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Purpose: To compare the performance of radiomics to that of the Prostate Imaging
Reporting and Data System (PI-RADS) v2.1 scoring system in the detection of clinically
significant prostate cancer (csPCa) based on biparametric magnetic resonance imaging
(bpMRI) vs. multiparametric MRI (mpMRI).

Methods: A total of 204 patients with pathological results were enrolled between January
2018 and December 2019, with 142 patients in the training cohort and 62 patients in the
testing cohort. The radiomics model was compared with the PI-RADS v2.1 for the
diagnosis of csPCa based on bpMRI and mpMRI by using receiver operating
characteristic (ROC) curve analysis.

Results: The radiomics model based on bpMRI and mpMRI signatures showed high
predictive efficiency but with no significant differences (AUC = 0.975 vs 0.981, p=0.687 in
the training cohort, and 0.953 vs 0.968, p=0.287 in the testing cohort, respectively). In
addition, the radiomics model outperformed the PI-RADS v2.1 in the diagnosis of csPCa
regardless of whether bpMRI (AUC = 0.975 vs. 0.871, p= 0.030 for the training cohort and
AUC = 0.953 vs. 0.853, P = 0.024 for the testing cohort) or mpMRI (AUC = 0.981 vs.
0.880, p= 0.030 for the training cohort and AUC = 0.968 vs. 0.863, P = 0.016 for the
testing cohort) was incorporated.

Conclusions: Our study suggests the performance of bpMRI- and mpMRI-based
radiomics models show no significant difference, which indicates that omitting DCE
imaging in radiomics can simplify the process of analysis. Adding radiomics to PI-RADS
v2.1 may improve the performance to predict csPCa.
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INTRODUCTION

Prostate cancer (PCa) is among the most common malignancies
in the male population worldwide, and its incidence rate is
rapidly increasing in China, which has become an important
risk factor affecting the health of the elderly (1, 2). The early and
accurate detection and diagnosis of PCa, especially clinically
significant PCa (csPCa), are unequivocally of great significance
for patients and have an important impact on their therapeutic
response and prognosis.

In recent years, magnetic resonance imaging (MRI) has
generally been considered to be the most reliable noninvasive
imaging technology for the detection and localization of PCa (3).
Updated in 2015, the Prostate Imaging Reporting and Data
System version 2 (PI-RADS v2) was released to standardize of
multiparametric MRI (mpMRI), including T2-weighted imaging
(T2WI), diffusion-weighted imaging (DWI), and dynamic
contrast-enhanced (DCE) imaging (4). In 2019, the PI-RADS
version 2.1 was newly described, and a simplified biparametric
MRI (bpMRI) comprising T2WI and DWI was proposed (5). To
date, many studies have demonstrated that the use of bpMRI
protocols don’t significantly reduce PCa detection rates and is
comparable to mpMRI protocols (6–8). Meanwhile, bpMR
protocols also have several advantages, such as a shorter
examination time, reducing cost and avoiding potential adverse
effects of gadolinium-based contrast agents. Nevertheless, given
the growing employment of the PI-RADS, inter-reader
variability remains an unavoidable problem. Thus, it is
imperative to look for a quantitative diagnostic method to
improve the performance of the PI-RADS for the early and
accurate diagnosis of PCa.

Radiomics research extracts high-throughput and
quantitative features from multi-modal medical images and
converts them into high-dimensional mineable information
related to tumour pathophysiology using machine learning
algorithms, and these features might aid in clinical diagnosis
and decision-making (9–11). At present, manual delineation of
the region of interest (ROI) is still the main method of radiomics
analysis, but it inevitably consumes a certain number of human
resources and time costs. Although many researches have
confirmed that the accuracy of bpMRI in detecting PCa is
comparable to that of mpMRI, but the diagnostic abilities of
bpMRI- and mpMRI-based radiomics for PCa, especially in
csPCa, have not been compared.

Therefore, our study aimed to (1) compare the performance
of radiomics based on bpMRI and mpMRI in the prediction of
csPCa and (2) to explore whether radiomics can enhance the
performance of the PI-RADS v2.1 in the diagnosis of csPCa.
MATERIALS AND METHODS

Patient Cohort
This retrospective study was approved by the institutional ethics
committee of our hospital. Between January 2018 and December
2019, a total of 1051 consecutive patients who underwent a 3.0 T
Frontiers in Oncology | www.frontiersin.org 2
prostate mpMRI examination were recruited. The inclusion criteria
were as follows: (1) patients with clinical symptoms or elevated
PSA levels with a suspicion of PCa; (2) patients who underwent a
prostate 3.0 T mpMRI examination; (3) transrectal ultrasound
(TRUS)-guided prostate biopsy/MRI-TRUS fusion targeted biopsy
or radical prostatectomy with confirmed pathological results after
MRI examinations; and (4) no prior prostate endocrine therapy,
biopsy, surgery, or radiation therapy before the MRI examination.
The exclusion criteria were as follows: (1) lesions with a maximum
transverse diameter <5 mm; (2) poor mpMRI quality or severe
imaging artefacts; and (3) pathology yielded prompted lesions that
were difficult to delineate on MRI (the lesion location could not be
determined on MRI). Details of the patient recruitment pathway
are shown in Figure 1. Finally, we enrolled 204 patients: 101
patients with PCa and 103 patients without any histological
evidence of cancer. The patients were randomly divided into two
groups (the training and testing cohorts) at a ratio of 7:3.

Magnetic Resonance Imaging Protocols
All patients were scanned with a 3.0 T MRI scanner (Philips
Intera Achieva, Best, Netherlands) with a 32-channel body
phased array coil as the receiving coil. The scan sequences
included sagittal T2WI, axial T2WI, T1WI, DWI (b values of
0, 100, 1000 and 2000 sec/mm2) and DCE. Apparent diffusion
coefficient (ADC) maps were calculated on a designated
workstation with b values of 100 and 1000 sec/mm2. For the
DCE images, gadolinium chelate, at a dose of 0.1 mmol/kg of
body weight, was injected intravenously at a rate of 2.5 mL/s,
with a temporal resolution of 5.8 sec/phase. Before the DCE scan,
T1 mapping scans were performed at three reversal angles:
FIGURE 1 | Flow chart of patients’ recruitment pathway.
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5°, 10° and 15°. Details of the protocol, including the sequence
type, repetition time/echo time (TR/TE), section thickness, field
of view (FOV), and matrix, are summarized in Table 1.

Reference Standard for Pathology
All patients underwent TRUS-guided 12-core systematic biopsy,
besides, MRI-TRUS fusion targeted biopsy was used for
suspicious PCa lesions on MRI (with PI-RADS ≥ 3) and 2–3
targeted cores were added for these lesions. An ESAOTE Mylab
Twice color Doppler ultrasound device equipped with a real-time
virtual sonography (RVS) imaging fusion system was used for
MRI-TRUS fusion targeted biopsy. The ultrasonic probe model
was an EC-123,7.5- MHz transrectal end-fire probe (EsaoteSpA,
Genova, Italy). Partial of the patients underwent radical
prostatectomy after biopsy. The biopsy procedure was
performed by a senior urologist with over 5 years of
experience. The histopathological specimens were assessed by
experienced pathologists in our hospital according to the
International Society of Urological Pathology (ISUP) 2014
updated Gleason score grading system.

PI-RADS Evaluation
TheMR images were retrospectively reviewed by two radiologists
with more than 5 years of experience in the diagnosis of PCa. The
readers were blinded to all clinicopathological information.
According to the PI-RADS v2.1 protocol, two readers
interpreted the same set of MRI images at two different times
to determine the PI-RADS categories derived from the index
lesion of each patient (the index lesion was marked and recorded
by the radiologist who delineated the ROI): (a) first with the
bpMRI protocol (T2WI and DWI), and (b) second with the
mpMRI protocol (T2WI, DWI and DCE) after four weeks. If
there was any disagreement between the two readers, they
reached a consensus by discussion and determined the final
PI-RADS categories.

PCa Lesion Segmentation on
T2WI and ADC Maps
All images were normalized before feature extraction. The
images were normalized with the average of the standard
deviations as the center, and the normalize scale was set to
100. The B-spline interpolation method was used to recompress
all voxels of the image to a voxel spacing of millimetres, and the
voxel array shift and bin width were set to 300 and 5, respectively,
to ensure that each voxel was positive.
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For consistency between ROIs delineated in both T2WI and
ADC images, a radiologist together with a pathologist depicted
all the ROIs complied with the following criteria with ITK-SNAP
(http://www.itksnap.org/pmwiki/pmwiki.php). First, according
to the detailed records of the prostate biopsy (including the
injection site and depth) or pathological results of radical
prostatectomy, the location of the lesion was determined;
then, the corresponding lesion was matched on MR images in
accordance with the location described by pathology. The
radiologist manually delineated the ROIs slice by slice along
the lesion boundary, obtaining a volume of interest (VOI).
Referencing the PI-RADS V2.1 scoring criteria, the range of
lesions was determined. Lesions in the peripheral zone (PZ)
were mainly based on the ADC imaging (supplemented with
DWI and DCE imaging), while lesions in the transitional zone
(TZ) were mainly based on T2WI (supplemented with DWI and
the ADC imaging). During the process of sketching the ROIs,
the urethra, ejaculation tube, and seminal vesicle root structure
were avoided. For a patient with multiple lesions, the index lesion
was determined as the highest region of GS that was confirmed
by biopsy/pathology or the maximum diameter of the lesion if
the GSs were the same.

PCa Lesion Segmentation on DCE Imaging
The T1 mapping and DCE-MRI data were transferred into the
Omni-Kinetic software (GE Healthcare, China) to obtain the
perfusion and permeability parameters of the lesions.
The extended tofts linear model and the population arterial
input function (AIF) embedded in the software were used for
analysis, and the following quantitative parameters maps were
obtained automatically: Ktrans, Kep, and Ve. For patients with
positive DCE enhancement, a series of ROIs of lesions were
manually delineated slice by slice using ITK-SNAP on the eighth
dynamic contrast images. The eighth contrast images were
chosen because that the lesions showed significantly enhancement
while the entire prostate background was not enhanced at this stage.
While for patients with negative DCE enhancement, it is necessary
to refer to the T2WI and DWI/ADC sequence to locate the lesion
on the enhancement images (Figure 2). The sketched ROIs were
then matched to the pharmacokinetic maps.

Feature Extraction and Selection
Radiomics features of the lesions were extracted using
PyRadiomics (version 2.1.0; https://pyradiomics.readthedocs.io/
en/2.1.0/), which is an open-source function package for
TABLE 1 | Prostate mp-MRI protocol.

Sequence TR (ms) TE (ms) FOV (mm×mm) Slice thickness (mm) Slice gap (mm) Matrix NEX

T2WI-axial 3000 100 220×220 3.0 0.00 276×278 3
T2WI-sagittal 4978 100 240×180 1.5 0.15 240×161 2
DWI-axial* 6000 77 260×260 3.0 0.00 104×125 2
T1WI-axial 556 8 249×415 5.0 0.00 276×406 1
DCE 3.2 1.5 220×220 3.0 0.00 124×121 2
January 2022 | Volu
me 11 | Article 79
TR, repetition time; TE, echo time; FOV, field of view; NEX, number of excitations.
*b=0, 100, 1000, 2000 s/mm2.
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extracting radiological features from medical images. Seven types
of radiomics features were derived from each mpMRI sequence,
including first-order statistics features, shape‐based features, grey
level cooccurrence matrix (GLCM) features, grey level run length
matrix (GLRLM) features, grey level size zone matrix (GLSZM)
features, neighbouring grey tone difference matrix (NGTDM)
features, and grey level dependence matrix (GLDM) features.

To ensure the stability of the features, two radiologists drew
the ROIs slice by slice independently on the MR images of 40
patients. Only the features with inter- and intra-class correlation
coefficients (ICCs) > 0.75 were included in the following analysis.

To eliminate the differences in the value scales of the
radiomics features, all of the features were normalized to zero
mean and unit variance by a standardized method before feature
selection. The t-test algorithm was used to filter the extracted
features, and then, the least absolute shrinkage and selection
operator (LASSO) regression method was applied to select the
optimized subset of features with the optimal tuning parameter
(l). Ten-fold cross-validations were used to selected the
optimal models.

Model Construction and
Statistical Analysis
Two radiomics models were established on training data with a
support vector machine (SVM) classifier to distinguish csPCa
from non-csPCa/benign lesions based on bpMRI radiomics
features and mpMRI radiomics features, respectively.

All statistical analyses were performed using R software
(version 4.1.0, http://www.Rproject.org), Statistic Package for
Social Science (SPSS, version 21.0, https://www.ibm.com/cn-zh/
analytics/spss-statistics-software), GraphPad Prism (version 9.0,
https://www.graphpad.com/scientific-software/prism/) and
MedCalc (version 15.8, https://www.medcalc.org). Continuous
variables conforming to a normal distribution are expressed as
the means ± SDs and ranges, and an independent sample T-test
was used for analysis. Qualitative variables and continuous
Frontiers in Oncology | www.frontiersin.org 4
variables with a non-normal distribution are expressed as the
medians (lower quartile, upper quartile), and were analysed
using the Mann-Whitney U test. The inter-observer agreement
of the PI-RADS v2.1 score was evaluated by weighted Cohen’s
kappa statistics.

The testing data were used to verify the diagnostic efficacy of
the predictive models, and the differences between the radiomics
models vs. the PI-RADS v2.1 score based on bpMRI and mpMRI
in identifying csPCa and non-csPCa/benign lesions were
analysed with receiver operating characteristic (ROC) curves.
The DeLong test was used to compare the significant differences
in terms of the AUC values. P < 0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
A total of 204 patients were ultimately enrolled in our study, in
which 85 (42%) patients had csPCa and 119 (58%) patients had
non-csPCa/benign lesions [78 prostatic hyperplasia (BPH), 25
prostatitis and 16 low-grade PCa with GS 3 + 3]. 50/204 (25%)
patients underwent radical prostatectomy and the prostatectomy
specimen results were used as the reference standard, while the
remaining 154/204 (75%) patients who had only undergone
systemic biopsy/MRI-TRUS fusion targeted biopsy took the
biopsy specimen results as the standard. After randomly
dividing the patients at a 7:3 ratio, 142 patients were allocated
to the training cohort and 62 patients were allocated to the
testing cohort. The demographic data of the enrolled patients are
shown in Table 2.

PI-RADS v2.1 Score Based on
bpMRI vs. mpMRI
The category results of PI-RADS v2.1 with bpMRI and mpMRI
were shown in Figures 3A, B. The weighted Cohen’s kappa value
A B

D E F

C

FIGURE 2 | A 80-year-old man diagnosed with csPCa in TZ (PSA,59.90 ng/mL; biopsy GS, 3 + 4 = 7). Example segmentations (red masks) of the tumor overlaid
on on axial T2-weighted imaging (T2WI) (A), apparent diffusion coefficient (ADC) map (B), and dynamic contrast-enhanced MRI (DCE-MRI) (C). The ROIs were
selected based on the enhanced T1WI and then matched to Ktrans map (D), Kep map (E), and Ve map (F).
January 2022 | Volume 11 | Article 792456
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was 0.797 and 0.770 based on bpMRI and mpMRI images,
respectively (P<0.001, Table 3), which demonstrated that there
was substantial consistency between the two radiologists for PI-
RADS v2.1 score. The inconsistency between bp-MRI and mp-
MRI is mainly for lesions with PI-RADS 3 and PI-RADS 4.
When using bpMRI, 18 patients with PI-RADS 3 had index
lesions in the PZ, thus, DCE imaging was needed for these lesions
using mpMRI. Among these patients, 8 patients with positive
DCE findings were assigned PI-RADS 3 + 1. The csPCa detection
rates in positive DCE findings and negative DCE findings were
25% and 20%, the total csPCa detection rate was 19.5% and
18.2% in PI-RADS 3 lesions with bpMRI and mpMRI,
respectively (Figure 3C).

ROC curves were used to compare with bpMRI and mpMRI
using the PI-RADS v2.1 to discriminate between patients with
and without csPCa, as shown in Figure 5. In the training cohort,
Frontiers in Oncology | www.frontiersin.org 5
bpMRI and mpMRI yielded AUCs of 0.871 (95% CI: 0.780-
0.962) and 0.880 (95% CI: 0.787-0.972), respectively. In the
testing cohort, bpMRI and mpMRI yielded AUCs of 0.853
(95% CI: 0.760-0.946) and 0.863 (95% CI: 0.780-0.947),
respectively. The sensitivity, specificity and accuracy of bpMRI
and mpMRI in the detection of csPCa are reported in Table 4.
The Delong test revealed no significant differences between the
AUCs of bpMRI and mpMRI in either the training or testing
cohort (p=0.888 and 0.868, respectively, shown in Table 5).

Radiomics Model Based on bpMRI
vs. mpMRI
A total of 535 features were extracted from T2W, ADC, and DCE
images. After feature selection, nine features from bpMRI and
fourteen features from mpMRI were used to develop the
radiomics model. The LASSO feature selection process and the
A B

C

FIGURE 3 | Comparison of the PI-RADS categories and pathological results. (A, B) Graphs show changes in the PI-RADS v2.1 category with bpMRI and mpMRI,
as well as the relationship between the PI-RADS categories and pathological results. (C) Graph shows results of DCE and the histopathologic findings of the 18
patients with PI-RADS 3 lesions in the peripheral zone (PZ).
TABLE 2 | Patient characteristics.

Characteristics csPCa (n = 85) Non-csPCa/benign lesions (n = 119) P value Training cohort (n = 142) Testing cohort (n = 62) P value

Age(years) 72
(68-77)

70
(64-75)

0.027* 70
(64-76)

72
(67-77)

0.494

PSA (ng/ml) 31.99
(14.51-122.50)

10.34
(6.32-15.12)

0.000* 13.02
(8.35-30.50)

13.26
(7.30-37.47)

0.879

Location
TZ 21 92 77 36
PZ 41 27 48 20
Both zones 23 0 17 6
Gleason score
GS 6 0 16 13 3
GS 7 31 0 25 6
GS 8 25 0 20 5
GS 9 20 0 10 10
GS 10 9 0 5 4
Janua
ry 2022 | Volume 11 | Article
csPCa, clinically significant prostate cancer; PZ, peripheral zone; TZ, transitional zone; PSA, prostate-specific antigen; GS, Gleason score.
*p < 0.05.
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importance of the top ten selected features from bpMRI and
mpMRI are shown in Figure 4.

The radiomics model based on both the bpMRI and mpMRI
signatures showed high predictive efficiency with AUC values
of 0.975 (95% CI: 0.949-1.000) vs. 0.981 (95% CI: 0.964-0.999)
in the training cohort and 0.953 (95% CI: 0.920-0.986) vs.
0.968 (95% CI: 0.942-0.995) in the testing cohort, as shown
in Figure 5. However, the AUCs between bpMRI and mpMRI
were nonsignificant in both the training and testing cohorts
(p=0.687 and 0.287, respectively, shown in Table 5). The
sensitivity, specificity and accuracy of the bpMRI- and mpMRI-
based radiomics models in the detection of csPCa are reported
in Table 4.

Comparison Between the Radiomics
Model and the PI-RADS v2.1
When using bpMRI, radiomics had a significantly higher AUC
than the PI-RADS in both the training cohort [0.975 (95% CI:
0.949-1.000) vs. 0.871 (95% CI: 0.780-0.962), P = 0.030] and
testing cohort [0.953 (95% CI: 0.920-0.986) vs. 0.853 (95% CI:
0.760-0.946), p= 0.024]. When using mpMRI, radiomics also had
Frontiers in Oncology | www.frontiersin.org 6
a significantly higher AUC than the PI-RADS in the training
cohort [0.981 (95% CI: 0.964-0.999) vs. 0.880 (95% CI: 0.787-
0.972), p=0.030] and testing cohort [0.968(95% CI: 0.942-0.995)
vs. 0.863(95% CI: 0.780-0.947), p=0.016], as shown in Figure 5.

When radiomics features were added to the PI-RADS, the
diagnostic performance of the PI-RADS was significantly
improved regardless of whether bpMRI (AUC = 0.982,
p= 0.017 for the training cohort and AUC = 0.969, P = 0.007
for the testing cohort) or mpMRI (AUC = 0.986, p= 0.017 for the
training cohort and AUC = 0.977, P = 0.008 for the testing
cohort) was incorporated.
DISCUSSION

In this study, we found no significant difference in the diagnostic
value of the radiomics model for csPCa regardless of whether
bpMRI or mpMRI was incorporated (AUC= 0.975 vs. 0.981,
p=0.687 in the training cohort, and AUC= 0.953 vs. 0.968,
p=0.287 in the testing cohort). In addition, we demonstrated
that the radiomics model outperformed the PI-RADS v2.1 in the
diagnosis of csPCa regardless of whether bpMRI (AUC = 0.975
vs. 0.871, p= 0.030 for the training cohort and AUC = 0.953 vs.
0.853, P = 0.024 for the testing cohort) or mpMRI (AUC = 0.981
vs. 0.880, p= 0.030 for the training cohort and AUC = 0.968 vs.
0.863, P = 0.016 for the testing cohort) was incorporated. The
addition of quantitative radiomics features to the PI-RADS v2.1
significantly improved the diagnostic value of the combined
model for csPCa.

MpMRI has proven to be a robust clinical tool for evaluating
the differentiation and aggressiveness evaluation of PCa in
patients with a suspicion of PCa. The PI-RADS, as a structured
reporting system in prostate MRI that was updated in 2019 to
v2.1, has contributed to the success of the technique. The PI-
RADS v2.1 simplified the scoring scheme of the mpMRI protocol
for reporting and addressed the issue associated with bpMRI
(including only T2WI and DWI) for the first time. To date, many
studies have investigated the power of the simplified bpMRI
protocol, especially in terms of its diagnostic efficiency in PCa. A
recent meta-analysis (12) assessed whether the prebiopsy bpMRI
could replace mpMRI in the diagnosis of PCa and showed that
the pooled specificity demonstrated little difference between
bpMRI and mpMRI, but the sensitivity indicated a significant
difference. Another two meta-analyses carried out by Alabousi
TABLE 3 | Assessment of Interrater agreement for PI-RADS v2.1 score with
bpMRI and mpMRI.

PI-RADS v2.1 R1 (bpMRI)

R2 (bpMRI) 1 2 3 4 5

1 3 4 0 0 0
2 0 61 2 0 0
3 0 19 17 4 1
4 0 3 1 21 11
5 0 2 0 2 52
Kappa value 0.797
P <0.001*

PI-RADS v2.1 R1 (mpMRI)
R2 (mpMRI) 1 2 3 4 5

1 3 4 0 0 0
2 0 61 2 0 0
3 0 17 10 5 1
4 0 5 6 22 11
5 0 2 0 2 52
Kappa value 0.770
P <0.001*
The degree of interrater agreement was interpreted by the kappa value as follows: 0.00-0.20
as no agreement to slight, 0.21-0.40 as fair, 0.41-0.60 asmoderate, 0.61-0.80 as substantial,
and 0.81-1.00 as perfect agreement. *P < 0.05 was considered statistically significant.
TABLE 4 | ROC results of the PI-RADS, radiomics, and PI-RADS-radiomics combined models for predicting csPCa.

Model PI-RADS Radiomics Combined model

bp-MRI mp-MRI bp-MRI mp-MRI bp-MRI mp-MRI

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

AUC 0.871 0.853 0.880 0.863 0.975 0.953 0.981 0.968 0.982 0.969 0.986 0.977
SEN 0.800 0.760 0.817 0.760 0.950 0.880 0.950 0.920 0.967 0.960 0.967 0.960
SPC 0.890 0.892 0.890 0.919 0.963 0.973 0.988 0.973 0.976 0.946 0.988 0.973
ACC 0.852 0.826 0.859 0.855 0.958 0.935 0.972 0.952 0.972 0.952 0.979 0.968
January 2022 | Volum
e 11 | Article
AUC, Area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.
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et al. (13) and Woo et al. (14) reached the same conclusions.
They both proved that the pooled summary statistics
demonstrated no significant difference in sensitivity or
specificity between bpMRI and mpMRI. In our study, there
were no significant differences between the AUCs of bpMRI
and mpMRI (AUCs = 0.871 vs. 0.880, p=0.880 in the training
cohort, AUCs = 0.853 vs. 0.863, p= 0.868 in the testing cohort).
The sensitivity, specificity and accuracy of bpMRI and mpMRI
were 80% vs. 81.7%, 89% vs. 89%, and 85.2% vs. 85.9% in the
training cohort and 76% vs. 76%,89.2% vs. 91.9%, and 82.6% vs.
Frontiers in Oncology | www.frontiersin.org 7
85.5% in the testing cohort. From this point of view, the
diagnostic performance of the bpMRI protocol for csPCa is not
inferior to that of the mpMRI protocol, and bpMRI has certain
advantages in terms of cost reduction, a reduced scanning time,
and its non-invasive nature.

However, the role of the DCE sequence in the diagnosis of
PCa is rather controversial. In theory, omitting DCE imaging
might increase the probability of missing csPCa, as indicated by
Greer et al. (15). In their research, the probability of detecting
csPCa in PI-RADS 3 + 1 lesions was 54.0%, which was
TABLE 5 | Delong test of the PI-RADS, radiomics, and PI-RADS-radiomics combined models in the training cohort and testing cohort.

The Training Cohort PI-RADS-bpMRI PI-RADS-mpMRI Radiomics-bpMRI Radiomics-mpMRI Combined-bpMRI Combined-mpMRI

PI-RADS-bpMRI – 0.888 0.030* 0.022* 0.017* 0.017*
PI-RADS-mpMRI – – 0.053 0.030* 0.033* 0.015*
Radiomics-bpMRI – – – 0.687 0.664 0.505
Radiomics-mpMRI – – – – 0.940 0.703
Combined-bpMRI – – – – – 0.743
Combined-mpMRI – – – – – –

The testing cohort PI-RADS-bpMRI PI-RADS-mpMRI Radiomics-bpMRI Radiomics-mpMRI Combined-bpMRI Combined-mpMRI
PI-RADS-bpMRI – 0.868 0.024* 0.001* 0.007* 0.008*
PI-RADS-mpMRI – – 0.021* 0.016* 0.013* 0.006*
Radiomics-bpMRI – – – 0.287 0.230 0.084
Radiomics-mpMRI – – – – 0.980 0.545
Combined-bpMRI – – – – – 0.579
Combined-mpMRI – – – – – –
January 2022 | Volume
*P < 0.05 was considered statistically significant.
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FIGURE 4 | Feature selection with the LASSO regression method using bpMRI (A, C) and mpMRI (B, D) signatures. The importance of the selected top ten
features in bpMRI and mpMRI images were shown in (E, F), respectively.
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significantly higher than that in all PI-RADS 3 lesions (40.0%).
Ullrich et al. (16) found that without DCE imaging, 33% of
peripheral higher-grade PCa lesions would be underestimated
and misclassified as PI-RADS 3. In our study, the probability of
detecting csPCa in positive DCE findings and negative DCE
findings were 25% and 20%, respectively, which was lower than
previous studies (15, 16). The difference may be related to the
diagnostic experience of the radiologists. The total csPCa
detection rate was 19.5% and 18.2% in PI-RADS 3 lesions with
bpMRI and mpMRI, respectively. Schoots et al. (17) reported an
overall csPCa detection rate of 16–21% based on 665 PI-RADS 3
lesions, consistent with our results. Nevertheless, it is still
recommended to use DCE imaging as a supplementary
sequence for indeterminate lesions, small cancers, lesions in
challenging locations and in previously treated prostates (18).

Although the use of the PI-RADS has widened the application
value of prostate MRI, it must be noted that the inter-reader
variability remains an unsolved problem. To overcome the
abovementioned shortcomings, computer-aided approaches
have been implemented in recent years to improve diagnosis.
Radiomics analysis permits the high-throughput extraction of
quantitative features based on machine learning algorithms and
has appeared to be a potent tool for the evaluation of
characterization of disease patterns. A number of previous
Frontiers in Oncology | www.frontiersin.org 8
studies have outlined the potential of radiomics analysis for
PCa diagnosis and risk stratification. Ji et al. (19) developed and
validated bp-MRI based radiomics models in two vendors for
differentiation between benign and malignant prostate lesions.
The bp-MRI radiomics model produced a mean AUC of 0.833,
the comprehensive model by combining radiomics model with
age and PSA had an improved mean AUC of 0.911. However,
their study did not compare the diagnostic value of radiomics
based on bpMRI and mpMRI. An earlier review summarized and
compared the computer-aided detection and diagnosis of PCa
based on mono- and multi-parametric MRI (20). A number of
studies have reported that using three modalities leads to better
performances than using a mono-modality or a combination of
two modalities (21–23). However, in recent years, a few studies
have reached different conclusions. Monti et al. (24) compared a
standard radiomic model based on T2WI and ADC maps with
an advanced model based on DKI and DCE imaging in terms of
their diagnostic accuracy for PCa. The radiomics model based on
standard features performed better than the predictive model
based on advanced features. In our study, we also proved that
adding DCE imaging features increased the AUC from 0.975
(95% CI: 0.949-1.000) to 0.981 (95% CI: 0.964-0.999) in the
training cohort, and 0.953 (95% CI: 0.920-0.986) to 0.968 (95%
CI: 0.942-0.995) in the testing cohort. However, the difference
between the diagnostic value of the bpMRI- and mpMRI-based
radiomics models was nonsignificant either (p=0.687 in the
training cohort and p=0.287 in the testing cohort), which is
consistent with Bleker et al. (25) and Cuocolo et al. (26). The
addition of DCE imaging to radiomics analysis increased the
cumbersomeness of drawing ROIs and the possibility of
redundancy in data processing, but its diagnostic efficiency did
not significantly improve, thus, it cannot be concluded that
machine learning has significantly benefited from the addition
of DCE images to the analysis.

Our study also demonstrated that the radiomics model
outperformed the PI-RADS v2.1 in the diagnosis of csPCa
regardless of whether bpMRI or mpMRI was incorporated.
Many studies have proven that the radiomics model is superior
to the PI-RADS and clinical indicators in the diagnosis and
aggressiveness of PCa (27–30), but few have compared the
performance of radiomics and the PI-RADS based on bpMRI
and mpMRI. Our research revealed that regardless of whether
bpMRI or mpMRI is used, the performance of radiomics is
always better than that of the PI-RADS, which further indicates
that radiomics can help to improve the diagnostic performance
of the PI-RADS v2.1 and is a powerful tool for assisting in the
diagnosis of csPCa.

There are several limitations in our study. Firstly, it was a
retrospective study performed on data from a single center.
Besides, our study did not distinguish PCa that occurred in the
PZ and TZ because some highly malignant cases occurred in
both zones. The median PSA was relatively high, which also
suggest some patients with more advanced disease. For further
investigation, a multicenter clinical study with a larger sample
size is needed. Additionally, some of the pathological results were
obtained from TRUS-guided systematic prostate biopsy.
Histological-radiological matching was manually performed by
A

B

FIGURE 5 | ROC curves for six models’ performance to distinguish csPCa in
the training (A) and testing cohort (B), respectively. Model 1: PI-RADS with
bpMRI model; Model 2: PI-RADS with mpMRI model; Model 3: bpMRI-based
radiomics model; Model 4: mpMRI-based radiomics model; Model 5:
Combined PI-RADS and radiomics model with bpMRI; Model 6: Combined
PI-RADS and radiomics model with mpMRI.
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experienced radiologists; thus, the source of bias was inevitable.
Therefore, large pathological sections after radical prostatectomy
as reference standards and automatic segmentation of lesions are
required in the future research. Last but not the least, the main
limitation of MRI performance is the fact that it is associated
with inter-observer variability. The radiologists for PI-RADS
evaluation in our study were well-experienced with more than
5 years of practice, and thus these findings might be better than
junior radiologists’ results. In the future, the influence of
radiologists with different diagnostic experience on PI-RADS
and radiomics analysis will be further studied.

In conclusion, compared with the radiomics model based on
bpMRI, the performance of the mpMRI-based radiomics model
was not significantly improved, which indicates that omitting
DCE imaging in radiomics can simplify the process of analysis.
Moreover, the addition of radiomics to the PI-RADS v2.1 has the
potential to improve the performance of the structured PI-RADS
scheme regardless of whether bpMRI or mpMRI is used, thus
enabling us to diagnose csPCa with more confidence.
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