83 (0.78, 0.89) 9.4 (6.2, 12.7) 2.0 (1.5, 2.5)
Upper third (n = 35) 0 (0%) 0.84 (0.82, 0.86) 8.1 (6.2, 10.0) 1.9 (1.6, 2.2)
Middle third (n = 63) 3 (5%) 0.83 (0.81, 0.84) 9.5 (8.0, 11.1) 2.2 (1.9, 2.5)
Lower third (n = 35) 0 (0%) 0.83 (0.79, 0.86) 10.8 (7.5, 14.0) 2.6 (1.9, 3.3)
January 2022 |
GTV, gross tumor volume; CI, confidence interval; DSC, Dice similarity coefficient; HD95, 95% Hausdorff distance; ASD, average surface distance; cT2, clinical T stage 2; cT3, clinical T
stage 3; cT4, clinical T stage 4; pCT, treatment planning CT.
TABLE 4 | Quantitative results of esophageal GTV segmentation by the pCT model in the multi-institutional external testing data.

Institutions 2–4 (External Multi-Institutional Testing) Using pCT Model

Unacceptable Number (percentage) DSC Mean (95% CI) HD95 (mm) Mean (95% CI) ASD (mm) Mean (95% CI)

Total patients (n = 354) 33 (9%) 0.80 (0.78, 0.81) 11.8 (10.1, 13.4) 2.8 (2.4, 3.2)
Clinical T stage
cT2 (n = 74) 23 (31%) 0.71 (0.66, 0.76) 13.8 (10.0, 17.5) 3.6 (2.5, 4.8)
cT3 (n = 177) 5 (3%) 0.81 (0.80, 0.82) 11.4 (8.8, 13.9) 2.6 (2.1, 3.2)
cT4 (n = 103) 5 (5%) 0.82 (0.80, 0.83) 11.4 (9.3, 13.6) 2.7 (2.1, 3.3)

Tumor location
Cervical (n = 60) 4 (6%) 0.80 (0.78, 0.82) 11.7 (8.6, 14.8) 2.5 (1.7, 3.3)
Upper third (n = 143) 11 (8%) 0.79 (0.77, 0.81) 12.6 (10.4, 14.9) 3.0 (2.4, 3.7)
Middle third (n = 178) 14 (8%) 0.80 (0.78, 0.81) 11.5 (9.3, 13.5) 2.9 (2.4, 3.5)
Lower third (n = 70) 5 (7%) 0.80 (0.78, 0.82) 15.4 (9.3, 21.5) 3.3 (2.1, 4.5)
GTV, gross tumor volume; CI, confidence interval; DSC, Dice similarity coefficient; HD95, 95% Hausdorff distance; ASD, average surface distance; cT2, clinical T stage 2; cT3, clinical T
stage 3; cT4, clinical T stage 4; pCT, treatment planning CT.
Volume 11 | Article 785788
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(from 0.14 to 0.09, p = 0.03). Furthermore, the contouring time
had been reduced by an average of 48.0% (from 10.2 to 5.3 min).
Our pCT model takes an average of 20 s to predict one patient.
DISCUSSION

In this multi-institutional study, we developed a two-streamed
3D deep learning model to segment esophageal GTV trained on
148 patients with both treatment planning CT (pCT) and PET/
CT scans from institution 1. The performance was extensively
evaluated using 104 unseen institution 1 patients and 354
external multi-institutional patients. Our pCT model achieved
mean DSC and ASD of 0.81 and 2.7 mm in the internal testing
and generalized well to the external testing with mean DSC and
ASD of 0.80 and 2.8 mm. Adding PET scans, the pCT+PET
model further boosted DSC and ASD to 0.83 and 2.2 mm for the
internal testing. From a multi-user study, the pCT model
performed favorably when compared against four board-
certified radiation oncologists in metrics of DSC and ASD
while achieving the smallest HD95 errors. By allowing
Frontiers in Oncology | www.frontiersin.org 7
radiation oncologists to edit the deep model predictions, the
overall accuracy was improved, and inter-observer variation and
contouring time were reduced by 37.6% and 48.0%, respectively.

Accurate GTV delineation improves patient’s prognosis (1).
Manual contouring of esophageal GTV on pCT highly relies on
the expertise and experiences of radiation oncologists, leading to
substantial inter-user variations (4, 5, 25). In clinical practice,
radiation oncologists almost always need to refer to other
information such as panendoscopy report to determine the
tumor range, which is not trivial, requiring the “virtual fusion”
of panendoscopy information with pCT image in their minds. In
this context, our deep model could benefit radiation oncologists
by improving their contouring accuracy and consistency and
reducing time spent.

Previous works showed potential clinical applicability of deep
learning for the GTV contouring in head and neck and prostate
cancers (11, 12). However, for esophageal cancer, studies often
collected limited single-institution data for both training and
testing (18, 21, 26). For example, a 73% Dice score was achieved
when trained and tested on a total of 49 patients (21). In this
work, with our deep model developed using 148 patients from
FIGURE 3 | Expert assessment of manual revision degree of the deep model-predicted contours. Table in the top row summarized the mean and 95% confidence
interval (CI) of Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and average surface distance (ASD) stratified by different degrees of manual revision.
The correlations between the mean of DSC, HD95, ASD, and the degree of manual revision were plotted in the bottom row. Spearman correlation coefficient
showed that DSC and degree of manual revision were correlated (R = -0.58, p < 0.001). Same correlation was observed for the HD95 and ASD (HD95: R = 0.60,
p < 0.001; ASD: R = 0.60, p < 0.001). Degree of manual revision was defined as the percentage of gross tumor volume (GTV) slices that needed modification for
clinical acceptance. pCT, treatment planning CT.
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the internal institution 1, we extensively evaluated the GTV
segmentation performance using 104 unseen internal patients
and 354 external multi-institutional patients. Robust
performance generalizability to the external multi-institutional
testing data was observed despite variations of CT scanner types,
imaging protocols, and patient populations.

Generalizability of deep learning models was often the
bottleneck for successful clinical deployment. As shown in
Zhang et al. (27), direct deployment of well-trained MRI-based
prostate and left arterial segmentation models to the unseen data
from different centers led to averaged >10% DSC decrease. Good
generalizability of our model may come from the following: 1)
relative standardized imaging protocols for pCT from various
institutions despite different pCT scanner vendors; 2) physically
well-calibrated HU values in CT; 3) the 148 training patients from
institution 1 are relatively sufficient for covering different CT
Frontiers in Oncology | www.frontiersin.org 8
characteristics of esophageal tumors; and 4) we have effectively
trained our two-streamed deep GTV networks.

The developed two-streamed model has demonstrated the
flexibility of segmenting esophageal GTV according to the
availability of PET/CT scans. For institutions where PET/CT
scans are not included as a standardized staging protocol, our
pCT model already achieved high accuracy comparable to the
inter-user agreement. When PET/CT scans were available, the
pCT+PET model could further improve the performance (mean
DSC of pCT vs. pCT+PET: 0.81 vs. 0.83, p = 0.01).

This study has a few limitations. First, patients in the external
test set do not have PET/CT scans because PET is either not
available or not required for esophageal cancer staging in three
external institutions. Hence, we have not directly validated the
performance of our pCT+PETmodel in the external data. However,
considering that tumor contrast in PET is often prominent and can
A

B

FIGURE 4 | (A) Performance comparison of pCT model and pCT+PET in the internal testing set (left to right: cT4, cT3, cT3, multifocal cT2). Red, green, and blue
show the contours of ground truth reference, pCT+PET model prediction, and pCT model prediction, respectively. (B) Performance examples of pCT model in the
external testing set according to the degree of manual revision (left to right): no revision, >0%–30%, >30%–60%, and unacceptable. Red and blue show the
contours of ground truth reference and pCT model prediction, respectively. Green arrow points to the uncommon anatomy for the unacceptable case in the
rightmost column. pCT, treatment planning CT; DSC, Dice similarity coefficient.
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be assessed as a semiquantitative standard uptake value (SUV), we
believe that it would not significantly impact our pCT+PET model
performance when applied to external patients. Second, the pCT
model obtained lower performance for patients of cT2 as compared
to those of advanced clinical T stages. This may be because cT2
tumors often exhibited less prominent imaging features in CT.
After adding PET, this phenomenon was less evident. Another
potential solution might be combining the panendoscopy report
information with a deep learning model, which could be optimized
by restricting longitudinal ranges. Third, we excluded patients with
the primary tumor at gastroesophageal junction, since they were
relatively rare (<2%) in our study population and some were treated
by surgery. Further investigation of developing the deep learning
model on this subpopulation would be of clinical interest. Lastly, we
did not include GTV of lymph nodes (GTVLN) and clinical target
volume (CTV) that are essential for a comprehensive esophageal
cancer target contouring tool in this proposed model. GTVLN is a
vital part in treating esophageal cancer. However, in this work, our
deep model only includes the main esophageal tumor and focuses
on the multi-institutional clinical evaluation of tumor GTV auto-
contouring because metastatic lymph node identification is a non-
trivial problem itself. For example, detecting and subsequently
Frontiers in Oncology | www.frontiersin.org 9
segmenting the metastatic regional lymph nodes, which may
spread to a long longitudinal range along the esophagus, would
require the development of dedicated deep learning models (28).
Note that we have developed recent state-of-the-art technical
solutions along this line of work on finding and segmenting
GTVLN (29–31). Nevertheless, GTVLN identification is highly
challenging, so further technical improvement is needed to
achieve clinically applicable performance. We leave the thorough
clinical evaluation of GTVLN auto-contouring as our next step of
future work. In addition, CTV is another indispensable volume to
be delineated in esophageal cancer radiotherapy. We have
developed a deep learning-based technical solution to incorporate
the 3D spatial context of tumors and lymph nodes for CTV auto-
contouring (32). The current main roadblock is on the auto-
contouring of GTVLN. Once we solve the lymph node problem,
we are ready to implement and conduct a large-scale clinical
evaluation on the esophageal CTV auto-contouring task.

To conclude, we developed and clinically validated an
effective two-streamed 3D deep model that can reliably
segment the esophageal GTV using two protocols of pCT
alone or pCT+PET/CT. Predicted GTV contours for 88% of
patients were in close agreement with the ground truth and
A

B

FIGURE 5 | Results of multi-user evaluation. (A) Boxplot of Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and average surface distance (ASD) for
the comparison of manual contours of four radiation oncologists with our treatment planning CT (pCT)-based deep model-predicted contours. Dotted lines indicate
the median DSC, HD95, and ASD of our pCT model performance. (B) Comparison of DSC and HD95 between second-time deep learning-assisted contours with
those of first-time manual contours. R1 to R4 represent the 4 radiation oncologists involved in the multi-user evaluation. DeepModel is our pCT model.
January 2022 | Volume 11 | Article 785788

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ye et al. Automated Esophageal GTV Delineation
could be implemented and adopted clinically where only
minor or no editing efforts are required.
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