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Leptomeningeal disease (LMD) is a devastating category of CNS metastasis with a very
poor prognosis and limited treatment options. With maximal aggressive therapy, survival
times remain short and, without treatment, prognosis is measured in weeks. Both LMD
diagnosis and treatment are challenging topics within neuro-oncology. In this review, we
discuss the advances in LMD diagnosis with a focus on the role of circulating tumor DNA
(ctDNA) and discuss the role of targeted and immunotherapy in LMD treatment.
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INTRODUCTION

Leptomeningeal disease (LMD) is a dire category of central nervous system (CNS) metastasis that
entails tumor cell dissemination to the cerebrospinal fluid (CSF) and/or leptomeninges and often
results in significant neurological morbidity. It occurs in approximately 5-15% of patients with solid
tumors, and the incidence is rising (1–8). Among solid malignancies, lung cancer, breast cancer and
melanoma are most frequently associated with LMD. Further within each primary malignancy,
specific subtypes have been linked with an increased propensity for LMD. In patients with non-
small cell lung cancer (NSCLC), those harboring an epidermal growth factor receptor (EGFR)
mutation have a higher risk of LMD; specifically 9.4% in EGFR-mutant tumors versus 1.7% in wild-
type tumors in a retrospective analysis of patients with NSCLC LMD (9). Similarly in breast cancer,
tumor subtype, specifically HER2 (human epidermal growth factor receptor 2) status has been
described to impact LMD propensity and outcome (10, 11). For example, the triple negative
molecular subtype (estrogen/progesterone/HER2 negative) accounts for approximately 40% of
breast cancer LMD cases, however only is diagnosed in 10% of all breast cancer patients,
indicating a clear overrepresentation of this subtype among LMD patients. Furthermore, the time
from breast cancer diagnosis to the development of LMD is shorter in hormone receptor negative
cases (12–14).

As mentioned, the incidence of LMD is rising across various tumor types, possibly due to the fact
that patients live longer with both extracranial and intracranial parenchymal metastatic disease due
to advances in systemic therapy and improved imaging. Autopsy reports suggest that the actual
frequency of LMDmay be underestimated. In fact, one postmortem analysis of patients with cancer
who exhibited neurologic symptoms revealed that 18% had evidence of leptomeningeal infiltration
(15). The spread of cancer cells can be local or disseminated through the entire CNS, and LMD
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almost always results in rapid neurologic disability and death. If
untreated, survival can be as short at 4-6 weeks (5). However,
even with currently available treatment options, prognosis
remains dismal, and therefore, LMD represents one of the
most challenging disease processes in neuro-oncology. In this
review we will discuss advances in the diagnosis and treatment of
LMD with a focus on targeted and immunotherapy.
CHALLENGES IN LMD DIAGNOSIS AND
THE ROLE OF ctDNA

The diagnosis of LMD is currently based on neurological
symptoms, contrast-enhanced magnetic resonance imaging
(MRI) or computed tomography (CT) imaging characteristics
and CSF cytopathology analysis. Since CSF tumor spread can
propagate to the entire CNS, LMD can present with a wide
constellation of neurological symptoms and signs from invasion
of the brain, spine and/or cranial nerves. As such, symptoms may
include (but not limited to) headache (from meningeal
irritation), cranial nerve palsies, altered mental status, bowel or
bladder dysfunction and/or extremity weakness. Furthermore,
some patients may develop symptoms of elevated intracranial
pressure from LMD induced aberrations in CSF dynamics.
Radiographically, LMD may present with a variety of
enhancement patterns on MRI. Classically, MRIs show linear
or nodular enhancement along the cerebral sulci, dura, cerebellar
folia, spinal cord/cauda equina and/or cranial nerves (16)
(Figure 1). LMD disease can also cause abnormalities in CSF
dynamics resulting in ventriculomegaly and potentially increased
intracranial pressure. Finally, CSF analysis is critical in the
diagnosis of LMD and is currently considered the gold
standard. CSF is most commonly acquired via lumbar
puncture and cytology may show the presence of malignant
cells. In addition to cytology, CSF cell count and chemistry
(particularly protein levels) are abnormal in 90% of LMD
patients, aiding in diagnosis (17, 18).

Despite these approaches, the definitive diagnosis of LMD can
still be quite challenging due to the limited sensitivity of initial
CSF cytology and MRI and the high variability of presentation
between patients. MRI has the benefit of being non-invasive, so it
is typically the first diagnostic step; however, the sensitivity and
specificity are 75% and 77%, respectively (19). Several clinical
scenarios, including recent radiation or surgery, infection and
intracranial hypotension, can resemble LMD by also causing
abnormal enhancement. Furthermore, adjacent parenchyma
metastasis can also cause localized sulcal/leptomeningeal
enhancement. In situations where imaging is unclear or
equivocal, CSF analysis is required; however, in many cases,
CSF analysis is performed as an additional confirmatory step
even when radiographic findings are consistent with LMD.
Despite CSF analysis being the diagnostic gold standard, it still
has significant limitations. First, CSF cytology has lower
sensitivity than MRI, with malignant cells reportedly detected
in only 50-67% of patients (17, 20–22). Frequently, two or three
CSF samples are required to establish the diagnosis of LMD, as
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the sensitivity rises to 80-90% with a second and third lumbar
puncture (17). In most cases, CSF chemistry, specifically elevated
protein, can be observed, but these abnormalities are also non-
specific. Finally, CSF cytological analysis may suffer from inter-
observer variability and may depend on the experience of the
pathologist (16).

Prompt diagnosis of LMD is critical, and improved
diagnostics could potentially improve the outcome of these
patients. Further, none of the currently available diagnostic
modalities can provide reliable information on disease burden
or (early) response to treatment. As such, novel molecular tools
have emerged to address these issues. Considering the
pathogenesis of LMD remains elusive, these tools also provide
the opportunity to assess specific and potentially actionable
therapeutic targets.

Among recent molecular advancements, circulating tumor
DNA (ctDNA) has provided an avenue to address the above
concerns. ctDNA are short, double stranded tumor DNA
fragments that are released by tumor cells as a result of cell
apoptosis and or necrosis. ctDNA are different from so called
circulating tumor cells (CTCs), which are intact tumor cells (23,
24). The role of ctDNA has been demonstrated in multiple
studies across different solid tumor types and includes aiding
early diagnosis, monitoring treatment response and monitoring
patients for early recurrence in the adjuvant setting (23, 25–27).
Further, tumor-specific genomic abnormalities can be detected
in ctDNA using next-generation sequencing techniques or PCR-
based options, and this assay has demonstrated a strong
concordance with the genomic profile of malignant tissue,
making ctDNA a potentially powerful biomarker (23, 28).

In the setting of neurological malignancies, the utility of
plasma-derived ctDNA is suboptimal (29–32). However, recent
studies have shown that CSF is a promising platform for ctDNA
analysis in the setting of intracranial pathology (31). For
example, Mattos-Arruda et al., performed targeted sequencing
and/or exome sequencing coupled with droplet digital PCR
(ddPCR) on matched CSF-derived ctDNA, plasma-derived
ctDNA, and tumor tissue deposits in patients with both
primary and metastatic brain tumors (31). These authors
reported significantly higher genomic alteration sensitivity in
CSF-derived ctDNA than in plasma-derived ctDNA in patients
with CNS tumors. Furthermore, this same study observed
treatment-associated changes in CSF ctDNA signatures
through longitudinal collection of CSF, potentially identifying
new therapeutic targets. This finding has also been consistent in
patients with LMD. In a study of patients with NSCLC LMD,
Ying et al. performed sequencing on 72 matched CSF and
plasma samples. Mutation detections rates were 81% in CSF
versus only 62% in plasma. Moreover, the average maximum
allelic frequency in plasma was 4.6% versus 44% in CSF,
demonstrating that CSF is superior to plasma for mutation
identification and genomic analysis of LMD (33).

In cases where CSF cytology and MRI finding are
indeterminate, confirming the diagnosis of LMD is very
difficult. Several studies have suggested that ctDNA can
augment the diagnostic yield of CSF for prompt LMD
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diagnosis (34, 35). For example, Zhao et al. directly compared the
sensitivity of imaging, CSF cytology and CSF ctDNA in the
diagnosis of LMD. The authors evaluated CSF samples from 35
LMD cases across multiple primary malignancies (36). They
reported that 71% of cases had positive CSF cytology and 63%
had imaging features consistent with LMD while CSF ctDNA
extraction and next-generation sequencing revealed cancer
associated mutations in 100% of cases, highlighting the
sensitivity of ctDNA. In a melanoma specific study, Ballester
et al., utilized ddPCR and next-generation sequencing to evaluate
the CSF-derived ctDNA of seven melanoma patients with LMD.
First, this study confirmed the diagnostic power of ctDNA, as
30% of patients whose CSF samples were negative/indeterminate
for malignant cells were positive for CSF ctDNA. Further,
analysis of ctDNA showed the presence of melanoma
associated mutations, and in two patients, they found a
correlation between mutant allele fraction and radiographic
tumor volume on MRI, suggesting that ctDNA could
potentially aid in monitoring tumor burden (34). Since CSF
can be collected serially at multiple time-points in the patients’
treatment course, small studies have investigated the role of
ctDNA in assessing and monitoring LMD tumor burden pre-
and post-treatment (36–39). In a cohort of patients with EGFR
mutated, NSCLC LMD, Zheng et al., evaluated if ctDNA could
assess response to EGFR targeted therapy with osimertinib
(tyrosine kinase inhibitor). The authors reported that CSF
ctDNA revealed the genomic landscape of LMD in patients
prior to treatment with osimertinib and following progression
on treatment. They reported that overall detection of EGFR-
sensitizing mutations was greater than 93% in patients with
EGFR-mutated NSCLC LMD. Further, detection of EGFR 19
deletion and positive T790M (a point mutation in the EGFR
tyrosine kinase domain) in the CSF was associated higher
median intracranial progression free survival on osimertinib.
Concurrent cell cycle alterations with EGFR-sensitizing
mutations were associated lower median intracranial
progression free survival. Additionally, analysis of a cohort of
Frontiers in Oncology | www.frontiersin.org 3
patients whose CSF was genotyped following progression post
osimertinib treatment revealed multiple potential resistance
mechanisms (37). In summary, the utility of ctDNA has been
shown in three main categories: first, to aid in early diagnosis;
second, to assess treatment course and tumor burden; and third,
to potentially uncover actionable targets to optimize or introduce
novel treatment strategies.
ROLE OF TARGETED THERAPY IN LMD

Historically, the treatment for LMD was divided into systemic
therapy, radiation and intrathecal (IT) approaches. Until recently,
systemic treatment options have been significantly limited due to
the inability of chemotherapy to penetrate the blood brain barrier
(BBB). However, recent advances in the treatment that may
overcome this limitation, namely targeted therapy and checkpoint
inhibitors, have brought some hope for patients with LMD.
Moreover, while the vast majority of investigation in NSCLC,
breast and melanoma is based on the systemically administered
therapies, IT approaches are currently being investigated.

For NSCLC LMD, current therapies target EGFR mutations
and anaplastic lymphoma kinase (ALK) rearrangement via
tyrosine kinase inhibitors (TKIs). Targeting these molecular
alterations has substantially impacted the prognosis of
advanced NSCLC. Multiple studies have been published on
systemic targeted therapy applications for patients with
NSCLC LMD including case reports, retrospective and
prospective studies, as well as phase 1 open label and phase 3
randomized controlled trials. In regards to EGFR inhibition, first
generation and second generation TKIs such as gefitinib,
erlotinib and afatinib were initially evaluated with some
success but most have been challenged by limited CNS
penetration (40–42). Magnification of therapy using higher
concentrations or a pulsatile regimen has been proposed to
increase the CSF concentrations (43–46). However, as a result
of this limited BBB permeability, CNS recurrence following
FIGURE 1 | Representative post-contrast brain MRI (axial) showing diffuse LMD with enhancement within the cerebral sulci.
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treatment with first generation and second generation TKIs is as
high as 40% (47). Based on multiple studies, third-generation
TKI osimertinib has shown notable promise in the treatment of
EGFR mutated LMD due to its higher BBB penetration (48–53).
Yang et al. published a phase I study of 32 patients with LMD
patients treated with osimertinib in which 87% of patients
reported symptomatic improvement and 72% had a
radiographic response (48). The follow-up study of 41 patients
reported functional improvement in 57% of patients, a response
rate of 41% and overall survival (OS) of 11 months [The BLOOM
study (49)]. In a recent phase II study evaluating osimertinib in
patients with brain metastasis and LMD, the authors reported an
intracranial control rate of 92.5% (complete response in 12.5%)
and a median OS of 13 months (53). Overall, based on these data,
osimertinib is considered a viable treatment option for EGFR
mutated NSCLC. An ongoing multicenter phase 2 trial
[Osimertinib in Patients With a Lung Cancer With Brain or
Leptomeningeal Metastases With EGFR Mutation (ORBITAL)]
will assess CNS response rates to osimertinib as a single agent
(NCT04233021). Another phase 2 trial is evaluating the safety
and efficacy of osimertinib in combination with bevacizumab
(NCT04425681 and NCT04148898).

AZD3759 is an alternative novel EGFR inhibitor that is
capable of efficiently crossing the BBB. The safety of AZD3759
in patients with EGFR-mutant NSCLC, brain metastases and
LMD was evaluated in a multicenter phase I study (54).
Incidentally, the authors observed significant radiographic
efficacy in three of four enrolled LMD patients. Another phase
I study by Cho et al. reported that AZD3759 showed a reduction
in EGFR expression in the majority of cases and stable disease in
50% (55). Nimotuzumab, another new generation TKI, has
undergone limited evaluation, but a cases series with promising
results and rapid responses has been reported (56).

ALK mutations are rare and can be found in approximately 3–
7% of patients with NSCLC; targeting this mutation has been a
notable step in the treatment of this patient population (57). The
data specifically addressing the role of ALK inhibition in LMD is less
robust than addressing EGFR inhibition, however, some small
studies have been supportive of this approach and have
demonstrated efficacy in CNS disease. Frost et al. reported the
recent result of a German early access program with lorlatinib, a
third-generation ALK inhibitor. This study included 52 patients
who had progressed on first and second-line ALK inhibitors. The
majority of the included patients had CNS disease [nine (17%) had
LMD specifically], and the authors reported an intracranial
response rate of 54% (58). A recent phase 3 clinical trial
compared lorlatinib with first generation ALK inhibitor crizotinib
in 296 patients with advanced ALK-positive NSCLC who had
received no previous systemic treatment for metastatic disease.
Intracranial response was a secondary end point and a complete
intracranial response was achieved in 71% of cases, highlighting that
later generation ALK inhibitors have relatively higher CNS efficacy.
Case reports focused on LMD have shown impressive responses
with ALK targeting (59, 60), but larger studies are still needed.

In breast cancer patients with LMD the majority of targeted
therapy efforts have been focused on HER2+ patients. HER2 is
Frontiers in Oncology | www.frontiersin.org 4
a tyrosine kinase in the EGFR family; its overexpression has a
known impact on patient prognosis and is associated with
CNS dissemination (61). Among available agents, the HER2
antibody trastuzumab has received the most attention, as
pivotal trials demonstrated its efficacy in HER+ breast
cancer (62). However, the BBB penetration of trastuzumab
is limited, making the CNS a frequent site of progression (63).
In light of this, two arms of investigation have evolved to
address HER2+ CNS disease (including LMD). First, new
HER2 TKIs with better BBB penetration, including
lapatinib, neratinib and tucatinib, are currently been
evaluated. For example, lapatinib is a small molecule that
binds HER2; it has shown limited CNS efficacy as a single
agent (64), but encouraging results have been observed when
used in combination with capecitabine (65–68). The recent
HERCLIMB Trial (291 HER2+ patients with brain metastasis
enrolled) evaluated the intracranial efficacy of tucatinib
when combined with trastuzumab and capecitabine.
This trial demonstrated that the combination of tucatinib,
trastuzumab, and capecitabine significantly reduced the risk
of intracranial progression or death (HR 0.32; p<0.001) and
increased the intracranial response rate compared to control
group (47 versus 20.0%; p = 0.03). However, this trial did not
include LMD patients (69). For LMD specifically, Pellerino
et al. reported the outcome of patients with HER2+ breast
cancer LMD treated with neratinib. This study reported an OS
of eight months, neurological improvement in 27% of cases,
and stabilization of radiographic disease in 57% of cases (70).
Second, to overcome the issue with BBB penetration, IT
administration of HER2 targeted therapy has been explored in
patients with HER2+ breast LMD. Of the available agents, IT
administration of trastuzumab has been the most heavily
evaluated. In a retrospective study by Figura et al., the authors
compared the therapeutic efficacy of IT trastuzumab to IT
methotrexate or whole brain radiation alone. IT trastuzumab
resulted in significantly longer progression free survival and OS
compared with the other treatment groups. Notably, 44% of
patients treated with IT trastuzumab were alive at 6 months
(71). A recent meta-analysis of 58 patients treated with IT
trastuzumab reported radiological improvement in over 70% of
patients and an OS of 13.2 months (72). Overall, IT trastuzumab is
a potentially safe effective treatment of HER2+ LMD, but larger
prospective studies needed.

Triple negative breast cancer (TNBC) presents a unique
challenge as patients with this tumor type have limited
targeted therapy options and a high risk of CNS dissemination.
Poly adenosine diphosphate ribose polymerase enzymes (PARP
enzymes) naturally repair the DNA breaks/damage that lead to
apoptosis of tumor cells. BRCA (breast cancer susceptibility
genes 1 or 2; BRCA) mutations impair the ability of PARP
enzymes to repair damaged DNA. PARP inhibitors such as
iniparib, olaparib, talazoparib and veliparib work by preventing
tumor cells from repairing, allowing them to proceed to cell
death. These inhibitors have been evaluated in patients with
TNBC including those with brain metastasis. The use of PARP
inhibitors has not yet been evaluated on a large scale in LMD,
January 2022 | Volume 11 | Article 800053
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however, limited case reports have shown good clinical and
radiographic response with olaparib (73, 74).

Finally, in melanoma, approximately 40-50% of patients with
melanoma harbor a mutation in the serine/threonine kinase BRAF
(75). As such, therapies targeting BRAF andMEK has significantly
impacted the natural history and outcome of patients with BRAF
mutant melanoma, even in those with CNS metastases. However,
for patients with LMD, no prospective clinical trial using BRAF/
MEK inhibitors has been performed to date, and data is limited
mainly to case reports. Some of these outcomes have been very
encouraging, as patients had prolonged survival; however, all these
patients were BRAF/MEK treatment naïve when they were
diagnosed with LMD and started on targeted therapy. This is
important when assessing the available data, as patients who
develop LMD while on targeted therapy continue to face a
dismal prognosis (70). In addition, recent analyses of two large
cohorts of patients confirmed that despite the use of targeted
therapy, overall survival remained poor (76, 77).
ROLE OF IMMUNOTHERAPY IN LMD

Recent advances in the field of immunotherapy, specifically the
use of checkpoint inhibitors, has led to improved outcomes
across multiple malignancies, including in patients with
advanced disease. Importantly, checkpoint inhibitors have
shown to provide improved outcomes in patients with brain
metastases, specifically in patients with melanoma brain
metastases (78–80). Until recently, patients with LMD have
been excluded from trials for patients with brain metastases,
and the limited data for systemic checkpoint inhibitor therapy
was based on case reports only (81–83). The ABS trial focused
primarily on the checkpoint inhibitor treatment (nivolumab) of
melanoma patients with parenchymal brain metastases and also
allowed patients with LMD to be enrolled into cohort C, which
also included patients who had failed local therapy, were
symptomatic and required steroids. None of the 4 patients
with LMD obtained benefit from treatment with nivolumab
(79). Two recent prospective trials were designed specifically
for patients with cancer and LMD, and both of them used
systemically administered pembrolizumab, another checkpoint
inhibitor. The first one, a phase 2 trial, mainly enrolled patients
with breast cancer (n=17), lung cancer (n=2) and ovarian cancer
(n=1) (84). The primary endpoint was OS at 3 months, with
secondary endpoints being toxicity and response. With a median
follow-up of 6.3 months (range, 2.2-12.5 months) in surviving
patients, the primary endpoint was met, and 12 out of 20 patients
were alive 3 months after enrollment. No new safety signals were
observed with the use of systemic pembrolizumab in this patient
population. A second phase 2 study by Naidoo et al. enrolled 13
patients across multiple pathologies and reported a CNS
response rate of 38% and a median OS of 4.9 months (85).
Importantly, these patients were all treatment naïve to
checkpoint inhibition with anti-PD1. TNBC, which has limited
targeted therapy options, has ongoing trials evaluating the
therapeutic efficacy of checkpoint inhibition, specifically PD-1
Frontiers in Oncology | www.frontiersin.org 5
and PDL-1 inhibition, in combination with stereotactic
radiosurgery (NCT03807765, NCT03449238, NCT03483012).
In addition, another trial is evaluating the safety and dose
limiting toxicity of combining avelumab in combination with
whole brain radiation for patients with LMD and any type of
solid tumor history (NCT03719768).

The effect of the combination of ipilimumab and nivolumab on
survival has also been assessed in a phase II trial 18 patients with
LMD (86). These patients [with breast cancer (n=8), melanoma
(n=2), lung (n=2) and other primary tumors (n=6)] were treated
with the combination of ipilimumab and nivolumab. Importantly,
the majority of patients (78%) required corticosteroids for symptom
management at treatment initiation or any point during the trial.
Like the prior trial with single agent anti-PD1, this trial met its
primary 3-monthOS endpoint, as 8 patients (44%) were alive at that
time point. Median survival for the whole group of patients was 2.9
months (90% CI: 1.6- 5 months). Six patients (33%) had grade 3 or
4 treatment related toxicities, which is slightly less than previous
reports, but importantly, no new safety signals were seen.

In addition to systemic administration, IT approaches using
various immunotherapies have been investigated for the treatment
of LMD. In a retrospective review of 178 melanoma patients, the
authors reported that patients treated with IT therapy were afforded
significantly longer survival time (76). Interestingly, the IT use of
immunotherapy dates back to the 1980s, when IT interleukin 2
(IL-2) was first assessed in patients withmelanoma LMD. Two large
cohorts (n=46 n=43) of patients with melanoma reported a median
OS of 11.5 months (range 7-19), as well as 1-year, 2-year and 5-year
OS rates of 36%, 26% and 13%, respectively, in patients that
responded to IT IL-2 (87, 88). However, this approach is
associated with significant toxicities the need for prolonged and
intensive in-hospital monitoring, making this therapy an option for
only a highly selected group of patients. To avoid the toxicity
associated with IT IL-2, and based on the fact that systemic anti-
PD1 administration leads to higher response rates than high dose
IL-2 in patients with metastatic melanoma, a recent first-in-human
trial assessed the safety and initial efficacy of using IT nivolumab in
combination with IV nivolumab (NCT03025256). This allowed for
a dose intensified approach, as it was shown that systemically
administered nivolumab has very poor CSF penetration (89).
Initial results for the first 25 patients treated showed a median OS
of 4.9 months at a median follow-up of 20 weeks (range 5-147), with
3, 6 and 12 months OS rates of 65%, 47% and 35%, respectively.
Importantly, the use of IT nivolumab was very well tolerated with
no grade 3 or 4 toxicities observed, and the addition of IV
nivolumab did not increase the expected toxicity from systemic
anti-PD-1 administration. The trial is ongoing, with translational
data expected in the near future (90).
CONCLUSION

LMD represents a subtype of CNS metastatic disease with few
treatment options, and patients diagnosed with LMD, as well as
their treating physicians, face major challenge in both prompt
diagnosis and treatment. This condition commonly results in
January 2022 | Volume 11 | Article 800053
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rapid neurologic disability and death. Even with currently
available therapies, prognosis remains grim. However, multiple
avenues, including targeted and immunotherapy, are currently
being explored to combat this challenging disease and gain a
deeper insight into the underlying disease pathogenesis. Much
more needs to be learned and done, but the initial results of these
new approaches are promising.
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