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Poly ADP ribose polymerases (PARPs) catalyze the modification of acceptor proteins,
DNA, or RNA with ADP-ribose, which plays an important role in maintaining genomic
stability and regulating signaling pathways. The rapid development of PARP1/2 inhibitors
for the treatment of ovarian and breast cancers has advanced research on other PARP
family members for the treatment of cancer. This paper reviews the role of PARP family
members (except PARP1/2 and tankyrases) in cancer and the underlying regulatory
mechanisms, which will establish a molecular basis for the clinical application of PARPs in
the future.
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INTRODUCTION

Poly ADP ribose polymerases (PARPs) are a family of proteins with a homologous catalytic domain
involved in ADP-ribosylation (1). ADP-ribosylation refers to the transfer of ADP-ribose to target
proteins in a nicotinamide adenine dinucleotide (NAD)-dependent manner. The conjugation of a
single ADP-ribose unit onto each modified residue is known as MARylation. Proteins with a single
ADP-ribose modification can be further ADP-ribosylated, which is called poly-ADP-ribosylation,
and some PARPs are capable of adding multiple ADP-ribose units (PARylation) (2, 3). This
reversible post-transcriptional modification plays a role in the regulation of various biological
processes, such as genomic stability, inflammatory regulation, energy metabolism, apoptosis, and
signal transduction (4–6). ADP-ribose can be synthesized and degraded within seconds. The PAR-
degrading enzyme poly ADP-ribose glycohydrolase hydrolyzes the glycosidic bonds within PAR (7,
8). ADP-ribosylhydrolase 3 (ARH3) hydrolyzes the bond between the protein and the proximal
ADP-ribose conjugated at serine residues (9). In addition, several proteins including ARH1,
terminal ADP-ribose protein glycohydrolase, and macrodomain-containing 1 and 2 break the
ribose–protein bond at different residues (10–12). Histone PARylation factor 1 (HPF1), a PARP1-
accessory factor, confers serine specificity to the PAR attachment (13, 14). DNA and RNA can be
ADP-ribosylated as well (15–17). In recent years, the successful development of PARP1/2 inhibitors
has provided effective treatment options for ovarian cancer (OC) and breast cancer (BC) (18–21).
Moreover, it has caused a great interest in other PARP family members in the field of cancer. PARP3
and PARP9 are overexpressed in different human cancer tissues such as BC, cervical cancer (CC),
and diffuse large B-cell lymphoma (DLBCL), whereas PARP7 expression is decreased in cancer
tissues (22–26). The biological process of cell proliferation, cell apoptosis, cell migration, and
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invasion are often involved in these cancers. Thus, PARPs can
have various functions by targeting different genes involved in
biological processes related to cancer. In this review, we
summarize the role and regulatory mechanism of PARP3,
PARP4, and PARP6–16 in cancer. PARP1/2 and tankyrases are
not addressed because they have been reviewed extensively. The
expression patterns and functions of these PARPs suggest that
other PARP family members are potential targets in cancer.
PARP FAMILY MEMBERS AND
CLASSIFICATION

PARP1 is the first identified member of the PARP family. To
date, 17 PARP family members have been identified in humans,
and they all possess a conserved domain of approximately 230
amino acids. PARP homologues have been found in other
animals, plants, fungi, bacteria, and viruses, which indicates
that the function of these enzymes may be widely conserved
(1, 2). Despite having common domains, they can be classified
into four different types according to their special domains or
functional characteristics. PARP1 binds to the site of DNA
damage and activates the ADP-ribosylation of substrate
proteins, which mediate the recruitment of DNA repair factors
and the reconstruction of chromosomes around the damaged site
(27). PARP2 and PARP3 have similar functions to PARP1, and
the presence of PARP3 can promote the damage repair effect of
PARP1 (28). Therefore, these three members are classified as
DNA-dependent PARPs. PARP5a and PARP5b, which are also
known as telomere polymerase 1 (TNKS1) and TNKS2, play an
important role in maintaining telomere length and regulating the
Wnt and Notch signaling pathways. They belong to the family of
tankyrases (29). PARP7, PARP12, and PARP13 have a Cys-Cys-
Cys-His zinc-finger domain and are classified as CCCH-type
PARPs (30, 31). PARP9, PARP14, and PARP15 are classified as
macro-type PARPs because they contain a macro domain
consisting of approximately 190 amino acid residues (32, 33).
The remaining family members are not included in the above
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four types because they have different structural characteristics
and their functions are not clear. Analysis of self ADP-
ribosylation indicates that only PARP1, PARP2, PARP5a, and
PARP5b can add multiple ADP-ribose units, whereas the
remaining 11 PARPs conjugate a single ADP-ribose to amino
acid residues. PARP9 and PARP13 do not have catalytic activity
(2). However, when PARP9 is linked to histone E3 ubiquitin
ligase 3L (DT3XL), it can catalyze the action of mono ADP-
ribosylation (34).
ROLE OF THE PARP FAMILY IN BC

PARP inhibitors have achieved satisfactory results in the
treatment of BC with BRCA1/2 mutation (35, 36). This
approach is based on the concept of synthetic lethality (37).
PARP1/2 inhibitors inactivate base excision repair and cause
DNA double-strand breaks (DSBs). In BC cells with BRCA1/2
mutations, DSBs are not repaired by homologous recombination
(HR), and their accumulation causes cell death (37, 38). In
addition, several other PARP members are closely related to
the occurrence and development of BC (Table 1). Specifically,
PARP3 expression is higher in BC cells of the mesenchymal
phenotype and promotes stem-like cell properties in BC cells by
inducing the expression of stem cell markers of the sex-
determination-related gene cluster 2 and octamer binding
transcription factor 4 and by promoting stem cell self-renewal
(39). The expression of PARP3 is higher in BC tissues than in the
control group and significantly associated with histological
grade. Moreover, PARP3-overexpressing BC patients, especially
BRCA1-positive patients, have shorter disease-free survival (22).
Beck et al. showed that PARP3 ADP-ribosylates glycogen
synthase kinase-3b, a positive regulator of rapamycin-
insensitive companion of TOR (Rictor) ubiquitination and
degradation (44, 45). The Rictor/mammalian target of
rapamycin complex 2 (Rictor/mTORC2) pathway is involved
in cell proliferation, survival, and epithelial-to-mesenchymal
transition (EMT) (46). PARP3 selectively suppresses the
TABLE 1 | Role of PARP family in BC.

Member Expression/Germline Variants/Status Biological
Process

Clinicopathological Parameters Reference

PARP3 Higher (cancer cells of mesenchymal-like basal B subtype
vs epithelial-like luminal subtypes)

Cell self-
renewal

— (39)

PARP3 Higher (cancer tissues vs tumor-adjacent tissues) — Overexpression associated with histological grade II–III, shorter
DFS time and exhibited a tendency toward shorter OS

(22)

PARP4 Higher frequency (G496V and T1170I) (cancer participants
vs the controls)

Cell
proliferation

Low expression associated with poor PFS and OS (GEO, EGA,
and TCGA datasets)

(40)

PARP7 Lower (tumor tissues vs normal tissues) — Higher expression related to preferable survival (all available
databases online at that time)

(25)

PARP7 — Cell
proliferation

Lower expression associated with worse prognosis (41)

PARP9 Higher (ER+-tumor tissues vs tumor-adjacent tissues) — — (42)
PARP9 Higher (cancer tissues vs paired normal breast tissues) Cell

migration
Overexpression negatively associated with ER expression,
positively associated with axillary lymph node metastasis

(43)
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growth, survival, and in vivo tumorigenicity of BRCA1-deficient
triple-negative BC (TNBC) cells. Therefore, PARP3 and BRCA1
are synthetic lethal, and targeting the catalytic activity of PARP3
might be a promising therapeutic strategy for BRCA1-associated
cancers (44). In addition, PARP3 inhibitors sensitize BC cells to
vinorelbine, a drug used in the treatment of metastatic BC. These
results indicate that combination treatment with PARP3
inhibitors and vinorelbine is a promising strategy for BC
patients with metastases (47).

Whole-exome sequencing showed that the frequencies of the
PARP4 variants, G496V and T1170I, are significantly higher in
BC tissues. Survival analysis shows that low expression of PARP4
is correlated with poor progression-free survival (PFS) and
overall survival (OS), suggesting that PARP4 functions as a
tumor suppressor in BC (40). However, the results of
functional analyses do not support the role of PARP4 as a
susceptibility gene, emphasizing the importance of functional
analysis for verifying candidate cancer susceptibility genes (48).
In BC cells, PARP6 regulates the activity of cycle checkpoint
kinase 1 (Chk1), a key downstream factor in the ataxia
telangiectasia and Rad3-related (ATR) pathway (49), via ADP-
ribosylation, thereby maintaining centrosome integrity and
ultimately promoting the development of BC (50, 51). PARP7
expression is lower in BC tissues than in normal tissues, and its
downregulation is associated with worse prognosis (25, 41).
Recent studies suggest that estrogen receptor a (ERa), the
dominant regulator of estrogen action in breast tissue,
regulates PARP7 expression and that PARP7 acts as a negative
regulator of ERa activity viamono-ADP-ribosylation in BC cells
(52, 53). By contrast, PARP9 expression is higher in BC than in
paired normal breast tissues, and its expression is positively
correlated with axillary lymph node metastasis and negatively
associated with ER expression. These data suggest that PARP9
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promotes the progression of BC (42, 43). In addition to the above
PARP family members, PARP13 is also involved in mammary
tumorigenesis. Heat shock transcription factor 1 recruits PARP1
through PARP13. The ternary complex formation protects cells
from DNA damage by promoting DNA repair, and supports the
growth of BRCA1-null mammary tumors (54).
ROLE OF THE PARP FAMILY IN
MALIGNANCIES OF THE DIGESTIVE
SYSTEM

Role of the PARP Family in Esophageal
Cancer and Gastric Cancer
The PARP family plays an important role in gastrointestinal
tumors (Table 2). Single‐cell intratumoral stemness analysis
revealed that PARP4 is a cancer stemness-associated gene in
esophageal squamous cell carcinoma (ESCC). In a cohort of 121
patients with ESCC, immunohistochemical scoring indicated
that high PARP4 expression is associated with poorer survival
(65). The expression of PARP9 is upregulated in EC tissues and
EC cells and may be regulated by circular RNA PRKCI
(circPRKCI), affecting the viability, colony formation, cell cycle
progression, and radiosensitivity of EC cells (55). In GC, PARP6
expression is higher in cancer tissues and cells than in normal
gastric mucosa tissues and cells. PARP6 promotes cell
proliferation, migration, and invasion of GC cells partly by
activating survivin (56), a member of the inhibitor of apoptosis
protein family (66). Analysis of an online database indicated that
PARP10 expression increases survival in GC and showed that
PARP10 is involved in the regulation of fatty acid degradation,
promoting further studies to understand of the role of PARP10
TABLE 2 | Role of PARP family in digestive system tumor.

Cancer Member Expression/Germline Variants/Status Biological Process Clinicopathological Parameters Reference

EC PARP9 — Cell cycle — (55)
GC PARP6 Higher (cancer tissues and cells vs normal gastric

mucosa tissues and cells)
Cell proliferation,
migration, and invasion

— (56)

PARP10 — — Low expression associated with longer survival (online
database kmplot.com)

(57)

HCC PARP6 Lower (tumor tissues vs tumor-adjacent tissues) Cell proliferation,
migration, and invasion

Expression level negatively associated with clinical
stage, TNM stage, and metastasis

(58)

PARP10 Lower (tumor tissues vs tumor-adjacent tissues) Cell proliferation Low expression associated with poor OS and DFS (59)
HB PARP6 Methylation — Associated with poorer OS and poorer EFS (60)
PC PARP14 Higher (tumor tissues vs tumor-adjacent tissues) Cell proliferation and

apoptosis
Higher expression associated with poor OS (61)

CRC PARP6 Higher (adenocarcinoma tissues and cancer cells
vs adjacent non-tumor tissues and a normal colon
cell line)

Cell cycle, apoptosis,
and invasion

— (62)

PARP6 — Cell proliferation,
apoptosis, migration,
and invasion

Higher expression associated with higher OS rate (63)

PARP6 — Cell proliferation and
cycle

Positivity inversely associated with loss of histological
differentiation; PARP6-positive associated with a good
prognosis

(64)
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in metabolic regulation (57). Most of these studies focused on the
relationship between PARP expression and clinical
characteristics, and few studies performed functional analyses.
Further studies are needed to clarify the roles of these PARPs in
EC and GC in the future.

Role of the PARP Family in Hepatic
Tumors and Pancreatic Cancer
The role of PARP6 in hepatocellular carcinoma (HCC) cells is
inconsistent with that in GC. It is expressed at a low level in
tumor tissues and is negatively correlated with clinical stage in
Frontiers in Oncology | www.frontiersin.org 4
HCC. Moreover, PARP6 inhibits the expression of X-ray repair
cross complementing 6 (XRCC6) by inducing its degradation,
thereby affecting the Wnt/b-catenin signaling pathway and
ultimately inhibiting the occurrence and development of HCC
(58). PARP10 delays the progression of HCC (Figure 1A). Zhao
et al. demonstrated that PARP10 expression is lower in
metastatic cancer tissues than in primary cancer tissues and
adjacent tissues (67). Aurora-A is a serine/threonine kinase that
is overexpressed in multiple human cancers and involved in
tumor cell migration and invasion (68, 69). PARP10 inhibits the
kinase activity of Aurora-A by ADP-ribosylation, thereby
A B

DC

FIGURE 1 | Molecular mechanism of PARP7, PARP10, PARP14, and PARP16 ADP-ribosylation. (A) PLK1 phosphorylates PARP10 and disrupts its inhibition of
NEMO ubiquitination, thereby enhancing the transcriptional activity of NF- kB. In turn, PARP10 mono-ADP-ribosylates PLK1, whose kinase activity and oncogenic
function are significantly inhibited by MARylation. RNF114 promotes the ubiquitination of PARP10, and PARP10 mono-ADP-ribosylates Aurora-A and inhibits its
kinase activity, thereby playing an important role in tumor proliferation and metastasis suppression. (B) PARP-7 MARylates a-tubulin to promote microtubule
instability, which may regulate cancer cell growth and motility. HIF-1 promotes the transcription of PARP7, which serves to deactivate HIF-1 in an ADP ribosylation-
dependent manner. (C) A potential inhibitor of PARP16 suppresses the ER stress-induced phosphorylation of PERK and IRE1a, thereby increasing cancer cell
apoptosis. SMYD3 can bind to the promoter of PARP16 and activate its transcription, increasing cell proliferation and invasion. NMNAT-2 supports the catalytic
activity of PARP16, which MARylates ribosomal proteins. Ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein
synthesis and preventing toxic protein aggregation. In addition, PARP16 mono ADP-ribosylates VEGF, which is further poly ADP-ribosylated by TNKS-2, leading to the
activation of downstream pathways that promote angiogenesis. (D) PARP14 mono-ADP-ribosylates HDAC2, HDAC3, and itself with IL-4 occurrence, which facilitates
the dissociation of PARP14 and HDAC complex from the promoter, leading to the binding of transcription co-factors to the promoter and initiating gene transcription.
December 2021 | Volume 11 | Article 790967
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regulating its downstream signals related to metastasis (67).
Furthermore, PARP10 phosphorylation at T601 by polo-like
kinase 1 (PLK1) suppresses its inhibition of nuclear factor
kappa-B (NF-kB) essential modulator (NEMO) ubiquitination,
which increases the transcriptional activity of NF-kB toward
multiple target genes. PLK1 is mono-ADP-ribosylated by
PARP10, which inhibits its kinase activity and oncogenic
function in HCC (59). These findings identify a PLK1/
PARP10/NF-kB signaling axis and suggest potential
therapeutics for PARP10-expressing HCC. PARP12 also acts as
a cancer suppressor in HCC by regulating the stability of four-
and-a-half LIM-only protein 2 (FHL2) (70). FHL2 is a negative
regulator of transforming growth factor b1 (TGF-b1), a potent
EMT driver that plays critical roles in the EMT process (71–73).
Therefore, PARP12 suppresses HCC metastasis by negatively
regulating TGF-b1 expression via FHL2 (70). By contrast,
PARP14 promotes the development of HCC by inhibiting c-
Jun N-terminal kinase 1 (JNK1), which phosphorylates and
activates pyruvate kinase M2 (PKM2), thus maintaining low
activity of PKM2 and promoting aerobic glycolysis in HCC (74).
This study provided a mechanistic link between PARP14, cancer
cell apoptosis, and metabolism.

Hepatoblastoma (HB) is very rare but the most common
malignant neoplasm of the liver. PARP6 is methylated in HB and
significantly associated with poor OS, suggesting that it could be
a useful molecular marker to predict a poor outcome in HB
patients (60). PC has one of the worst prognoses among different
cancer types. The PARP inhibitor olaparib is associated with a
longer PFS in patients with advanced PC with BRCA1/2
mutation (75). In addition, PARP4 and PARP14 might play a
significant role in PC as well. Alimirzaie et al. suggested that
PARP4 is a potential candidate gene for susceptibility to PC (76).
PARP14 is highly expressed in primary PC specimens and
significantly associated with poor prognosis. PARP14 promotes
cell proliferation and gemcitabine resistance in PC cells through
the NF-kB signaling pathway, indicating its potential role as a
therapeutic target for PC (61).

Role of the PARP Family in Colorectal
Cancer and Colorectal Neuroendocrine
Tumors
Several PARP family members play a role in CRC. A gene set
meta-analysis identified PARP4 as a candidate prognostic factor
for CRC metastasis (77). In addition, the PARP4V458I mutation is
only detected in patients with liver metastasis and results in
dysregulated protein abundance (78). Proteogenomics analysis
showed that PARP4 copy number is markedly increased in CRC
(79). Colorectal NETs are rare neoplasms, and Wang et al. found
two missense mutations (rs77269056 and rs73172125) in the
PARP4 gene, suggesting that PARP4 is a candidate gene involved
in colorectal NETs (80). The results of these exploratory analyses
need to be confirmed, and functional experiments demonstrating
the role PARP4 in CRC or in colorectal NETs need to
be performed.

The role of PARP6 in CRC is controversial. PARP6
expression is higher in well-differentiated CRC tissues, and
Frontiers in Oncology | www.frontiersin.org 5
PARP6 positivity is negatively correlated with the expression of
Ki-67, a proliferation index. Survival analyses show that PARP6-
positive patients have a better prognosis. Based on these results,
Tuncel et al. proposed that PARP6 might be a cancer suppressor
(64). Furthermore, PARP6 plays an inhibitory role by
downregulating the expression of survivin in CRC (63).
However, another study showed that the expression levels of
PARP6 and survivin are higher in colorectal adenocarcinoma
tissues and cells than in adjacent tissues and normal intestinal
mucosal cells. PARP6 downregulation inhibits cell survival and
invasion and induces G0/G1 arrest and apoptosis (62). These
contradictory results could be attributed to the use of samples
from different stages or different cell models. The role of PARP6
in CRC remains controversial and needs further investigation.

PARP7 and PARP10 are also involved in CRC. Stable
knockdown of PARP7 caused the CRC cell line HCT116 to
proliferate significantly faster than control cells. PARP7
downregulates hypoxia-inducible factor 1a (HIF-1a), which is
crucial for the adaptive responses of tumors to changes in
oxygenation and is often overexpressed in cancers in an ADP-
ribosylation dependent manner (41) (Figure 1B). PARP10
shows an inconsistent effect on CRC cell lines. Inhibition of
the enzymatic activity of PARP10 led to cell cycle arrest
accompanied by a marked decrease in proliferative ability (81).
Taken together, these results support the importance of these two
PARPs in CRC.
ROLE OF THE PARP FAMILY IN
UROGENITAL NEOPLASMS

PARP inhibitors have markedly changed the treatment of OC
(82–84). In addition to PARP1/2, other PARP molecules play
important roles in OC. Tumors from high-grade serous ovarian
cancer (HGSOC) patients who are platinum-resistant have a
distinct molecular profile characterized by increased expression
of PARP4. This indicates that PARP4 may be a candidate
actionable target for platinum-resistant HGSOC (85).
However, similar to CRC or colorectal NETs, the role of
PARP4 in OC has not been validated with strong experimental
evidence. A genome-wide association study suggested a
functional role for PARP7 in OC development. PARP7 is
markedly downregulated in OC cells compared with primary
human ovarian surface epithelial (POE) cells. Similarly, the level
of PARP7 expression is lower in OC tissues than in ovary normal
tissues (86) (Table 3). Goode et al. found that PARP7 MARylates
a-tubulin to promote microtubule instability, thereby
contributing to several cancer-related biological endpoints such
as growth and motility of OC cells although PARP7 mRNA levels
are lower in OC patient samples than in non-cancerous tissue
(26) (Figure 1B). This study identified a large number of PARP7
protein substrates, which may stimulate efforts to expand studies
of this PARP molecule. Unlike PARP7, PARP10 expression is
upregulated in OC patients (Table 3), with 42% of the cohort
showing platinum sensitivity and 9% showing resistance (87).
This suggests a possible role for PARP10 as a predictor of the
December 2021 | Volume 11 | Article 790967
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response to platinum-based agents. PARP16 also affects OC cell
proliferation. The catalytic activity of PARP16 is supported by
nicotinamide mononucleotide adenylyl-transferase 2 (NMNAT-
2), which is highly upregulated in OC. Depletion of NMNAT-2
or PARP16 decreases the growth of OC cells (88) (Figure 1C).

PARP family members also play a role in CC and prostate
cancer. PARP9 expression is higher in CC patients than in controls
(Table 3). The long non-coding RNA small nucleolar RNA host
gene 16 (SNHG16) recruits SPI1 to promote transcription of
PARP9 in CC cells. PARP9 downregulation inhibits proliferation
and invasion of CC cells (23). Schleicher et al. found that PARP10
promotes cell proliferation, and its overexpression alleviates cellular
sensitivity to replication stress. Loss of PARP10 decreases the
tumorigenic activity of HeLa cells (89). A recent study
demonstrated that PARP10 is regulated by RNF114 and functions
as a tumor metastasis suppressor in CC cells (90) (Figure 1A).
ADP-ribosylation of PARP10 is decreased in RNF114-knockout
cells, accompanied by a decrease of Aurora A, a substrate involved
in HCC (67). This suggests that RNF114 regulates PARP10 activity,
which might in turn inhibit Aurora A activity and downstream
signaling. PARP13 acts as a key regulator of the cellular response to
tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a
pro-apoptotic cytokine (91). TRAIL binds to its receptors
TRAILR1–4. TRAIL binding to TRAILR1 and TRAILR2 triggers
the extrinsic apoptotic pathway, whereas TRAILR3 and TRAILR4
act as pro-survival decoy receptors (92–96). PARP13 destabilizes
TRAILR4 mRNA post-transcriptionally by binding to its 3′
untranslated region, although it has no effect on the levels of
TRAILR1–3. Therefore, PARP13 shifts the balance in the TRAIL
signaling pathway towards decreased anti-apoptotic signaling and
increased cell sensitivity to TRAIL-mediated apoptosis in HeLa cells
(91). PARP16 regulates the unfolded protein response (UPR) of the
endoplasmic reticulum (ER). UPR is an ER stress-sensing/repair
pathway involved in cell survival and tumor progression (97–99).
Inhibition of PARP16 suppresses UPR-related genes, resulting in a
dramatic increase of HeLa cell apoptosis (Figure 1C). A
combination of a PARP16 inhibitor and ER stress-inducing
agents might represent a novel approach for cancer therapy (100).
Furthermore, PARP16 is a target gene for SET and MYND domain
containing 3 (SMYD3), a lysine methyltransferase, and SMYD3
may bind to the promoter of PARP16 to activate host gene
transcription (101) (Figure 1C). ER-associated PARP16 mono
ADP-ribosylates vascular endothelial growth factor (VEGF), the
major cytokine regulating angiogenesis, and mono ADP-ribosylated
VEGF is poly ADP-ribosylated by Golgi TNKS-2 in HeLa cells,
finally leading to angiogenesis (102) (Figure 1C). This finding
Frontiers in Oncology | www.frontiersin.org 6
provides evidence of the interplay between PARPs in
different organelles.

In metastatic prostate cancer cells, PARP9 and PARP14 were
identified as novel oncogenic survival factors. Mechanistically,
DTX3L forms a complex with PARP9 and PARP14 and mediates
the proliferation as well as drug resistance of prostate cancer
cells. Moreover, it was demonstrated for the first time that the
enzymatic activity of PARP14 is necessary for the survival of
prostate cancer cells (103). Therefore, combined targeted
inhibition of PARP14, PARP9, and/or DTX3L might represent
a novel therapeutic approach.
ROLE OF THE PARP FAMILY IN
MALIGNANCIES OF HEMATOLOGIC AND
LYMPHATIC SYSTEMS

PARP9, also termed BAL1 (B-aggressive lymphoma), is expressed at
significantly higher levels in fatal high-risk diffuse large B-cell
lymphoma (DLBCL) than in low-risk tumors (Table 4). PARP9
promotes malignant B-cell migration (24) and is constitutively
expressed in a subset of high-risk DLBCLs with an active host
inflammatory response. Interferon (IFN) induces PARP9
expression in DLBCL cell lines, and PARP9 is involved in IFN-
related signaling pathways, as indicated by the effect of doxycycline-
induced BAL1 on upregulating multiple IFN-stimulated genes
(109). Although PARP9 has no ADP-ribosylation activity, it
interacts with signal transducer and activator of transcription 1
(STAT1) through its macro domains in an ADP-ribosylation–
dependent manner. As a consequence, PARP9 mediates
proliferation, survival, and chemoresistance in DLBCL by
repressing the anti-proliferative and pro-apoptotic IFN-STAT1-
IRF1-p53 axis (110). PARP14 and PARP15 also belong to the
BAL family and have an effect on lymphoma (33). The effect of
interleukin 4 (IL-4) on increasing glycolysis in B cells requires
PARP14. Suppression of apoptosis is central to B-lymphoid
oncogenesis, and elevated macro-PARP expression is correlated
with lymphoma aggressiveness (111). Furthermore, PARP14 alters
IL-4 and STAT6-dependent transcription, which plays an
important role in B cell responses. In the presence of IL-4,
PARP14 promotes efficient ADP-ribosylation of histone
deacetylases (HDACs) and itself, leading to the release of HDACs
from the promoter to activate transcription (112) (Figure 1D).

High expression of PARP9 is associated with poor survival
in acute myeloid leukemia (AML) patients (Table 4) (104).
TABLE 3 | Role of PARP family in gynecological tumor.

Cancer Member Expression/Germline Variants/Status Biological Process Clinicopathological Parameters Reference

OC PARP7 Lower (cancer tissues from TCGA vs ovary normal
tissues from GTEx)

Cell proliferation and
invasion

— (26)

PARP7 Lower (cancer cells vs POE cells) — — (86)
PARP10 Higher (cancer tissues vs normal tissues from TCGA) — Expression associated with sensitivity to carboplatin

and rucaparib
(87)

CC PARP9 Higher (cancer tissues vs normal tissues) Cell proliferation and
invasion

— (23)
December 2021 | Volume 11 | Art
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In addition, two polymorphisms of PARP15 are associated with
increased OS in AML (105), suggesting that PARP15 is a potential
therapeutic target in AML. The development of tyrosine kinase
inhibitors (TKI) has greatly improved the treatment of chronic
myeloid leukemia (CML). Islam et al. performed whole-exome
sequencing of DNA to reveal genetic variants, which were
potential markers for predicting the prognosis of CML patients
after TKI discontinuation. PARP9 was one of the markers
identified, and its sensitivity, specificity, and positive as well as
negative predictive values were verified (113). In multiple
myeloma (MM) (Table 4), Barbareulo showed that c-Jun N-
terminal kinase 2 (JNK2) constitutively suppresses JNK1-
mediated apoptosis by affecting expression of PARP14.
Moreover, inhibition of PARP14 enhances the sensitization of
MM cells to anti-myeloma agents. These authors also found that
PARP14 is highly expressed in myeloma plasma cells and
associated with poor survival (106). These findings identify
PARP14 as a potential therapeutic target in MM. In fact,
targeting PARP14 has been proposed as a possible therapeutic
approach for not only MM but also multiple cancer types,
and PARP14 inhibitors are currently being developed (114).
In addition to the aforementioned mechanisms, PARP14 was
previously reported to be essential for genomic stability by
promoting HR and alleviating replication stress through the
regulation of an essential HR factor, RAD51 (115). Subsequently,
Moldovan et al. also found that the ATR-Chk1 pathway is essential
for the viability of PARP14-deficient cells. PARP14-deficient cells
are hypersensitive to both genetic depletion and pharmacological
inhibition of this pathway, which is similar to the concept of
“synthetic lethality” of existing PARP inhibitors (116). The
association between Chk1 and PARP6 has been reported in BC
as well (50), highlighting the importance of the ATR-Chk1 pathway
and providing further evidence supporting PARPs as potential
therapeutic targets in cancer.
ROLE OF THE PARP FAMILY IN OTHER
CANCERS

Telomere function and DNA damage response pathways are
frequently inactivated in cancer. An analysis of 83 non-small-cell
lung cancer (NSCLC) tissues and the corresponding control
samples indicated that telomere attrition is associated with
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poor clinical outcomes. Tumors with reactivated telomerase are
characterized by downregulation of genes related to DNA repair
such as PARP3 (117). This suggests that the relationship between
telomerase activity and the loss of several DNA repair genes is
involved in the pathogenesis of NSCLC. Additionally, PARP15 is
a tumor-infiltrating B lymphocyte-specific gene (TILBSig) that is
highly associated with OS (Table 4). TILBSigs serve as excellent
predictors of the response to immunotherapy and radiotherapy
in lung adenocarcinoma patients (107). PARP7 MARylates
TANK binding kinase 1, a major kinase related to the
activation of the type I IFN response and antiviral immunity,
thereby repressing the type I IFN response. Cancer cells may use
PARP7 as a mechanism to evade the host immune system by
suppressing the type I IFN response, thereby validating T cell-
mediated antitumor immunity (118, 119). A recent study showed
that oral administration of the PARP7 small-molecule inhibitor
RBN-2397 induces antitumor immunity and causes complete
tumor regression in a lung cancer xenograft by increasing IFN
signaling; a phase 1 clinical trial of RBN-2397 is underway (120,
121). These studies indicate that PARP7 is an important
contributor to cancer development. PARP3 is upregulated in
primary glioblastoma (GBM) (Table 4). Inhibition of PARP3
expression decreases the proliferation of GBM cells and has a
synergistic sensitization effect in combination with radiotherapy
by interacting with forkhead box M1, enhancing its
transcriptional activity (108). Studies in different cancer types
suggest the important roles of some PARP family members,
although additional studies are needed.
CONCLUSION AND PROSPECTS

Comparedwith PARP1/2, othermembers of the PARP family have
been investigated in a limited number of studies; however, their
importance in cancer has attracted increased attention in recent
years. Studies have highlighted the crucial role of PARPs in the
occurrence and progression of human cancer. Dysregulation of
PARPs has been demonstrated in a wide range of cancer types, and
their differential expression indicates their dual regulatory effects on
human cancer. PARP3, PARP9, and PARP14 are usually
overexpressed in tumors, whereas PARP7 is normally
downregulated. PARP6 and PARP10 have both promoting and
suppressive effects on cancer development. Mechanistically, they
TABLE 4 | Role of PARP family in malignancies of hematologic and lymphatic systems and in other tumors.

Cancer Member Expression/Germline Variants/Status Biological
Process

Clinicopathological Parameters Reference

DLBCL PARP9 Higher (high-risk tumors vs low-risk tumors) Cell migration — (24)
AML PARP9 Higher (cancer tissues from TCGA vs normal tissues

from GTEx)
— — (104)

PARP15 rs6793271, rs17208928 — Two polymorphisms associated with increased OS (105)
MM PARP14 Higher (cancer cells vs normal B cells) Cell apoptosis High expression associated with disease progression and

poor survival
(106)

LUAD PARP15 — — Expression associated with better prognosis (107)
GBM PARP3 Higher (tumor tissues vs tumor-adjacent tissues) Cell proliferation High expression associated with cell radioresistance (108)
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DLBCL, diffuse large B-cell lymphoma; AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; OS, overall survival; MM, multiple myeloma;
LUAD, lung adenocarcinoma; GBM, glioblastomas.
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are widely involved in multiple biological processes, including cell
proliferation, apoptosis, migration, and invasion. In addition, they
participate in the response of cancers to both chemo-
and radiotherapy.

Given the crucial function of PARPs in cancer initiation and
progression, therapies targeting PARPs might be promising.
However, larger scale studies are needed, as some of the studies
focus on clinical relevance, and few have performed functional
assays on cells or animal models. Although the biological functions
of some PARPs have been validated, the mechanisms underlying
the effects often remain unclear. Furthermore, the subcellular
localization, biological function, and mechanism of some
members of the PARP family such as PARP8 remain unknown
in cancer. Additional comprehensive studies are needed to fully
elucidate the function of each member of this family.
Frontiers in Oncology | www.frontiersin.org 8
In conclusion, PARPs are involved a variety of cancer
biological characteristics, suggesting their potential in cancer
diagnosis, prognosis, and treatment. Nevertheless, extensive
research is still needed before the application of PARP-based
diagnostic and therapeutic strategies to the clinic.
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