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Myeloid neoplasms (MN) are heterogeneous clonal disorders arising from the expansion of
hematopoietic stem and progenitor cells. In parallel with genetic and epigenetic dynamics,
the immune system plays a critical role in modulating tumorigenesis, evolution and
therapeutic resistance at the various stages of disease progression. Single-cell
technologies represent powerful tools to assess the cellular composition of the complex
tumor ecosystem and its immune environment, to dissect interactions between neoplastic
and non-neoplastic components, and to decipher their functional heterogeneity and
plasticity. In addition, recent progress in multi-omics approaches provide an
unprecedented opportunity to study multiple molecular layers (DNA, RNA, proteins) at
the level of single-cell or single cellular clones during disease evolution or in response to
therapy. Applying single-cell technologies to MN holds the promise to uncover novel cell
subsets or phenotypic states and highlight the connections between clonal evolution and
immune escape, which is crucial to fully understand disease progression and therapeutic
resistance. This review provides a perspective on the various opportunities and challenges
in the field, focusing on key questions in MN research and discussing their translational
value, particularly for the development of more efficient immunotherapies.

Keywords: single-cell sequencing, myelodysplastic syndromes, acute myeloid leukemia, clonal hematopoiesis,
immunotherapies, immune microenvironment
INTRODUCTION

Myeloid neoplasms (MN) consist of a heterogeneous group of hematological cancers, arising from
the hematopoietic stem cell (HSC) or progenitors in the bone marrow (BM) and sharing phenotypic
features of the myeloid lineage (1). They include myeloproliferative neoplasms (MPN), which are
featured by the hyperproliferation of near-normal maturing blood-cells; myelodysplastic syndromes
(MDS), characterized by ineffective hematopoiesis, abnormalities in cell maturation and cytopenias;
and acute myeloid leukemia (AML), which represents the most aggressive clinical phenotype, whose
prominent features are the uncontrolled proliferation of immature hematopoietic precursors (i.e.,
blasts) and life-threatening BM failure (1).
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The pathogenesis of MN is driven by the progressive selection
of multiple genetic mutations (clonal evolution) (2–4). Somatic
mutations can be identified in the peripheral blood of healthy
subjects, a phenomenon known as clonal hematopoiesis (CH)
that reflects the expansion of mutated HSC; by years or decades,
CH may evolve to AML, eventually involving clinically
recognizable pre-leukemic syndromes, such as MDS or MPN
(5–10). In parallel, growing evidence also points to a prominent
role of the immune system in shaping the evolution and clinical
pictures of MN (11–13). The tumor immune microenvironment
consists of multiple players, including adaptive and innate
immune cells and stromal components, which may either
antagonize or promote tumor progression; cancer cells
themselves exhibit immunomodulatory properties and interact
with microenvironmental components of the tumor niche (11–
14). The connections between genetic evolution, changes in the
immune microenvironment and clinical correlations, however,
are poorly understood.

Single-cell sequencing technologies appear as ideal tools to
investigate the highly-connected and plastic immune system.
These technologies overcome the limited resolution of DNA and
RNA sequencing of entire cell-populations (“bulk” sequencing),
allowing deconvolution of heterogeneous populations and
identification of rare cell types. Importantly, this is achieved by
analyses of individual-cell transcriptional states, thus enabling
the characterization of functional states while avoiding the bias of
predefined lineage-markers (15, 16). Applications of single-cell
technologies is continuously expanding with improving
throughput, accuracy and reproducibility, thus making them
widely adopted in cancer research, and being currently
exploited for precision oncology (16, 17).

This review covers state-of-the-art single-cell technological
applications with associated analysis methods; we aim to provide
a perspective on the various opportunities to study the immune
system and tumor microenvironment - for both experimental
research and clinical translation - with a focus on specific issues
relevant to MN.
CURRENT STATE-OF-THE-ART IN
MYELOID NEOPLASMS AND OPEN
CHALLENGES

The immune microenvironment shapes MN through different
branches of the immune system. A large body of pre-clinical
and clinical studies indicate a key role of innate-immune cells
and inflammation in the establishment of preleukemic states and
their progression toward AML (13, 14, 18). For instance, the
epigenetic reprogramming of aged HSC influences their response
to inflammatory and immune-mediated signals, directly impacting
on their division rate, myeloid-lineage skewing and survival
advantage (5, 6). Adaptive immunity also plays a major role, as
the presence of T cells at the tumor site is mandatory for
recognition and elimination of transformed cells. Interestingly, its
function changes according to the disease phase: in low-risk MDS,
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anti-leukemia cytotoxic (CD8+), helper (Th17) T cells andNK cells
are expanded, in the presence of low counts of pro-leukemia
T-regulatory lymphocytes (Treg); in high-risk MDS and AML,
instead, Treg prevails over CD8+, Th17 and NK cells, suggesting
that tumor clones acquire immune tolerance during disease
progression (19, 20). In established AML, higher percentages of
BM CD3+ and CD8+ T cells correlate with improved survival (21,
22) and response to the checkpoint inhibitor nivolumab (23).
Importantly, expression of the checkpoint inhibitory receptor
PD-1 and its ligand PD-L1 increases with disease progression of
MN and AML relapse, as an immune-escape mechanism (24).
Finally, leukemic blasts themselves modulate T- and NK-cell
responses and are implicated in multiple mechanisms of immune
evasion (25–28), in the context of an immunosuppressive
microenvironment (Figure 1).

Prognosis and treatment of MN patients are extremely varying,
depending on the disease entities and their associated clinical and
molecular characteristics. Beyond achieving clinical control of
hyperproliferation or cytopenias, the focus of management and
research in MPN and MDS resides in predicting - possibly
preventing - the evolution to AML. This is because, once
leukemia is established, most AML patients ultimately succumb
to their disease, despite some recent implementation of available
treatments beyond the backbone of 7 + 3 chemotherapy. In fact,
primary chemoresistance and relapse are the major causes of poor
survival in high-risk MDS and AML patients (29–31).

The dynamics of leukemic progression, resistance to treatments
and relapse have been mostly described in terms of genetic and
epigenetic events, as associated to diverse synergistic combinations
of mutations (2, 32–34); however, it is increasingly appreciated that
genetic/epigenetic alterations do not entirely explain the complexity
and heterogeneity of MN (35–37), as also inferred from the limited
success of drugs targeting single genomic variants [e.g., FLT3 (38,
39) or IDH inhibitors (40, 41)] or epigenetic traits [e.g.,
hypomethylating agents, HMA (42, 43)]. Indeed, as featured
above, there is increasing evidence of multiple mechanisms of
immune-evasion during MN development; as a clinical correlate,
the immunological eradication of therapy-resistant leukemia stem
cells (LSC) by allogeneic hematopoietic stem cell transplant
(alloHSCT) is the only strategy to overcome chemoresistance and
obtain sustained remission (29, 44, 45). Therefore, a first major
challenge in MN research is understanding the molecular
mechanisms of immune-tolerance and the cellular relationships
between the immune microenvironment and tumor clones during
leukemic progression and therapeutic resistance; highlighting the
connections between genetic evolution and immune escape seems
particularly meaningful.

Although alloHSCT is an effective treatment, post-transplant
relapse is a common occurrence, due to several leukemia-driven
immune-escape mechanisms (12); also, its anti-tumor activity is
rather poor in patients with active disease and, in general, it
comes at the cost of high morbidity and mortality (46). These
observations point toward the strong need of developing more
potent, specific and possibly less toxic immunotherapeutic
strategies for MN patients. These include harnessing T and
NK-cell-mediated tumor clearance by checkpoint inhibitors,
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monoclonal antibodies, bispecific antibodies or chimeric antigen
receptor (CAR) T cells; however, their effect has been less
successful in MN than in other cancers (12, 47), despite the
clear involvement of the immune system in MN pathogenesis.
Reasons for this failure include a limited power of the currently
used immunological markers to predict clinical response, the
absence of a suitable target antigen and elusive resistance
mechanisms. Thus, ongoing research efforts are committed to
the discovery of druggable targets or mechanisms and more
effective therapeutic combinations, which would benefit from a
better understanding of the various cellular and functional
components of the immune microenvironment.
OVERVIEW OF STATE-OF-THE-ART
SINGLE-CELL TECHNOLOGIES

Limits of Bulk Sequencing and Promises
of Single-Cell Technologies to Deconvolve
the Immune Microenvironment of
Myeloid Neoplasms
Traditional “bulk”-sequencing approaches rely on the analysis of
whole samples through next-generation sequencing platforms,
which generate multiple sequencing reads covering individual
Frontiers in Oncology | www.frontiersin.org 3
RNA or DNA molecules. Genomic and transcriptomic bulk data
from the Cancer Genome Atlas (TCGA) Research Network have
been crucial for our initial understanding of the tumor
microenvironment and tumor-immune interactions. For example,
Thorsson et al. (48) performed an extensive immunogenomic
analysis of more than 10,000 tumors comprising 33 cancer types,
and identified six immune subtypes that span cancer tissue and
molecular subtypes, and differ by somatic aberrations,
microenvironment, and survival; results from this study are
available for exploration through the interactive Cancer Research
Institute iAtlas portal (49). However, such resource is poorly
applicable to MN research, as no MDS or MPN patients were
included and limited data are available for AML, with no direct
clues on tumor microenvironment composition, lymphocyte
infiltration, immune features/modulators, immuno-oncology
targets and associations with driver mutations (48). Furthermore,
the output of bulk sequencing represents an “average” of the
transcriptomic or genomic features of all sample cells, which
poses a challenge in the precise deconvolution of intra-tumor
heterogeneity. Dedicated bioinformatic tools have been developed
to determine the composition of cancer microenvironments,
including CIBERSORT, a method for estimating the relative
proportions of cell types of interest in complex tissues from their
gene expression profiles (50). However, this tool systematically over-
or underestimates some cell types and requires a reference of gene
FIGURE 1 | The immune microenvironment of myeloid neoplasms. Summary of the main interactions occurring between neoplastic cells and immune microenvironment
in the bone marrow (BM) niche. (A) Impaired T- and NK-cell effector function by overexpression of inhibitory ligands (PD-L1, Gal-9, CD155, CD112, CD86, NKG2DL)
and interaction with their respective receptors (TIGIT, TIM-3, PD1, CTLA-4, NKG2A); T-cell exhaustion and apoptosis driven by cytokine changes. (B) Expansion of
immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), switch of macrophages to tumor-associated macrophages by altered cytokine milieau
and release within the BM niche of other soluble factors, such as reactive oxygen species (ROS), indoleamine 2,3- dioxygenase-1 (IDO1), arginase II (ArgII), and extracellular
vesicles (EV). (C) Escape from macrophages and dendritic cells by decreased expression of antigen presentation molecules (HLA I and HLA II). (D) Stromal cells inhibiting
the function of dendritic and T cells, influencing tumor proliferation and metabolic properties. (E) Vascular remodeling and hypoxia modifying immune cells’ homing and
adhesion (11, 12, 14).
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expression signatures, which might bias the imputation of cells
undergoing phenotypic plasticity or disease-induced dysregulation.
Also, low intensity signals from rare cell populations might result
undetectable with bulk sequencing approaches, which precludes the
identification of rare (yet possibly functionally-relevant) cell
populations. Therefore, deconvolution of the immune
microenvironment can’t be comprehensively achieved from
bulk studies.

Conversely, single-cell approaches allow the characterization of
individual cells, thus providing a more faithful representation of the
heterogeneity of tumor ecosystems (15, 51, 52). The use of single-
cell technologies for research purposes is rapidly spreading, favored
by combined academic and industrial efforts to improve
standardization, develop several different applications and
technological platforms and decrease costs. Some key aspects offer
relevant advancement in the characterization of the immune tumor
microenvironment: tumor and immune cells can be acquired in
parallel without prior marker-based sorting, the high resolution of
the approach allows the analysis of even small groups of cells with
shared features, while the throughput of some sequencing platforms
(up to thousands of cells) provides unprecedented statistical power.
Moreover, cells can be investigated for both their phenotypic traits
(e.g., surface markers, cell types) and functional states (e.g., over-
expressed pathways, genomic features, activation of signalling
pathways), which potentially opens perspectives on new
mechanistic hypotheses (16, 52).

Main Applications of Single-Cell
Technologies
A comparative summary of single-cell methods for genomic
studies is provided in Table 1.

• Single-cell transcriptomics (scRNA-seq). Recent advances in
cell isolation methods and automated micro-fluidics
techniques have improved tremendously the accuracy,
sensitivity, reproducibility, and throughput of scRNA-seq, by
which it is now possible to measure and model gene expression
profiles from thousands of cells (64–67). A few scRNA-seq
platforms are available on the market, differing by protocol
complexity, costs, number of output cells, sequencing depth
and full or partial coverage of transcripts (67). Such elements,
as well as downstream analysis-pipelines, should be considered
in view of the specific research-question. For instance, library
construction methods that allow full transcript coverage (54,
68) are optimal for scoring expressed mutations, splicing
isoforms (69) and T/B-cell receptor sequence (70–73), while
molecular-counting methods based on the sequence the 5’ or 3’
end transcripts are better suited for cost-effective profiling of
high numbers of cells and transcripts (64, 74). The introduction
of unique molecular identifiers during library preparation
allows counting and grouping of specific mRNA molecules
prior to PCR amplification, thus increasing accuracy and
reducing technical artifacts (75). High-dimensional scRNA-
seq data need to be processed with specific computational
algorithms, which incorporate various steps of quality control,
normalization and dimensionality reduction to enable spatial
Frontiers in Oncology | www.frontiersin.org 4
representation (76–78). Opportunities from downstream
analyses include unbiased clustering to identify groups of
transcriptionally related cells, differential gene expression,
and reconstructing dynamic biological processes, such as
cellular differentiation and immune response, by inferring
developmental ‘trajectories’ to reveal transitional states and
cell fate decisions of distinct cell subpopulations (79–81).

• Single-cell DNA sequencing (scDNA-seq). scDNA-seq
overcomes the limits of bulk sequencing allowing the direct
identification of intratumoral genetic subclones - as defined by
mutations co-occurring within the same cell - including rare
clones, which may significantly impact tumor evolution and
the acquisition of therapeutic resistance (3, 4, 82). The
technique’s core involves whole-genome amplification
(WGA) of single cells, which allows detection of single
nucleotide variations, chromosomal copy number alterations
or more complex genomic rearrangements. Droplet-based
platforms currently enable high-throughput and cost-effective
characterization of hundreds of amplicons in thousands of cells
(59). However, a drawback of scDNA methods is the high rate
of false negative and false positive hits, due to artifacts
introduced during genomic amplification, non-uniform
genome-coverage and allelic dropout events.

• Single-cell epigenomics. Bulk epigenomic techniques have
been recently adapted to single-cell applications; analyses of
chromatin organization and regulation enable to elucidate cell
lineage and differentiation state in even thousands of individual
cells simultaneously. Reported technologies allow scoring
DNA-methylation patterns (by bisulfite-based sequencing
such as scRRBS, scBS-seq, scWHBS) (60, 83, 84), chromatin
regions available for transcription factors activity (scATAC-
seq) (61), chromosomal conformations (scHi-C) (63) and
histone modifications/binding sites (scChIC-seq) (85).
However, these methods are limited by the low coverage of
specific regulatory regions (such as enhancers).

• Single-cell proteomics. Though multiparameter flow-cytometry
allows characterization of individual cells with multiple
antibodies, the design of specific antibody-panels can be
laborious and implicitly prevents unbiased and system-wide
analyses. Predicting protein expression through scRNA-seq
data, however, might be unreliable due the great extent of
regulation of mRNAs and proteins at post-translational level.
Recent technologies [such as CITE-seq (86) and REAP-seq (87)]
partially overcame this limitation by combining oligonucleotide-
labeled antibodies against cell surface proteins, thus enabling the
simultaneous detection of gene expression patterns and protein
levels in thousands of single cells in parallel. More than this,
significant improvements were recently introduced into mass
cytometry techniques (52). Mass cytometry uses antibodies
labeled with heavy metals, whose presence and abundance are
detected by a mass spectrometer; a key advantage over flow
cytometry resides in the simultaneous detection of around 40
parameters per cell, for up to millions of cells, with significantly
less spectral overlap. Thus, this high-dimensional assay enables a
more thorough characterization and higher resolution of cellular
sub-populations and individual cells, which can be especially
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Caprioli et al. Single-Cell Technologies and Immune Microenvironment in MN
TABLE 1 | Overview of selected single-cell technologies for genomic studies.

Method Overview Library construction Features

Single-cell transcriptome sequencing
Chromium (10×
Genomics)

3’-end mRNA transcripts GemCode (53) Microdroplet-based method
Advantages
• automatic cell isolation, cDNA synthesis, and

amplification
• high number of cells (500-10,000/run)
• cell size up to 40 mm
• suitable to study individual cells in a large population
• use of UMIs mitigates amplification bias
Drawbacks
• libraries of selected cells cannot be reanalyzed

because libraries are mixed after barcoding
• diverse coverage across cells (5,000-10,00 reads/

cell)
C1 Single-Cell Auto Prep
system (Fluidigm)

Full-length cDNA Smart-seq2 (54) Microwell-based method
Advantages
• automatic cell isolation, cDNA synthesis, and

amplification
• can perform additional sequencing of libraries in

user-selected wells
• stable coverage across cells (100-1,000 x 106

reads/cell)
• suitable to study individual cells in detail
Drawbacks
• limited number of cells (96-800/run)
• limited cell size (up to 25 mm)
• no UMI

5′end mRNA transcripts C1-CAGE (55)

RamDA-seq (56) Total RNA (full-length transcripts, long
noncoding RNAs and enhancer RNAs)

RamDA retrotranscription Advantages
• information on splicing events and enhancers
• possibility of automation with C1 Fluidigm platform
Drawbacks
• no UMI
• high coverage requested
• high fraction of ribosomial RNA

Single-cell genome sequencing
MDA (57) SNVs WGA; isothermal amplification Advantages

• >99% genome coverage
• reduced representation bias as compared to PCR-

based methods
Drawbacks
• few tens of cells
• high rate of allelic dropouts

MALBAC (58) SNVs, CNVs preamplification + WGA Advantages
• quasi-linear preamplification reduces WGA

amplification bias
• 93% genome coverage
• 25x mean sequencing depth
Drawbacks

* few hundreds of cells
Tapestri (MissionBio) (59) SNVs, CNVs on targeted loci target amplification + barcoding

for parallel processing
Microdroplet-based method
• uniform amplification across amplicons
• 20x mean sequencing depth
• thousands of cells
• suitable for clonal architecture reconstruction

Single-cell epigenomics
scRRBS (60) DNA methylation • hundreds/thousands of single-cells

• up to 1.5 million CpG sites (10% of genome)
• high rate of DNA degradation during bisulfite

conversion

(Continued)
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useful when the total number of cells for evaluation is limited.
Mass cytometry is particularly suitable for the study of tumor
immune microenvironments, because it can characterize novel
subpopulations of immune cell subsets and previously
unrecognized aberrancies. Markers can be studied in
combination, also through unsupervised clustering, and
generate signatures that may incorporate relative abundance of
different cell subsets, expression levels of different proteins, and/
or activation states of various cellular signalling pathways. This
can be exploited to discover biomarkers for disease classification
and prognostication, and for predicting response to therapy.
Mass cytometry also uniquely offer the important opportunity of
unbiased identification of HLA-presented neoantigens (88),
which are attractive target for immunotherapy as they are
expected to drive highly specific and effective anti-cancer
immune responses.
Challenges
Along with scientific opportunities, the adoption of single-cell
technologies implies dealing with specific experimental and
computational/statistical challenges, which are often shared
across the different single-cell applications (89).

From the experimental point of view, the generation of single-
cell data from a biological sample typically requires some
common key steps (67, 89), including dissociation of cells from
the tissue of interest, cell purification and isolation, library
construction and sequencing. Each step impacts significantly
the output results for downstream analyses. For instance, in
scRNA-seq protocols, sample preparation and handling have to
be carefully planned to avoid unnecessary stressful conditions,
which are known to induce extensive cellular responses, thus
introducing artifactual modifications of transcriptional states
(90). The emergence of microfluidics techniques for cell
isolation and combinatorial indexing strategies scaled up the
number of cells being sequenced in one experiment and recently
enabled multiplexing of different samples. Experimental steps,
however, may result in considerable batch effect during later
analysis and become the source of technical noise; this might be
the case with protocols that use whole genome amplification, or
the with carrying over of empty droplets during library
preparation, cell doublets or dying cells.

In parallel, recurring computational challenges exist, due to
inherent features of the sequencing data. The amount of material
sequenced from single cells is considerably less than that
available from bulk experiments, which leads to high levels of
Frontiers in Oncology | www.frontiersin.org 6
missing data. Missings may be due to technical dropouts
(depending on platform and sequencing depth) or reflect true
biological signal (as for variations in expression levels of a gene).
This condition requires strategies to impute missing values,
which have been more successful for genotype data than for
transcriptomic data (89, 91). Conversely, any increase in the
number of analyzed cells and features translates in the need of
scalable data analysis models and methods. As a further
complication, high-dimensional single-cell data have to be
processed for easier tractability, while preserving the salient
biological signals of the overall dataset.

Another common challenging task is the integration of
multiple datasets for comparative analyses across multiple
samples (even from different experiments or experimental
conditions) (92–94). Computational approaches have been
devised to score pairwise correspondences between single cells
across datasets, enabling batch-effect correction and identification
of populations with common sources of variation. This procedure,
however, brings the inherent risk of overcorrection (95) and
should be applied cautiously.

Finally, combining multiple types of information (such as
DNA, RNA, proteins, epigenomics) on the same cell is crucial to
get a more holistic view of cellular processes, but it requires the
development of specific experimental settings and dedicated
computational strategies to integrate complementary, possibly
interdependent measurements. These approaches will be treated
in a separate paragraph (see “Integrating Complementary
Cellular Information by Single-Cell Multi-Omics”).
UNRAVELLING THE CELLULAR
COMPOSITION OF INTRA-TUMORAL
HEALTHY AND PATHOLOGICAL IMMUNE
MICROENVIRONMENTS

The intra-tumoral immune microenvironment contains many
different cell types, which exert their functions both
independently and within cooperative networks (Figure 1).
Hematopoietic cells include the adaptive (e.g., CD4+ and CD8+
T lymphocytes, B lymphocytes) and innate (e.g., NK lymphoid
cells and macrophages) compartments of the immune system
along with dendritic and myeloid-derived suppressor cells. Non-
hematopoietic cells, instead, comprise mesenchymal stromal
cells, adipocytes, osteoblasts, and cells from the vascular and
neural niche. Malignant myeloid cells are themselves part of the
TABLE 1 | Continued

Method Overview Library construction Features

scATAC-seq (61) Chromatin accessibility • possibility of automation with C1 and Chromium
platforms

• thousands of cells
Drop-ChIP (62) Histone modification Hundreds of cells
Single-cell Hi-C (63) Chromatin structure Few tens of cells
UMI, unique molecular identifier; SNV, single-nucleotide variant; WGA, whole-genome amplification; MDA, multiple displacement amplification; MALBAC, multiple annealing and looping-
based amplification cycles; CNV, copy-number variation; scRRBS, single-cell reduced representation bisulfite sequencing; scATAC, single-cell assay for transposase-accessible
chromatin; ChIP, chromatin immunoprecipitation; Hi-C, high-throughput chromosome conformation capture.
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immune microenvironment, as they crosstalk with other
immune-competent cells (11, 13, 18). A better understanding of
the immune tumor microenvironment requires the deconvolution
of its cellular composition, which is preliminary for many
secondary analyses.

The isolation of blood cancer cells for single-cell analysis is
relatively simple as compared to solid tumors, since MN samples
are most commonly collected as fresh mononuclear cells (MNC)
isolated by Ficoll density gradient-centrifugation of the BM, thus
not requiring tissue dissociation and preserving intra-tumoral
hematopoietic cells. Non-hematopoietic cells, instead, are by far
less abundant in the BM and peripheral blood and may require
processing of larger samples (undigested BM or enzymatically
digested bones) or specific purification steps, including depletion
of the more abundant hematopoietic cells or positive selection
using predefined lineage-markers (96). For these reasons, while
these procedures have been used for the murine BM (97–99), the
human counterpart currently remains uncharacterized.
Innovation Given by Single-Cell
Technologies
Single-cell technologies - mostly single-cell transcriptomics and
proteomics - allow the analysis of both cell types (defined by
phenotypic markers) and functional states, which spares the bias of
using predefined lineage-markers (15, 16, 52) and opens innovative
perspectives on our ability to classify the cellular components of
immune processes. Indeed, emerging evidence from scRNA-based
studies suggests that the physiological stages of hematopoietic
differentiation, so far identified as discrete and homogenous
subpopulations, are instead functionally heterogeneous and display
lineagemarkers that overlap across different cell types, upon different
biological conditions (100, 101). Also, the high resolution of single-
cell transcriptional and proteomic data enables the recognition of
intermediate or transitioning cell states, highlighting the continuityof
biological processes. Given the plasticity of the immune system, these
features are particularly attracting when applied to study the tumor
microenvironment. The possibility of multimodal characterization,
as obtained by quantifying bothRNAand surface protein abundance
(86), is especially promising for the discovery of previously unknown
cell-subtypes and associated markers or gene-signatures (94).
Challenges
Different computational approaches have been developed for the
reconstruction and imputation of cell identities within both
tumor and normal immune populations. A first, reference-free
method consists in unsupervised clustering of scRNA-seq data
followed by manual cell-type annotation according to cluster-
level expression profiles (92, 102, 103). This approach, however,
is time-consuming, limited in reproducibility and suffers from
limited scalability to large datasets (104).

Specific cell-states might be more easily identified through a
supervised analysis guided by an appropriate reference dataset.
Such approach relies on mapping the query dataset onto an
existing reference from pre-annotated and purified cell types,
ideally characterized via the same technology (105). To this end,
Frontiers in Oncology | www.frontiersin.org 7
efforts to characterize the landscape of each human tissue and
cell type at single-cell level are under the way, converging on the
Human Cell Atlas project (106). Cell atlases are reference
‘coordinates’ that allow for the systematic mapping of cell
types and states; for instance, comprehensive single-cell
reference datasets are being developed for the human healthy
BM and immune system, including both steady-state and
perturbed conditions (107–113) (Table 2). The creation of a
detailed “table of immune elements” including all immune types
and states would be particularly useful to the purpose of
classifying tumors according to immune subtypes, to make
prognostic correlations and guide therapeutic assignment (16).

However, this is currently hard to achieve, due to the inherent
plasticity of the immune system and the high variability between
individuals. Also, tumor and microenvironment cells may show
several and dynamically changing aberrancies, as compared to
the healthy tissue counterpart. This poses a limit to our ability to
recognize rigidly distinct cell types. In fact, as less-characterized
disease entities and large patient cohorts are being studied, many
yet-uncharacterized immune cells and pathways will emerge,
further challenging current models of immune identity.
Analytical pipelines should account for the uncertainty of
mapping unknown cell type/state; for instance, a recently
published tool for cell-type annotation (CellAssign) (116)
leverages prior knowledge of lineage-specific marker genes to
annotate scRNA-seq data into predefined or novel cell types,
based on a probabilistic model. Orthogonal validation with flow
and mass cytometry data, as well as integrating transcriptional
data with protein expression and scDNA-seq, are expected to
further refine current single-cell classifications.
Application in the Current MN Research
The ability to assign cell identity in hematopoietic tissues has
been validated for both scRNA-seq and mass spectrometry,
although the latter is more precise in distinguishing immune
cells with closely overlapping transcriptional profiles, such as T
and NK cell subsets (108). In a recent work, such a technology
has been used to classify subsets of NK cells in 48 newly
diagnosed AML and 18 healthy subjects (117). AML samples
showed an accumulation of aberrant CD56−CD16+ NK cells,
which was associated with an adverse clinical outcome and
decreased overall survival. High-dimensional characterization
of this NK subset highlighted a decreased expression of some
receptors required for antileukemic activation, such as
NKG2D, DNAM-1, and CD96; the Authors concluded that
the accumulation of CD56−CD16+ NK cells, combined with
the reduced frequency of conventional NK subtypes, may be the
consequence of escape from innate immunity during AML
progression. Subsets of monocytes were found to be decreased
in MDS BM, which mediated the expansion of a specific T cell
pool (118). Mass spectrometry also enables recognizing aberrant
myeloid differentiation patterns, as recently demonstrated on
MDS samples compared to healthy donors (119).

Importantly, dissecting the cellular composition of the immune
microenvironment can be applied to highlight changes across
disease and/or treatment phases. For instance, the seminal study
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from van Galen et al. (120) employed scRNA-seq to characterize
BM MNC from 16 AML patients at diagnosis and during
treatment. Results showed great variations in the proportions of
cell types during the clinical course, consistently with
immunohistochemistry; AML BM generally presented with
fewer cytotoxic T cells than healthy donors, yet greater numbers
of Tregs, which confirmed previous findings and established the
existence of an immunosuppressive tumor microenvironment in
AML. Further mechanistic studies are needed to link changes in
immune subsets or immune targets to dynamics of relapse. As LSC
are deemed to be responsible for AML relapse, their identification
and characterization is particularly critical for the development of
efficient immunotherapies. In this regard, Levine et al. published
PhenoGraph, a software for analyzing mass cytometry data that
enabled better identification and characterization of LSC (102).
Moreover, one recent paper used mass cytometry and RNA-seq to
feature CD200 as a LSC–specific immune checkpoint
overexpressed in AML LSC (121).
DISCOVERING FUNCTIONAL
PHENOTYPES, MOLECULAR
MECHANISMS AND BIOMARKERS

Immune responses are plastic and can be extremely heterogenous,
depending on tissues, environmental contexts, healthy or
pathological conditions (122–124). Commonly-used small sets of
markers fail to describe the full spectrum of functional states and
inherent gene expression programs, which, instead, can be
optimally captured by high-dimensional single-cell analyses (16,
125, 126). In contrast to marker-based methodologies that seek for
rigid separation of defined entities, single-cell technologies allow to
set broadly inclusive experiments without a priorimarker selection,
enabling data-driven analyses on all cell populations involved in a
given condition. The first large-scale ‘ecosystem-wide’ scRNA-seq
Frontiers in Oncology | www.frontiersin.org 8
studywasperformedbyTiroshet al. onmelanomapatients (127). In
the context of MN research, Van Galen’s paper is a paradigmatic
example for this approach.

In order to define functional subsets among AML-associated
immune cells, Guo et al. (128) re-analyzed the scRNA-seq
dataset from the aforementioned study (120), focusing on non-
blasts AML cells and 4 healthy BM donors. The study concluded
that AML coexists with highly heterogeneous immune effectors
and suppressive subsets, which showed common features of
functional aberrancy and exhaustion of possible prognostic
significance. To the same aim, one group developed an
integrated functional approach coupling mass cytometry
coupled to cytokines profiles (129) and applied it to 49 AML
patients, confirming functional impairment of AML-associated
T cells mediated by immune checkpoints (130). Single-cell
transcriptomic has been applied in both animal models (131)
and cancer patients (132, 133) to investigate changes in the
tumor microenvironment upon treatment with immune
checkpoint inhibitors, to the end of finding response-associated
signatures. Following the same approach, one small study used
mass cytometry on serially collected samples from 9 AML
patients treated with HMA and avelumab, a PD-L1 inhibitor;
the ratio of CD4/CD8 and composition of residual T cells
emerged as the most important predictors of response to
treatment, and AML cells expressed a variety of other immune
checkpoints (such as PD-L2, OX40, TIM3) that might be
considered for future combination therapy (134).

Regarding the direct role of malignant cells in shaping the
immune microenvironment, van Galen et al. found that AML
cells exhibited marked intra-tumoral heterogeneity, with
“primitive-like” cell-types showing dysregulated co-expression of
stemness andmyeloid commitment genes, and more differentiated
“monocyte-like” cell-types showing immunomodulatory
properties linked to T-cell suppression (120). These two different
cell states were obtained by classifying malignant cells according to
their similarity to normal hematopoietic cell types and resulted
TABLE 2 | Selected scRNA-seq datasets for the healthy and pathological human immune microenvironment.

Dataset Tissue and cell
populations

Condition N cells/N individuals Core features

Human Cell Atlas
(107)

BM MNC Healthy 103,000/8 • Marker genes for cellular classification and trajectories
• Interactive web portal available

GSE120221,
GSE120446 (108)

BM MNC Healthy 76,645/20 • Largest number of individuals
• Broad age range of donors
• Orthogonal validation by flow and mass cytometry
• Discrepancies in T and NK subsets

Human Cell
Landscape (113)

BM MNC Pathologic (cytopenias) 8,704/2 • Atlas for cell-type identification
• Interactive web portal available
• Low sequencing depth

PB MNC Healthy 17,331/4

TMExplorer (114) BM MNC Pathologic [AML (102),
CML (115)]

AML: 38,410/40CML:
2,287/20

• Collection of microenvironment datasets from 12 different
cancer types

• R package interface to access datasets and metadata
• Provides gene expression data, cell type annotations and

gene-signature information
GSE126030 (110) T cells (lungs, lymph nodes,

BM and PB)
Healthy (resting and

activated)
50,000/4 • Reference map of human T cells functions related to

tissue site vs PB
• Applied to score distinct tumor-associated phenotypes
BM, bone marrow; MNC, mononuclear cells; AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; PB, peripheral blood.
February 2022 | Volume 11 | Article 796477

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Caprioli et al. Single-Cell Technologies and Immune Microenvironment in MN
associated to specific gene signatures. Specifically, the direct
comparison of leukemic versus normal cells revealed 296 genes
that were preferentially expressed inmalignant monocyte-like cells
from one or more AML samples, including genes associated with
myeloid-derived suppressor cells, antigen presentation
components and leukocyte immunoglobulin-like receptors, such
as tumor necrosis factor and interleukin-10 pathway genes or
regulators of reactive oxygen species. Although expression of
these genes markedly varied among patients, most samples
expressed high levels of CD206/MRC1 and CD163, two surface
markers associated with immunosuppressive myeloid cells (132),
whose expression was also found to be associated with poor
outcome in the TCGA AML-cohort (135). Thus, though highly
heterogenous, the different expression programs identified by
scRNA-seq might converge on common functional pathways of
prognostic and therapeutic interest. Tightly correlated gene
modules can reveal how specific pathways and cellular functions
(e.g., proliferation, antigen presentation, exhaustion,
differentiation, etc.) are distributed across cell types, thus defining
specific immunomodulatory patterns. Thereafter, detailed analyses
can be restricted to cells expressing common transcriptional
modules, an approach that may lead to the identification of new
surface markers, immunoregulatory molecules or tumor-specific
antigens for therapeutic exploitation. A catalogue of AML-specific
antigens and corresponding HLA ligands has been previously
obtained by mass spectrometry characterization (88).

Additional molecular mechanisms for tumor-related immune
changes include epigenetic dysregulation, which may affect T cell
differentiation and functions by remodeling active-enhancer
landscape and transcription factor binding (136–141). One notable
example is the documented increased chromatin accessibility at the
enhancer site of PDCD1, the gene encoding the checkpoint inhibitor
PD-1 (142). A proper T cell functionality is needed to convey the
effect of many immunotherapeutics; in this context, a recent study
applied scATAC-seq to characterize chromatin profiles of ~200,000
single cells in both peripheral blood and basal cell carcinoma samples
before and after PD-1 blockade therapy, which identified chromatin
regulators of therapy-responsive T cell subsets at the level of
individual genes and regulatory DNA elements (143). This is a
critical field of investigation in MN research, since studies have
shown that during disease progression the adaptive immune
microenvironment switches from cytotoxic to regulatory,
suggesting the appearance of immune tolerance (19, 20) and
immune-escape mechanism (24); also, T cell exhaustion has been
recognized as a cause of failure of autologous CARTs (136).
SHAPING THE IMMUNE
MICROENVIRONMENT BY
CELL-TO-CELL INTERACTIONS

In either the physiological or tumor microenvironments, immune
cells should not be considered as functionally separate entities, as
immuneprocesses aremediated bynetworks of tissue-resident and/
or circulating cell types. These interactions respond dynamically to
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environmental stimuli, possibly driving disease progression and
sensitivity or resistance to immunotherapies (137). Thus,
identifying critical signalling pathways underlying the network of
immune-cell interactions is critical to predict cancer phenotypes,
identify druggable genes or manipulate the immune system for
therapeutic purposes (138) (for example, by genome editing (139)
and cell engineering to control how pairs of cells interact). A critical
startingpoint is the analysis of the coordinated expressionof known
ligands and their cognate receptors across different cell types. This
can be achieved, for example, by combining information from
protein–protein interaction databases (140, 141, 144, 145) and
single-cell technologies. Alternative strategies for deciphering
cell–cell interactions incorporate downstream signalling, gene
regulatory networks and metabolite secretion coupled with
advanced statistical methods [reviewed by Armingol et al. (137)].

A further application of single-cell transcriptomic is
represented by the integration of transcriptomic profiles of
single cells with their spatial position in tissue contexts, an
approach that allows mapping tumor cells with respect to
other cell types or relevant tumor areas, such as vessels or the
tumor edge, and that can be used as a guide for refining cell type
identification, monitoring cell abundance, behavior and
interactions upon different disease or treatment phases (146–
148). Various technologies and computational tools exist to
profile hundreds to thousands of transcripts at different
resolutions, which have been mostly applied to generate spatial
transcriptomic maps of solid tumors (149–157). Of note in the
context of MN, Baccin et al. developed LCM-seq, a laser-capture
microdissection and sequencing protocol specifically designed to
capture the three-dimensional organization of BM cell
populations and their location within distinct niches (98).
Alternative approaches are based on the recovery of specific
neighboring cells, as in the PIC-seq (158) and NICHE-seq (159).
In the PIC-seq, tissues are mildly dissociated to retain in situ
cellular structures, physically interacting cells (PICs) are then
recovered by FACS-sorting using specific markers and subjected
to scRNAseq (158). In the NICHE-seq, instead, cells interacting
with specialized niches within organs are identified in model
systems using photoactivatable fluorescent reporters (159).

Finally, alternative single-cell technologies are emerging
to overcome the limits of RNA analyses, e.g. the lack of
information on post-transcriptional and post-translational
processing (160). Spatial resolution, in fact, can also be achieved
by immunohistochemistry coupled to mass spectrometry, a
technology that allows the detection of up to 40 proteins with a
subcellular resolution of 1mm (161, 162). One recent study, as an
example, applied multispectral imaging to understand the spatial
relationship between CD34+ hematopoietic cells and immune cell
subpopulations in the BM of MDS and secondary AML samples.
CD8+ and FOXP3+ T cells were regularly seen in close proximity of
CD34+MDS/AML,yetnot in controls; thisfindingcorrelated toblast
counts butnot to genetics, and the frequencies of immune cell subsets
also differed in MDS and sAML when compared to controls,
providing novel insights in the dynamics of immune deregulation
during MN evolution (163). Methods that allow an accurate view of
intercellular communication include Nativeomics (164), which
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detects intact ligand–receptor assemblies using mass spectrometry,
single-cell proteomics (165) andINs-seq (166),whichcouple scRNA-
seqwith intracellularproteinmeasurements to simultaneouslyprofile
transcription factors, signalling activity and metabolism. In all cases,
mechanistic hypotheses generated by computational inferences of
single-cell data should undergo careful validation using orthogonal
technologies, including confirmation of the expression of candidate
proteins (e.g., with proteomics, enzyme-linked immunosorbent
assay, western blot or immunohistochemistry), or direct
visualization of interacting cells.
INTEGRATING COMPLEMENTARY
CELLULAR INFORMATION BY
SINGLE-CELL MULTI-OMICS

Several emerging single-cell technologies are committed to
recording complementary types of cellular and molecular
information from the same cell, including its transcriptome,
genome, epigenome, proteome and spatial localization
(Table 3). The application of multi-omics approaches enables
the integration of different molecular layers within single cells at
the same time and, possibly, with respect to their surrounding
environment, thus providing an unprecedent description of the
cancer ecosystem.
Genomic Data Combined With
Transcriptome/Proteins
Because of the prominent role of genetics in cancer biology and
clinical management, most efforts have converged on the
development of technologies that jointly capture a single cell’s
genomic profile along with its phenotypes defined by either
surface markers or functional features. A number of strategies
have been published, each with its own strengths and limits
(Table 2), which hold enormous potential for the study of the
immune microenvironment in MN. Direct approaches analyzing
genomic DNA along with mRNA are technically limited by the
low DNA sequencing coverage that can be achieved at single-cell
level, and are consequently hampered in their sensitivity (167,
175). This limit can be circumvented using indirect approaches,
which aim at identifying expressed genomic variants in scRNA-
seq data and allow the analysis of high numbers of cells, thus
preserving the biological heterogeneity of the sample (115, 120,
169–171, 176, 177). Experimental and computational methods
are under continuous development to achieve the broadest
applicability. Another approach was featured in the seminal
paper by Miles et al. and consists in combining scDNA-seq
with cell-surface protein expression, which the Authors exploited
to characterize CH, MPN and AML patients (3).

A first application of combined genomic/phenotypic
approaches is the distinction of neoplastic from non-neoplastic
cells within tumors, which remains inaccurate when solely based
on the expression of specific genes or surface markers, due to the
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occurrence of technical artifacts in scRNA-seq or aberrant
expression in either cell-populations. Mapping single-nucleotide
variants and/or copy-number variations across phenotypically
defined cells can enhance the confidence of such imputation
(51). In principle, the acquisition of thousands of unselected
cells (e.g., total CD34+ or BM/PB MNCs) would allow the
characterization of both neoplastic and non-neoplastic/immune
compartments in parallel, to study the functional properties
specific to each compartment and clone. Only a few studies
have exploited such approaches in MN, focusing on the
mapping of single mutations. Giustacchini et al. obtained
scRNA-seq profiling of BCR-ABL positive vs negative HSC from
patients with chronic myeloid leukemia, and found restricted
expression in BCR-ABL negative HSC of inflammatory genes
with suppressor functions on HSC (i.e., IL6 and its downstream
mediators, TGF-b and TNF-a pathways) (176). Another study
used transcriptional and mutational single-cell data to feed a
machine-learning model for the identification of malignant vs
non-malignant AML cells, and found heterogenous malignant
cell-types whose abundance correlated with genotypes and
survival (120). Indeed, future studies employing multi-omics
single-cell strategies will be instrumental to detail the molecular
mechanisms by which tumor cells harboring specific genomic
alterations interact with their own immune microenvironment,
potentially driving immune escape and response to immune-
therapies. Preliminary evidence supports this perspective with
different mechanisms, such as the expansion of specific immune
populations [e.g. in MDS, where chromosome 8 trisomy and
consequent WT1 overexpression fuel CD8+ expansion (178)];
the up/downregulation of immune effectors activity [e.g., fusion
proteins PML-RARa and AML1-ETO impair NK cytolytic
activity by downregulating their receptor’s ligand CD48 on
AML cells (179)]; enhancement of specific signalling and
immune activation pathways [such as for mutations in JAK2
(180–182) or spliceosome genes (12, 183), which are early
genetic events in MN, or for signalling effector mutations, which
occur in late AML subclones (3)].

Immunomodulation by either tumor or micro-environment
cells has been recognized as a further mechanism that influences
the dynamics of clonal expansion in MN. Dysregulation of innate
immune and inflammatory cells and signalling contributes to the
competitive advantage of CH-mutant HSC during aging,
particularly in the context of TET2, DNMT3A and JAK2
mutations (5, 6, 182, 184–186). In addition, mutations associated
with CH are nearly always present in circulating innate immune
cells and, less frequently, in the T and B lymphoid compartment,
which might affect immune surveillance against emerging tumor
cells and response to immune therapies (187). Understanding the
molecular and cellular relationships between the immune
microenvironment and preleukemic clones remains a crucial step
to efficiently track - and possibly intercept - the evolution to AML,
as the risk of leukemic transformation varies significantly across
CH-individuals and pre-leukemic patients and is associated to
diverse synergistic combinations of mutations. Although not
specifically focusing on the immune microenvironment, Miles
et al. observed differential skew to the myeloid, B or T cell
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TABLE 3 | Overview of selected single-cell multi-omics methods.

Method Overview Throughput (N cells
with multiomics
characterization)

Features Limits

Genome + Transcriptome
G&T-seq (167) Experimental methodPhysical separation of RNA and

DNA with subsequent parallel amplification and
sequencing

-/+ • CNV (direct scoring)
• SNV (direct scoring)
• Full-length transcriptome

(including fusions)

• Low throughput
• Low coverage

HoneyBADGER
(168)

Computational methodIntegration of normalized scRNA-
seq profiles as compared to:- putative diploid reference
of comparable cell type- allelic frequency of
heterozygous germline SNP

• CNV (inferred from
scRNA-seq)

• LOH (inferred from
scRNA-seq)

• Transcriptome

• No information on DNA
alterations smaller than 10
megabases

• Best performance with
scRNA-seq protocols that
achieve full-transcript
coverage

Scmut (115) Computational methodVariant calling implemented to
both scRNA-seq and WES data

• Expressed SNV (inferred
from scRNA-seq)

• Transcriptome

• Relies on quality of the
alignment and transcript
annotation

• Detection sensitivity of a
mutation depends on the
corresponding gene
expression

• High rate of false positives
and negatives

Van Galen et al.
(120)

Experimental methodTarget amplification of transcript
and locus of interest, integration with long-read
sequencing

+ • Expressed SNV (inferred
from scRNA-seq),
insertions, deletions and
fusions

• Transcriptome

• Depends on expression for
mutation detection

Petti et al. (169) Experimental methodVariants scored in WGS and then
detected in scRNA-seq data

++ • Expressed SNV (inferred
from scRNA-seq), indels

• Transcriptome
• High-throughput that

preserves biological
complexity

• General applicability

• 5’-end bias
• Heavily depends on

expression for mutation
detection

• No clonal reconstruction
(wild-type status not
defined)

GoT (170) Experimental methodTarget amplification and
circularization of transcript and locus of interest

++ • Expressed SNV (inferred
from scRNA-seq)

• Transcriptome
• Overcomes end bias by

transcripts circularization

• Depends on expression for
mutation detection
(mitigated by target
amplification)

TARGET-seq
(171)

Experimental methodRelease of gDNA and mRNA
followed by target amplification

+ • SNV, indels
• Transcriptome
• Parallel information from

coding and non-coding
DNA

• Clonal reconstruction
• Low allelic dropout

• End-bias with ‘high-
throughput’ protocol

Genome + Proteins
Tapestri
(Mission Bio,
Inc) (3, 59)

Experimental methodMicrofluidic workflow for target
amplification of DNA amplicons and proteins

++ • SNV
• CNV
• Cell-surface proteins
• Standardized commercial

platform
• Customizable gene and

antibody panel
• Clonal reconstruction at

single-cell level
• Integrated pipeline for

multi-omics analysis

• No information on gene
expression and regulatory
networks

Transcriptome + Epigenome
scM&Tseq (172) Experimental methodPhysical separation of RNA and

DNA, which allows for bisulfite conversion of DNA
without affecting the transcriptome

-/+ • Transcriptome
• Methylome

• Low sequencing depth
• Low throughput

(Continued)
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lineages, depending on which CH gene was mutated; genotype-
driven changes in cell-surface protein expression were also reported
in the leukemic phase, with signaling effector mutations leading to
increased CD11b expression (3). In established AML, the same
information might instead aid in understanding the molecular basis
of chemoresistance and the jeopardized response to various
immunotherapeutic strategies. In this context, common AML-
associated translocations (AML1-ETO, DEC-CAN, PML-RARa,
BCR-ABL) or mutations (FLT3-ITD, NPM1, IDH1R132H,
mutations in spliceosome genes and some TP53 hotspots, JAK2,
CALR) produce MN-specific immunogenic proteins that may
become ideal antigen targets for the development of
immunotherapies (12, 188).
Transcriptomic Data Combined With T Cell
Receptor Information
Finally, the T- or B-cell receptor repertoire of individual
lymphocytes can be scored in parallel with their gene expression
profiles, using properly devised experimental and computational
methods on scRNA-seq data (73, 111), thus providing connections
between lymphocyte clonality and functional responses, which can
inform the discovery of antigen-reactive antibody candidates,
Frontiers in Oncology | www.frontiersin.org 12
antigen targeting efficiency of T cell clonotypes, and evolution
and response to various immunotherapies.
Transcriptomic Data Combined With
Proteomic Data
Technologies are also available that allow concomitant analyses
of protein and transcripts at single-cell levels. They are
particularly useful to investigate post-translational regulatory
events and to relate functionally-defined phenotypes to protein
markers, which might assist tumor classification, biomarker
assessment for prognostic purposes, and development of
therapeutic targets. Surface proteins can be detected by
implementing gene-expression libraries with oligonucleotide-
labeled antibodies, as for the above-mentioned CITE-seq (94)
and REAP-seq (87). Notably, the CITE-seq workflow is
compatible with the most frequently used commercial
platforms for scRNA-seq, and there’s no upper limit to the
number of antibodies that can be used. PLAYR, instead, relies
on mass spectrometry and allows the detection of up to 40
proteins (174). This technique might be critical when high-
quality antibodies are unavailable; also, it can be deployed for
index sorting and imaging approaches to enable spatial
TABLE 3 | Continued

Method Overview Throughput (N cells
with multiomics
characterization)

Features Limits

Paired-seq
(173)

Experimental methodLigation-based tagging of both
open chromatin fragments and cDNA

+++ • Transcriptome
• Chromatin accessibility
• Extremely high throughput

(up to millions of cells)

• Non optimal library
complexity

Transcriptome + Proteins
CITE-seq (86) Experimental methodAntibody-bound oligos act as

synthetic transcripts that are captured during most
large-scale oligodT-based scRNA-seq library preparation
protocols

++ • Transcriptome
• Surface proteins
• Adaptable to RNA

interference assays,
CRISPR, and other gene
editing techniques.

• No upper limit in number
of antibodies

• No spatial information
• No intracellular proteins

PLAYR (174) Experimental methodLabelling of RNA and proteins with
isotope-conjugated probes andantibodies for mass
spectrometry detection

+ • Transcriptome
• Surface and intracellular

proteins

• No spatial information-
Limited number of proteins

Transcriptome + T cell receptor
Tessa (111) Computational methodBayesian model trained on bulk

and scRNA-seq of TCR and T cells
• TCR sequences
• Transcriptome

• No information on splicing
isoforms

RAGE-seq (73) Experimental methodCombined targeted capture and
long-read sequencing of full-length transcripts

++ • TCR/BCR sequences
• Transcriptome
• Splicing isoforms
• Accurate antigen receptor

sequences at nucleotide
resolution

• Information on splicing
isoforms

• Adaptable to any scRNA-
seq platform using 3′ or
5′ cell-barcode tagging

• Low recovery of cell
barcodes due to low
accuracy of long-read
sequencing

• Possible PCR artifacts
February 20
CNV, copy number variation; LOH, loss of heterozygosity; SNP, single nucleotide polymorphism; SNV, single nucleotide variant; WES, whole exome sequencing; WGS, whole genome
sequencing; gDNA, genomic DNA; cDNA, coding DNA; PCR, polymerase chain reaction; TCR, T cell receptor; BCR, B cell receptor.
-/+, tens of cells; +, tens of cells; ++, hundreds of cells; +++, thousands of cells.
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resolution. Using other techniques, intracellular proteins can be
accessed as well with scaling throughput (189, 190).
Transcriptomic Data Combined With
Epigenomic Data
Various single-cell technologies are becoming available for the
simultaneous analyses of expression, DNA methylation or
chromatin accessibility (Table 2). This level of investigation
would be particularly important to characterize MN, as
epigenomic changes occurring in either tumor or immune cells
are relevant to aberrant hematopoietic differentiation (191),
genetic-independent disease progression (32) and immune
functions (132, 142, 192–194). Moreover, HMA [which are
typically used in older MDS or AML patients (29)] have been
found to potentiate the immunogenicity and the immune
recognition of neoplastic cells by up-regulating the expression
of molecules that are crucial in host-tumor immune interactions
(195–197), which makes them an ideal partner for combination
with immunotherapeutic agents (23).
Triple-Omics
Finally, although preliminary, recent studies have reported the
development of single-cell triple-omics sequencing techniques,
such as for the joint capture of the transcriptome, genome and
DNA methylome [scTrio-seq (198)]; transcription, DNA
methylation and chromatin accessibility [scNMT-seq (199)]; or
transcription, chromatin accessibility and surface proteins (200).
OPEN PERSPECTIVES AND
FUTURE DIRECTIONS

Despite the number of single-cell approaches that have been
developed in the last few years, and the fewer proof-of-concept
applications, most of the relevant questions in the field of MN
remain to be addressed (Figure 2).

So far, single-cell studies aiming to describe the immune
microenvironment in MN have mainly focused on AML, while
a thorough characterization of CH, MDS and MPN samples is
currently lacking. To formally address questions about disease
progression, therapeutic resistance and relapse, more informative
research should be performed by prospective monitoring of MN
evolution. Following the history of MN patients at multiple time-
points should allow tracing of evolving cellular clones across
different disease stages, as well as residual disease [scored by
immunophenotypic markers, genetic markers or both (6)] after
treatment and donor chimerism after alloHSCT, in the context of
surrounding immune cells. It is envisioned that such prospective
biobanks for single-cell characterization might uncover immune-
related pathways that can be targeted for reducing the selective
advantage of the CH or MDS transforming clones, an approach
supported by proof-of-concept studies in murine models (185,
186). Also, the same strategy could detail the molecular
Frontiers in Oncology | www.frontiersin.org 13
mechanisms of resistance and immune evasion and monitor
variability in treatment response. Finally, given the association
of immunomodulatory features with both disease progression and
survival, there is also a rationale for studying the inclusion of
immunologic parameters to refine prognostic models currently
used for MDS (201, 202) and AML (22, 29, 203) patients.

Resistance to treatment (including chemotherapy or HMA,
target therapies and immunotherapies) represents the main cause
for poor survival in AML, which is the final stage of the MN’s
natural history (29, 30, 46). Resistance and relapse involve genetic
and epigenetic dynamics of cell clones in parallel with changes in
the immunomodulatory properties of both tumor and immune
cells (204–207), whose interplay can be best understood by single-
cell multi-omics approaches. Novel single-cell approaches to
tackle therapy-resistant cells in model systems include the use of
expressed barcodes, which enable the simultaneous recording of
clonal evolution and transcriptional phenotypes, eventually
coupled to genetic perturbations (74, 208, 209), to study
mechanisms of immune evasion. Similarly, other methods can
score specific cell clones (including HSC, preleukemic and
leukemic stem cells) via lineage barcoding and tracing (101, 210,
211), while pulse-chase, inducible lineage tracing methodologies
can record past events, such as cell divisions, enabling analyses of
cell cycle properties (212, 213). LSC are more frequently quiescent
(i.e., not proliferating) than normal HSC, a state that may mediate
chemoresistance and relapse; regulation of quiescence can be
driven by cell-autonomous genetic or epigenetic changes, but
also interactions with the BM immune microenvironment (11,
214, 215), which provides another important hint for
clinical translation.

Finally, a further major challenge in MN-related research is the
development of effective immunotherapeutic approaches. As
discussed above, scRNA-seq and mass cytometry have the
capability to identify cell populations with specific functional
properties in both tumor and immune compartments. Describing
associated molecular markers might aid the process of selecting
target antigens in the design of immunotherapies, especially when
scRNA-seq is coupled to surface proteins detection in CITE-seq
(86) or other platforms for the analyses of cell-to-cell and spatial
interactions (137). Since MN are not featured by a single and
common surface-antigen with druggable characteristics, as it is, for
example, CD19 in B lymphoblastic leukemia (216), multi-omics
represent promising strategies to identify different combinations of
candidate targets and/or involved pathways.

With the advancement of innovative methodologies, the
number and scale of publicly available datasets are continuously
increasing (217–220); this offers the opportunity to integrate and
interrogate multiple datasets for the validation of previous
discoveries or, conversely, the generation of new hypotheses to
be experimentally validated, and will possibly allow the
construction of a specific cell-type atlas for both cancer and
immune cells. Proper curation, quality control and reliable
computational strategies for integration are essential to the full
exploitation of available data. However, comprehensive integration
is challenging because datasets are typically generated through a
variety of different approaches and heterogeneous study designs
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(95). To this aim, achieving standardization of experimental
protocols will play an important role. Ongoing and future efforts
are committed to identify and benchmark optimal computational
methods for data integration, and to improve data sharing and
accessibility (221).
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CONCLUSIONS

In conclusion, although very few data exist specific to MN, single-
cell technologies - especially those providing multi-omic
measurements of the same single cell - hold the promise to yield
FIGURE 2 | Opportunities of applying single-cell technologies to characterize myeloid neoplasms. Established and novel single-cell technologies can provide manifold
information to address clinically relevant questions and contribute to therapy development. (A) Isolating cell subsets from transcriptional data could score functional
populations (whose markers can be defined in the same context by either gene expression or proteomic data) that might be associated to prognostic features or
treatment response. Also, T or B cell receptor clonality can be studied in parallel with associated transcriptome, which would shed light on expansion dynamics of T and
B populations in physiology and tumor or upon treatment. (B) Inferring molecular pathways (at gene expression or epigenetic level) from such populations might reveal
distinct or convergent functional modules, potentially simplifying disease heterogeneity with implications for therapeutic exploitation. (C) Cell-cell crosstalk and spatial
reconstruction by transcriptomics are fundamental notions to score cancer and immune cells interactions in their proper environmental context, enabling more precise
mechanistic and regulatory insights. (D) Clonal reconstruction is one core objective of single-cell DNA analysis in myeloid neoplasms, and a mainstay to understand (and
potentially prevent) disease evolution. (E) Different coexisting molecular layers can be complemented, experimentally and/or computationally, to uncover previously hidden
information and mechanistic hypotheses. (F) Perturbation assays offer experimental ways to tackle specific functional processes (such as drug response), which can be
further dissected by coupling experimental read-out with omics. (G) Integration of different datasets are expected to increase statistical power and accuracy of previous
observations. (H) All of the generated knowledge might enable the creation of an atlas for tumor and immune cell types and states, which would represent a
comprehensive reference resource for future studies.
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comprehensive insights into how pre-leukemic and leukemic cells
interact with the different players of the associated immune
microenvironment. The spreading availability and scaling of the
various single-cell approaches is expected to enable the
characterization of large clinical cohorts involving patients with
different MN types, upon different treatment conditions, as well as
more focused experimental models. Despite many challenges to
solve, these efforts will build a detailed ecosystem-level picture of
MN to help highlight new hypotheses and research directions,
inform dynamics of progression, select targeted drugs and rational
combinations, and predict efficacy of immunotherapy.
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Revised International Prognostic Scoring System for Myelodysplastic
Syndromes. Blood (2012) 120(12):2454–65. doi: 10.1182/blood-2012-03-
420489

202. Winter S, Shoaie S, Kordasti S, Platzbecker U. Integrating the “Immunome”
in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial
Design. J Clin Oncol (2020) 38(15):1723–35. doi: 10.1200/JCO.19.01823

203. Tang L, Wu J, Li C-G, Jiang H-W, Xu M, Du M, et al. Characterization of
Immune Dysfunction and Identification of Prognostic Immune-Related Risk
Factors in Acute Myeloid Leukemia. Clin Cancer Res (2020) 26(7):1763–72.
doi: 10.1158/1078-0432.CCR-19-3003

204. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, et al.
Deficient Expression of NCR in NK Cells From Acute Myeloid Leukemia:
Evolution During Leukemia Treatment and Impact of Leukemia Cells in
Frontiers in Oncology | www.frontiersin.org 20
NCRdull Phenotype Induction. Blood (2007) 109(1):323–30. doi: 10.1182/
blood-2005-08-027979

205. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE,
et al. The Distribution of T-Cell Subsets and the Expression of Immune
Checkpoint Receptors and Ligands in Patients With Newly Diagnosed and
Relapsed Acute Myeloid Leukemia. Cancer (2019) 125(9):1470–81. doi:
10.1002/cncr.31896

206. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, et al.
Immune Signature Drives Leukemia Escape and Relapse After
Hematopoietic Cell Transplantation. Nat Med (2019) 25(4):603–11. doi:
10.1038/s41591-019-0400-z

207. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage
EJ, et al. Immune Escape of Relapsed AML Cells After Allogeneic
Transplantation. N Engl J Med (2018) 379(24):2330–41. doi: 10.1056/
NEJMoa1808777

208. Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, et al. A
Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic
Dissection of the Unfolded Protein Response. Cell (2016) 167(7):1867–
82.e21. doi: 10.1016/j.cell.2016.11.048

209. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq:
Dissecting Molecular Circuits With Scalable Single-Cell RNA Profiling of
Pooled Genetic Screens. Cell (2016) 167(7):1853–66.e17. doi: 10.1016/
j.cell.2016.11.038

210. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J.
Whole-Organism Lineage Tracing by Combinatorial and Cumulative Genome
Editing. Science (2016) 353(6298):aaf7907. doi: 10.1126/science.aaf7907
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