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Critical in revealing cell heterogeneity and identifying new cell subtypes, cell clustering based
on single-cell RNA sequencing (scRNA-seq) is challenging. Due to the high noise, sparsity,
and poor annotation of scRNA-seq data, existing state-of-the-art cell clustering methods
usually ignore gene functions and gene interactions. In this study, we propose a feature
extraction method, named FEGFS, to analyze scRNA-seq data, taking advantage of known
gene functions. Specifically, we first derive the functional gene sets based on Gene
Ontology (GO) terms and reduce their redundancy by semantic similarity analysis and
gene repetitive rate reduction. Then, we apply the kernel principal component analysis to
select features on each non-redundant functional gene set, and we combine the selected
features (for each functional gene set) together for subsequent clustering analysis. To test
the performance of FEGFS, we apply agglomerative hierarchical clustering based on FEGFS
and compared it with seven state-of-the-art clustering methods on six real scRNA-seq
datasets. For small datasets like Pollen and Goolam, FEGFS outperforms all methods on all
four evaluation metrics including adjusted Rand index (ARI), normalized mutual information
(NMI), homogeneity score (HOM), and completeness score (COM). For example, the ARIs of
FEGFS are 0.955 and 0.910, respectively, on Pollen and Goolam; and those of the second-
best method are only 0.938 and 0.910, respectively. For large datasets, FEGFS also
outperforms most methods. For example, the ARIs of FEGFS are 0.781 on both Klein and
Zeisel, which are higher than those of all other methods but slight lower than those of SC3
(0.798 and 0.807, respectively). Moreover, we demonstrate that CMF-Impute is powerful in
reconstructing cell-to-cell and gene-to-gene correlation and in inferring cell lineage
trajectories. As for application, take glioma as an example; we demonstrated that our
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clustering methods could identify important cell clusters related to glioma and also inferred
key marker genes related to these cell clusters.
Keywords: single-cell RNA sequencing, GO enrichment analysis, KPCA, semantic similarity analysis,
Gene Ontology
INTRODUCTION

Biological tissues are composed of a variety of heterogeneous
cells, and their presence will have a profound impact on the
biological functions of cells. The single-cell RNA sequencing
(scRNA-seq) technology (1) allows for the analysis of gene
expression data at the level of individual cells. As a promising
tool, scRNA-seq technology can reveal heterogeneity among cells
and identify new putative cell types and cell states (2–5). Cell
clustering is the main approach for cell type and cell state
inference. Despite the rapid development of scRNA-seq
technology, the biological fluctuation and protocol technical
biases in single-cell experiments and the high dimensionality
and sparsity of scRNA-seq data make cell clustering based on
scRNA-seq challenging (6).

Various scRNA-seq clustering methods have been developed
in recent years, most of which are based on similarity
measurement between cells. For example, CORR derives cell
similarity in genetic differences between cell pairs (7). SIMLR
adopts multiple Gaussian kernel representations, which allows
greater flexibility than a single kernel or similarity measures in
defining cell-to-cell similarities (8). Seurat constructs weighted
nearest neighbor graph based on typical correlation to obtain
technology similarity between cells (9). SC3 constructs a
consensus similarity matrix based on three measurements of
distances (10). SSC (11), SSSC (12), and S3C2 (13) are sparse
subspace clustering methods, which aim to describe the relations
among all elements as a combination in the same subspace rather
than consider pair elements only. Most of the scRNA-seq cell
clustering methods derive the similarity between cell pairs by
considering the complete gene expression matrix, which ignore
the function of genes on cell clustering from the perspective of
2

molecular mechanism and the impact of biological significance.
Since the differences in the morphology and structure of different
cells are caused by the selective expression of genes, it is more
reasonable to analyze scRNA-seq data in terms of functional
gene sets.

The Gene Ontology (GO) (14, 15) is a formal representation
of a body of knowledge within biological domain, which consists
of a set of gene classes with relations that operate between them.
It describes the biological knowledge of gene and gene product
with respect to three aspects: the molecular functions (MFs),
cellular locations, and processes that gene products may carry
out. It stands to reason that different types of cells may have
different gene expression characteristics in a GO term gene set.

In this work, we propose a feature extraction method based on
gene functional sets, named FEGFS, to analyze and integrate the
gene expression characteristics of cells on different functional gene
sets derived from GO terms (Figure 1). We select functional gene
sets by gene functional enrichment analysis, and the terms semantic
similarity analysis and multistep integration of gene sets for scRNA-
seq data, and kernel principal component analysis (KPCA) is
applied on the single-cell gene expression data of these selected
gene functional sets to reduce the dimension of features, and the
reduced expression data are integrated into a feature matrix. We
consider cell clustering in terms of feature matrix rather than using
the expression values of all genes as a whole in scRNA-seq analysis,
which not only conforms to biological rules more but also can
improve the cell clustering effect. To evaluate the performance of
FEGFS, we use agglomerative hierarchical clustering for cell
clustering on the derived feature matrix, and we compared the
clustering results with seven state-of-art clustering methods on six
independent datasets, and the results demonstrate that FEGFS can
significantly improve clustering accuracy.
A B DC

FIGURE 1 | The flowchart of FEGFS + clustering. (A) Gene Ontology (GO) analysis. (B) Redundancy reduction. (C) Elimination of duplicate genes. (D) Feature extraction
and clustering analysis.
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METHOD

Datasets and Data Preprocessing
We adopt six real scRNA-seq datasets in this study to evaluate the
performance of FEGFS. The cell labels in each scRNA-seq dataset
are known or valid in their respective studies, the sample labels of
Zeisel dataset are predicted according to the experiment (16), and
the sample labels of the other five datasets are obtained from
experimental studies. These datasets are grouped into two levels
(small sample (with number of samples ≤1,000) and large sample
[with number of samples >1,000)] according to the number of
cells. Pollen (17), Biase (18), Goolam (19), and Patel (20) datasets
are assigned to small sample datasets. Klein (21) and Zeisel (22)
datasets are assigned to large sample datasets. We summarize the
details of the six real scRNA-seq datasets (Table 1). As shown in
the table, the numbers of samples of these datasets range from 56
(Biase) to 3005 (Zeisel); and the numbers of cell types range from 4
(Klein) to 11 (Pollen). During our downstream analysis, the
proportion of principal components retained by feature
extraction of different levels datasets is also different.

In order to eliminate the interference with noise genes in
scRNA-seq datasets, the actual number of noise genes removed
from the datasets is determined by the number of samples of the
datasets. In this study, we adopt 3 Units multiplied by 1% of the
number of samples in the dataset to remove noise genes (e.g., in
Pollen dataset (with number of cells of 301): 3 Units × 3 (1% of
samples) = 9 Units; that is, when the gene is expressed in less
than nine cells, the gene is removed) (23), and the gene
expression values are log-transformed with pseudo-count 1:

F(X) = log10 (X + 1) (1)

Gene Ontology Enrichment Analysis
GO is a widely used biological database. It consists of two aspects:
one is the GO itself; that is, the terms defined by biologists and
the structural relationships between them. The other is the
annotation of GO, which is the relationship between gene
products and the entries. As a strictly functional category, GO
links the relationships between different functional categories by
directed acyclic graphs (DAGs).

We use g:Profiler (24) to characterize and process the list of
genes in the scRNA-seq dataset. Before processing, we first apply g:
Convert to transform gene identifier into the internal format of
Ensemble genes. Then we apply g:GOSt to analyze the gene table of
various organisms. The algorithm is based on the gene set structure
Frontiers in Oncology | www.frontiersin.org 3
of biological term annotation. The purpose is to distinguish
meaningful and meaningless biological results, reduce the
importance of p-value, and eliminate the false-positive problem.
Statistical enrichment analysis maps genes to known functional
information sources (Biological Process (BP), Cellular Component
(CC), and MF) and detects and counts the significantly rich
GO nodes.
Reduce the Redundancy of Gene
Ontology Term Set
In order to alleviate the redundancy of GO term sets, we apply
REVIGO (25) to perform semantic similarity analysis. SimRel as
the semantic similarity measure for comparison is defined (26) as
follows:

sim(g1, g2) =
2 logP(MIA)

logP(g1) + logP(g2)
(1 − P(MIA)) (2)

where g1 and g2 are two GO terms, P() is the relative frequency of
GO Term in UniProt database, MIA ∈ S(g1, g2), and S(g1, g2) is
the common ancestor set of terms g1 and g2 in the ontology.

The p-value of each GO term that is used in function
enrichment analysis and subsequent semantic similarity
analysis is defined as follows:

P(X = k) =

M

k

 !
N −M

n − k

 !

N

n

 ! (3)

where N is the number of genes in the genome that belong to the
same GO level (BP, MF and CC) with considered GO term; M is
the number of genes of this GO term; n is the number of genes in
our input data that belong to the same GO level (BP, MF, and
CC) with this GO term; and k is the number of genes in our input
data that belong to the GO term.

The calculated p-value is corrected by false discovery rate
(FDR) (27). In our test, we choose FDR = 0.05 as the threshold.
GO nodes with FDR ≤ 0.05 are defined as significantly
enriched nodes.

In order to reduce the redundancy of GO term set, we apply
REVIGO to select the representative GO term for each cluster
according to p-values. After the semantic similarity analysis,
TABLE 1 | A summary of six scRNA-seq datasets used in this study.

Datasets Cell types Number of cells Number of GO terms Number of genes Units Organism

Biase 4 56 201 22,528 FPKM Mus musculus
Goolam 5 124 213 22,624 Count M. musculus
Pollen 11 301 282 13,678 TPM Homo sapiens
Patel 5 430 208 5,610 TPM H. sapiens
Klein 4 2717 237 22,192 UMI M. musculus
Zeisel 7 3005 253 11,713 UMI M. musculus
November 202
1 | Volume 11 |
scRNA-seq, single-cell RNA sequencing; GO, Gene Ontology; FPKM, fragments per kilobase of transcript per million mapped reads; TPM, transcripts per kilobase million; UMI, unique
molecular identifier.
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there are about 100–250 GO nodes in GO term set, in which gene
duplication problems are very serious.

To further reduce redundancy, the gene repetitive rate matrix
of GO nodes is constructed, and the calculation formula of each
element in the matrix is as follows:

Ri,j =
N(GOi ,GOj)
M(GOi ,GOj)

with

M(GOi,GOj) = min gene _ num GOif g, gene _ num GOj

� �� �
N(GOi,GOj) = gene _ num GOi ∩ GOj

� �
(4)

where gene_num{GOs} represents the number of genes in
GO nodes.

The gene repetitive rate matrix is applied tomerge the GO terms.
Specifically, if the elements of one GO term belong to another, GO
terms containing a larger number of genes are retained, while GO
terms containing a smaller number are deleted; then, with 0.8 as the
threshold of repetitive rate, GO terms in pairs are merged into a new
terms set so as to greatly reduce the redundancy of GO terms set,
and the scRNA-seq expressionmatrix restricted on each new term is
named as functional feature matrix.

Feature Extraction and Cluster Analysis
In the process of feature extraction, after comparing several
dimension reduction methods—t-distributed stochastic
neighbor embedding (t-SNE) (28), multidimensional scaling
(MDS), and KPCA—we choose KPCA as our feature
extraction method. KPCA is a non-linear feature dimension
reduction algorithm to process linear inseparable dataset, in
which a non-linear mapping is used to map the samples in the
input matrix X to a high-dimensional or even infinite-
dimensional space (called feature space) such that the samples
are linearly separable in feature space, and then PCA is applied to
reduce the dimension in the high-dimensional space.

In our study, we compare several kernel methods (radial basis
function, sigmoid, cosine etc.), and we choose cosine kernel method
of KPCA in the data dimension reduction of functional feature
matrices. The cosine kernel function is shown as follows:

k (xi, xj) =
f(xi)f(xj)T

‖ f(xi) ‖ ‖ f(xj) ‖
(5)

Agglomerative hierarchical clustering method is applied on the
reduced functional feature matrices, and we evaluate the clustering
performance by adjusted Rand index (ARI) and normalized
mutual information (NMI). By calculating the distances of
sample set pairs, agglomerative hierarchical clustering merges
the two sample sets with the minimum distance and repeats the
above process by recalculating the distances of the new sample sets
pairs. The distance of sample set pair is calculated by Euclidean
distance D:

Di,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − yi)

2 + (xj − yj)
2

q
(6)
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Evaluation Measures
In order to evaluate the effectiveness of functional feature matrix
for cell clustering, we choose NMI, ARI, homogeneity score
(HOM), and completeness score (COM) to quantify the
consistency between the inferred and predefined cell clusters in
each scRNA-seq data.

ARI is defined as follows:

ARI =
RI ‐ E½RI�

max (RI) − E½RI� (7)

RI =
F + G

N

2

 ! (8)

where F is the number of pair samples in the same category in
both the real label and the clustering prediction label, while G is
the number of pair samples in different categories. N is the
number of samples in the dataset.

NMI is defined as follows:

NMI =
2I(F,G)

H(F) +H(G)
(9)

where I(F,G) is the mutual information of F and G

I(F,G) = −ok
i=1ok

j=1

Fi ∩ Gj

�� ��
N

log
N Fi ∩ Gj

�� ��
Fij j � Gj

�� �� (10)

H(F) and H(G) are the entropy of partitions F and G; Fi is the
dataset belonging to class i; and Gj is the dataset belonging to
class j in the clustering results.

H(F) = −ok
i=1

Fi
N
log

Fi
N

H(G) = −ok
j=1

Gj

N
log

Gj

N

(11)

where N is the total number of cells.
HOM is defined as

HOM =
1
ko

k

i=1

N(Fi,Gi)
N(Gi)

(12)

COM is defined as

COM =
1
ko

k

i=1

N(Fi,Gi)
N(Fi)

(13)

where N(Fi, Gi) is the number of samples correctly classified
in the ith cluster, and N(Gi) is the total number of samples in
the ith cluster. N(Fi) is the total number of samples in the
ith type.
November 2021 | Volume 11 | Article 797057
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Software Availability
FEGFS is implemented in Python3 as an open-source software
under the GNU General Public License, and the source code is
freely available together with full documentation at https://
github.com/R-c-j/FEGFS.
RESULT

The Construction Principle of
Functional Feature Matrix
The construction of functional feature matrix is mainly divided
into three steps: GO functional enrichment analysis, and GO
term sets redundancy reduction and feature extraction.

In the process of GO functional enrichment analysis, the
genes of real scRNA-seq data are used as the input set when
statistical enrichment analysis is performed according to their
Frontiers in Oncology | www.frontiersin.org 5
molecular mechanisms. According to their MFs, cell
environment, and the BPs that they participate in, the genes
are divided into three types, MF, CC, and BP; taking Pollen
dataset as an example, it contains 13,678 genes after
preprocessing, and the ordered query is used in the functional
enrichment analysis (g:Profiler), with the default options: User
threshold is 0.05 and Significance threshold is G:SCS, and we get
800 GO nodes after the functional enrichment analysis.

The number of GO nodes obtained from the statistical
enrichment analysis is huge (about 1,000), and the redundancy is
high.We perform semantic similarity analysis on the GO term set to
remove the redundant nodes by REVIGO (25), in which we choose
the father GO node as the representative node in each cluster with
SimRel equals 0.4. After semantic similarity analysis, the number of
GO nodes is about 200 to 300, and there are many duplicates of the
genes between some GO nodes. To solve this problem, we calculate
the repetitive rate for any two GO nodes, and we construct gene
November 2021 | Volume 11 | Article 797057
A
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C

FIGURE 2 | (A) The clustering effect comparison of SC3, SSC, SIMLR, CORR, SinNLRR, Seurat, SSSC, and S3C2 on four datasets. (B) Line graph of retention rate
based on adjusted Rand index (ARI). (C) Comparison of ARI values between K-means and agglomerative hierarchical clustering based on FEGFS.

https://github.com/R-c-j/FEGFS
https://github.com/R-c-j/FEGFS
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhuang et al. RNA Sequencing Data Feature Extraction
repetitive rate matrix, which is symmetric. We preliminarily filter
the completely covered GO nodes, take 0.8 as the threshold of
repetitive rate and merge the nodes, and recalculate the gene
repetitive rate and repeat the above process. After screening twice,
the number of nodes in the GO term set reduces to about 80–150.
For example, in Pollen dataset, after GO functional enrichment
analysis and semantic similarity analysis, GO:0033554 (cellular
response to stress) contains 810 genes, GO:0070498 (interleukin-
1-mediated signaling pathway) contains 46 genes, and the gene
repetitive rate between the two GO terms is 1, so GO:0070498 is
filtered and GO:0033554 is reserved. After all GO nodes with gene
repetitive rate of 1 are filtered, GO terms are screened twice with the
gene repetitive rate of 0.8; for example, GO:0045202 (synapse)
contains 10 genes, GO:0048519 (negative regulation of BP)
contains 119 genes, there are nine genes in the intersection of the
two terms, and the repetitive rate is 0.9 > 0.8, so GO:0045202 and
GO:0048519 are combined into a new functional feature node.

We perform feature extraction on each functional feature
matrix by applying KPCA. The proportion of principal
components to be retained is different according to different
levels of sample sets (Figure 2B). In the four small sample
datasets of Pollen, Goolam, Patel, and Biase [numsample ∈
(0,1000)], we choose 40% principal component retention ratio;
and in larger sample datasets, such as Klein dataset [numsample ∈
(1000,3000], we choose 60% principal component retention ratio,
and in datasets with a sample size greater than 3,000, such as Zeisel
dataset [numsample ∈ (1000,3000)], we use 80% of the principal
component retention ratio to reduce the dimension of gene
expression matrix of each functional feature matrix.
Frontiers in Oncology | www.frontiersin.org 6
After the above three steps of processing, we integrate all the
processed functional feature matrices into a feature matrix and
use it for downstream analysis (Figure 1).

Clustering Effect Evaluation
We evaluate the performance of FEGFS on six real scRNA-seq
datasets by cell clustering and visualizing with t-SNE, where cells
were colored according to their cell type annotations (Figure 3).
In our work, we apply agglomerative hierarchical clustering on
these six datasets.

To prove the effectiveness of FEGFS, we compare the results of
agglomerative hierarchical clustering with other seven state-of-
the-art clustering methods (Figure 2A), including SC3 (10),
Seurat (9), CORR (7), SIMLR (8), SSSC (12), SinNLRR (29),
and SSC (11).

In the process of comparison, all of the other methods use the
same data preprocessing method as FEGFS. With the four
evaluation indicators ARI, NMI, HOM, and COM, the
clustering results of all methods on the six scRNA-seq datasets
are shown in Figure 4, and the results of k-means clustering
based on function feature matrix are shown in Figure 2C.
Compared with SSC and its improved methods SSSC, our
method is significantly superior in scRNA-seq datasets of
Pollen, Goolam, Patel, Klein, and Zeisel. For the small sample
datasets Pollen and Goolam, the highest ARI values (0.955 and
0.910) are obtained by FEGFS; even in the two larger sample
FIGURE 3 | The t-distributed stochastic neighbor embedding (t-SNE)
visualization of cells on six real single-cell RNA sequencing (scRNA-seq)
datasets using different clustering methods.
FIGURE 4 | Gene Functional Network significantly improves the performance
of the existing cell type identification tool Agglomerative. The adjusted Rand
index (ARI) and normalized mutual information (NMI) obtained by clustering on
six scRNA-seq datasets using different cluster algorithms.
November 2021 | Volume 11 | Article 797057
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datasets Zeisel and Klein, our method is only second among all
the algorithms to SC3. Therefore, FEGFS can help to extract the
characteristics of different cell types and promote the analysis of
single-cell transcriptome data.

Expression Distribution of Cluster
Marker Genes
An important task of scRNA-seq analysis is to be able to identify
the marker gene in the cluster and to determine whether the gene
is a cell-specific maker gene. FEGFS can effectively identify the
corresponding cell types from the glioma data and infer that
EGFR is significantly expressed in the three tumors (Figure 5).
Among them, the significant expression of EGFR is inversely
correlated with the expression of PDGFRA in MGH30 cells.
According to the experimental findings, the heterogeneous
expression of RTKs and other signaling molecules across
individual glioblastoma tumor cells may impair RTK signaling
and the immunogenicity of targeted receptors.
DISCUSSION

In scRNA-seq data analysis, most of the existing methods use the
whole single-cell gene expression matrix for analysis, without
considering the influence of gene function from the perspective
o f mo l e c u l a r me c h an i sm and i g no r i n g c e r t a i n
biological significance.

In this study, we propose a novel scRNA-seq data analysis
method based on gene function enrichment analysis to divide
genes into different gene functional modules and to extract the
characteristics of the cells from these functional feature matrices.
As a data processing method, FEGFS considers the similarity
between cells more fully, and it can improve the clustering
accuracy. Our results suggest that gene function is indispensable
FIGURE 5 | Related gene expression distribution in glioma data.
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for single-cell analysis like rare cell type inference and cell
type identification.

It is of note that in the process of reducing the redundancy of
the gene sets, we use two methods, namely, semantic similarity
analysis and reduction of gene repetition between gene sets. We
test the impact of these two methods on cell clustering. The
results show that semantic similarity analysis does affect the
performance of cell clustering, and although the effect of
reduction of gene repetition is not obvious, it reduces the
redundancy of gene sets and computational time complexity
(Table 2) significantly. Especially in view of the increase in the
size of the scRNA-seq dataset, a good data processing method
with rapid operation speed is crucial.

However, FEGFS method still has a few limitations. Firstly, we
need the gene ID in the scRNA-seq data to perform gene function
enrichment analysis, but some scRNA-seq datasets do not provide
gene ID, or the gene ID in the data cannot be matched, so these
datasets cannot be considered, or the genes are deleted, which may
result in the loss of some important information. Secondly, FEGFS
is only combined with simple clustering method, which is not
necessarily optimal. It is practicable to improve the clustering
method after FEGFS analysis.
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