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Introduction: Somatic copy number deletion (SCND) of CDKN2A gene is the most
frequent event in cancer genomes. Whether CDKN2A SCND drives human cancer
metastasis is far from clear. Hematogenous metastasis is the main reason of human
gastric carcinoma (GC) death. Thus, prediction GC metastasis is eagerly awaited.

Method: GC patients (n=408) enrolled in both a cross-sectional and a prospective cohorts
were analysed. CDKN2A SCND was detected with a quantitative PCR assay (P16-Light).
Association ofCDKN2ASCND andGCmetastasis was evaluated. Effect ofCDKN2A SCND
by CRISPR/Cas9 on biological behaviors of cancer cells was also studied.

Results: CDKN2A SCNDwas detected in 38.9% of GCs from patients (n=234) enrolled in
the cross-sectional cohort. Association analysis showed that more CDKN2A SCND was
recognized in GCs with hematogenous metastasis than those without (66.7% vs. 35.7%,
p=0.014). CDKN2A SCND was detected in 36.8% of baseline pN0M0 GCs from patients
(n=174) enrolled in the prospective study, the relationship between CDKN2A SCND and
hematogenous metastasis throughout the follow-up period (62.7 months in median) was
also significant (66.7% vs. 34.6%, p=0.016). Using CDKN2A SCND as a biomarker for
predicting hematogenous metastasis of GCs, the prediction sensitivity and specificity
were 66.7% and 65.4%. The results of functional experiments indicated that CDKN2A
SCND could obviously downregulate P53 expression that consequently inhibited the
apoptosis of MGC803 GC and HEK293T cells. This may account for hematogenous
metastasis of GCs by CDKN2A SCND.

Conclusion: CDKN2A SCND may drive GC metastasis and could be used as a predictor
for hematogenous metastasis of GCs.
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INTRODUCTION

Gastric carcinoma (GC) is the third leading cause of cancer-
related death worldwide (1). Distant or hematogenous
metastasis, lymphatic or peritoneal spreading, and local
recurrence are the key reasons for the failure of surgical
treatment for patients with resectable GCs (2). Among
these, hematogenous metastasis to liver, lung, bone, or brain
is responsible for the greatest mortality in GC patients.
Although many efforts have been made to discover
prognosis biomarkers for GC (3–13), a feasible biomarker
for prediction of hematogenous metastasis of GC is still
eagerly awaited.

Different transcription start sites are used to synthesize the
human P16INK4a as well as P14ARF mRNAs from the CDKN2A
gene on chromosome 9p21 (14); they share the same exon-2 and
have different translation reading frames. In addition to their
functions in apoptosis, cell cycle arrest and senescence, the
P16INK4a and P14ARF proteins play important function in
prophylaxis of cell replicative stress through the P16INK4a-
CDK4/6-RB1 and P14ARF-MDM2-P53/P21CIP1-CDK2-RB1
pathways, respectively (15–18). The mutation of the CDKN2A
gene in the germline can result in a significant risk of developing
melanoma or pancreatic cancer (19–21). Recently, it was
reported that inactivation of Cdkn2a/p16ink4a gene by CRISPR/
Cas9 significantly favored lung metastasis of mouse non-small
cell lung carcinoma transplanted subcutaneously and artificial
inactivation of CDKN2A gene initiates the invasion of human
melanoma cells via BRN2 activation (22, 23). Several human
malignancies are characterized by somatic copy number deletion
(SCND) of the CDKN2A gene (24). However, whether the
inactivation of the CDKN2A gene by SCND affects
hematogenous metastasis of human cancers has not been
reported previously.

Recently, we identified a 5.1-kb common deletion region
(CDR) within the CDKN2A/P16INK4a gene from intron-2 to
promoter in 92% of CDKN2A-deleted human malignancies.
Current FISH approach to detect SCNVs is composed of a set
of probes covering at least 50-kb (at least 30-kb) DNA sequence
that is not suitable for detecting the copy number of the 5.1-kb
CDKN2A CDR. Therefore, we have developed a CDR-specific
assay termed P16-Light to quantitatively detect somatic copy
number variations (SCNVs) of the CDKN2A gene, and validated
the assay with whole genome sequencing data (25). In present
study, we further studied association of CDKN2A SCNVs with
hematogenous metastasis of GC in patients enrolled in a cross-
sectional cohort and confirmed the association in patients
enrolled in a prospective cohorts. A set of biological
experiments were also carried out to establish the causal
relationship between them.
Abbreviations: CDR, common deletion region; GC, gastric carcinoma; OS, overall
survival; CDR-KO, P16INK4a& P14ARF-shared CDR knockout; P14-KO: P14ARF-
specific exon-1b knockout; P16-KO, P16INK4a-specific exon-1a knockout;
P14&P16-DKO, P16INK4a& P14ARF-shared exon-2 knockout; SCND, somatic
copy number deletion.
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MATERIALS AND METHODS

Study Design
234 patients (from 1999 to 2003) enrolled in the cross-sectional
study (26), and the other 174 patients (from 2002-2012) enrolled
in a double-blind prospective study (NCT02159339) (27) with
enough amounts of DNA samples for CDKN2A copy number
analysis were included in the present study. Clinicopathological
and follow-up metastasis/relapse information were collected
from Peking University Cancer Hospital & Institute.
Information on overall survival (OS) and CDKN2A SCND for
157 patients, who enrolled in our previous study (25, 28), were
also included in the OS analysis as illustrated in Figure 1. The
characterization of these GCs was done using the UICC-tumor-
node-metastasis (TNM) approach from 2010 (29). Detailed
information for each de-identified patient was listed in Data
File 1.

Preparation of DNA
Patients provided frozen fresh GC as well as paired surgical
margin (SM) samples, which were collected and analysed. The
phenol/chloroform technique was used to isolate the genomic
DNA from these samples.

Detection of CDKN2A SCNVs by P16-Light
P16-Light, a multiplex quantitative PCR assay using GAPDH as a
reference gene, was performed according to our recent report
(25). For the purposes of this study, each multiplex PCR was
performed in a total volume of 20 mL, which consisted of an
intron-2 probe of CDKN2A using forward and reverse primers of
10 mM each, probe for GAPDH using forward and reverse
primers of 10 mM concentration, input DNA of 5-10 ng, and
10 mL of 2x TaqMan Universal Master Mix II of uracil-N-
glycosylase (Kit-4440038, ABI, Lithuania) (Table 1). With the
FIGURE 1 | Working flow diagram. Clinical and biological studies were
illustrated within top and bottom dashed line frames, respectively.
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use of an ABI 7500 Fast Real-Time PCR System, three replicates
of the PCRs were carried out in a MicroAmp Fast Optical 96-
Well Reaction Plate with barcode (0.1 mL; ABI, China). For this
particular PCR, the following criteria were used: an initial
incubation for 10 min at 95°C, followed by 40 cycles at 95°C
for 20 sec followed by 58°C for 60 sec. Using the GAPDH gene as
a reference, the CDKN2A gene’s DCt value as well as relative copy
number were computed. CDKN2A gene copy number deletion or
amplification positive was identified when the average relative
CDKN2A gene copy number in GC samples was substantially
lower or greater than in the paired SM samples, respectively, in
student t-test. As positive and negative controls, genomic DNA
from A549 cells that did not include any CDKN2A alleles and
genomic DNA from RKO cells that did have two wild-type
CDKN2A alleles were used, respectively.

Cell Lines and Cultures
We used the RPMI-1640 medium to cultivate human gastric
cancer cell line MGC803 and immortalized embryo kidney cell
line HEK293T (cordially given by Dr. Yang Ke at Peking
University Cancer Hospital and Professor Yasuhito Yuasa of
Tokyo Medical and Dental University, respectively). Fetal bovine
serum (FBS) was added to the medium at 10% (v/v). Beijing
JianLian Genes Technology Co., Ltd. examined and certified
these cell lines before they were utilized in this investigation. In
this examination, analyse the Goldeneye™ 20A STR Identifiler
PCR Amplification kit was used to evaluate STR patterns.

Assays of Cell Proliferation, Migration, and
Invasion With IncuCyte
In 96-well plates, cells were seeded with 2,000 cells per well and
grown for a minimum of 96 hrs, with 10 wells per group. A long-
term dynamic observation platform was employed to take
pictures of the cells every 6 hrs and collected the necessary
data (IncuCyte, Essen, MI, USA). It was determined how many
cells were confluent analyse using the IncuCyte ZOOM
programme (Essen, Ann Arbor, MI, USA). The cells were
Frontiers in Oncology | www.frontiersin.org 3
seeded into 96-well plates at a density of 25,000 cells per well
and then cultivated for 24 hrs to allow for real-time movement
and invasion tracking, as previously described. After establishing
a wound mark, the cells were rinsed three times with PBS to
remove any remaining debris. For the invasion test, 50 µL
Matrigel (acquired from BD Bioscience, San Jose, CA) diluted
with RPMI 1640 Medium at a ratio of 1:8 was added after the
cells had been rinsed with PBS and grown for 30 min at 37°C
before being removed. For at least 96 hrs, the cells were cultivated
on a regular basis and imaged every 6 hrs. Calculation of relative
wound width was done with the same programme.

Disruption of CDKN2A Exon 1a, 1b, 2 or
CDR With CRISPR/Cas9 Technology
Exon 1a, 1b and 2 of the CDKN2A gene were knocked out by
single-guide RNA (sgRNA) approaches, while the CRISPR/Cas9
system was utilized to knock out the CDKN2A gene’s CDR
region via a dual gRNA strategy (30). The sgRNAs were created
over an online platform available at the website (http://crispr.mit.
edu) and synthesized by Thermo Scientific, Inc., Rockford,
IL, USA (Table 1). To express Cas9 in the Lenti-CRISPR-V2
vector, the sgRNAs were cloned into the BsmBI restriction site of
lenti-CRISPR-V2 vector (Plasmid #52961, Addgene, Inc.). Next,
HEK293FT cells were transfected with lentivirus encoding
gRNA and Cas9, and the results were confirmed in the lab.
It was 72 hrs after transfection that the viral supernatants
were collected, and the viruses were employed to infect
MGC803 or HEK293T cells with the 0.45 mm PVDF filter
(Millipore, USA). For three days after the virus infection,
the infected cells were submitted to puromycin selection for
one week, and genomic DNA from the surviving cells was
extracted and put to PCR amplification and sequencing using
the primers (Table 1). The cells were then planted into 96-well
plates in order to select for monoclonal cells, which were then
purified. For the wild-type (WT) control, we used cells that had
transfected with control vector that was devoid of Lenti-
CRISPR-V2.
TABLE 1 | Oligo sequences.

Gene Assay Oligo Sequence PCR product size

CDKN2A P16-Light F-primer 5’-caggtctgtttcctcatttg-3’ 129-bp
R-primer 5’-ggtcagattagttgagttgtg-3’
Probe FAM-ctggctggaccaacctcagg-BHQ1

GAPDH P16-Light F-primer 5’-gctcacatattctggaggag-3’ 135-bp
R-primer 5’-ggtcattgatggcaacaata-3’
Probe Cy5-tgccttcttgcctcttgtctctt-BHQ2

CDKN2A CRISPR/Cas9 E1a_sgRNA 5’-ACCGTAACTATTCGGTGCGTtgg-3’
E1b_sgRNA 5’-GCACGCGCGCCGAATCCGGAggg-3’
CDR-gRNA#1 3’-CGTCAAAGTCGTCTGTCgac-5’
CDR-gRNA#2 3’-gtgGCTCTTAGCTTTAGTGG-5’
E2_sgRNA 5’-TCCCGGGCAGCGTCGTGCACggg-3’

CDKN2A exon-1a CRISPR/Cas9 E1a_oF 5’-cggtccctccagaggatttg-3’ 411-bp
E1a_oR 5’-ggagaatcgaagcgctacctg-3’

CDKN2A exon-1b CRISPR/Cas9 E1b_oF 5’-agtctgcagttaagggggcag-3’ 312-bp
E1b_oR 5’-gacttttcgagggcctttccta-3’

CDKN2A exon-2 CRISPR/Cas9 E2_oF 5’-tgagggggctctacacaagc-3’ 363-bp
E2_oR 5’-tatgcgggcatggttactgc-3’
December 2021 | Volume
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P16INK4A Overexpression
P16INK4A overexpression pIRES2-EGFP vector was constructed
as previously described (3) and used to transiently transfect
MGC803 cells using XtremeGENE HP DNA Transfection
Reagent (Roche, Mannheim, Germany).

Western Blot
In order to obtain a protein lysate, cells were collected and lysed.
Proteins were separated on a PVDFmembrane using a 10% SDS-
PAGE gel, which was then were transferred. With primary
antibodies including anti-P16 (1:3000, Abcam, UK), anti-RB1
(1:2500, Abcam, UK), anti-Phospho-RB1 (Ser807/811) (1:2500,
Cell Signaling Technology, UAS), anti-GAPDH (1:10000,
Protein Tech, China), the membrane was incubated for 1 hr at
room temperature after being blocked with 5% fat-free milk for a
night at 4°C. This was followed by three rounds of PBST washing
(PBS with 0.1% Tween 20). Incubation with the relevant
horseradish peroxidase-conjugated goat anti-goat at 1:3000 for
anti-P16, anti-RB1, and anti-Phospho-RB1 or anti-mouse IgG at
1:10000 for anti-GAPDH was performed at room temperature
for 1 hr after rinsing the membrane with distilled water. Through
the use of an Immobilon Western Chemiluminescent HRP
Substrate kit, the signals were seen (WBKLS0500, Millipore,
Billerica, USA).

Cell Apoptosis and Death Analyses
Cells were seeded in six-well plates (2 × 105 cells per well). A
trypsin treatment was performed on the cells after 48 hrs,
followed two washes with cold PBS. In accordance with the
manufacturer’s instructions, they were tagged with annexin V-
FITC and propidium iodide (PI) (Dojindo, Japan). A BD Accuri
C6 flow cytometer was then used to evaluate the cells (BD
Biosciences, USA). With the BD Accuri C6 software, the
percentages of cells in early apoptosis (annexin V-positive, PI-
negative) and late apoptosis/necrosis (annexin V- and PI-
positive) were calculated.

TCGA Patient Cohorts
Copy-number alterations of the CDKN2A gene in tissues from
10488 and 11226 cancer patients, clinical information, and
survival datasets in the TCGA and MSKCC PanCancer
projects were downloaded from cBioport (Data Files 2, 3),
respectively (6, 7, 31–34).

Statistical Analysis
It was determined whether there was a relationship between
somatic CDKN2A SCND and clinicopathological characteristics
using chi-square testing. Log-rank tests were used to compare OS
between groups. Kaplan-Meier analysis was utilized to calculate
the OS of patient. Student t-test was utilized to the difference of
relative copy number of CDKN2A between GC and SM samples.
The prediction sensitivity was equal to ratio of number of
CDKN2A SCND-positive GC patients with follow-up
hematogenous metastasis to number of all of GC patients with
follow-up hematogenous metastasis. The prediction specificity
was equal to ratio of number of CDKN2A SCND-negative GC
patients without follow-up hematogenous metastasis to number
Frontiers in Oncology | www.frontiersin.org 4
of all of GC patients without follow-up hematogenous
metastasis. A p-value of less than <0.05 was considered
statistically significant important in all of these tests.
RESULTS

Basic Information of Patients
The basic information for 234 patients with GC in the cross-
sectional study and 174 patients with pN0M0 GC in the
prospective study were listed in Table 2. Twenty-four patients
(median follow-up of 62.7 months) were found to have distant
metastasis, including hematogenous metastasis in 12 patients (six
to liver, two to lung, one to bone, one to brain, one to
transsepmuscle, and one to abdomen skin) and lymphatic/
peritoneal metastasis in 12 other patients (cohort 2, Data File 1).

CDKN2A SCND Increases Risk of
Hematogenous Metastasis of GCs in the
Cross-Sectional Cohort
To clarify whether CDKN2A SCND could drive GC metastasis,
we analysed the prevalence of CDKN2A SCNVs by P16-Light
among 234 GC patients enrolled in the cross-sectional study
(26). CDKN2A SCND and amplification were found in 91
(38.9%) and 29 (12.4%) of the GCs tested, respectively (Data
File 1, cohort 1). The incidence of CDKN2A SCND was
significantly greater in GCs with distant or hematogenous
metastasis than GCs without distant or hematogenous
metastasis (Chi-square test, p=0.012 or 0.014; Table 2). More
CDKN2A SCNDs were also detected in GCs of males than those
of females (p=0.003).

CDKN2A SCND Increases Risk of
Hematogenous Metastasis of pN0M0 GCs
in the Prospective Cohort
Then, the feasibility of using CDKN2A SCND as a biomarker for
predicting hematogenous metastasis of GCs was further
validated among 174 patients with baseline pN0M0 GC
enrolled in the independent prospective study cohort (27).
Once again, association analyses showed that CDKN2A SCND
significantly increased the risk of hematogenous metastasis of
GCs during the follow-up: CDKN2A SCND was found in 8
(66.7%) of these 12 GCs from patients with hematogenous
metastasis and no CDKN2A amplification was found. However,
for 162 GCs without hematogenous metastasis, CDKN2A SCND
and amplification were respectively detected in 56 (34.6%) and
33 (20.3%) GCs (p=0.016; Table 2). Using CDKN2A SCND as a
biomarker for predicting hematogenous metastasis of GCs, the
prediction sensitivity and specificity were 66.7% (8/12) and
65.4% (106/162), respectively.

Mining Public SCNV Datasets: CDKN2A
SCND Increases the Risk of Distant
Metastasis of Various Cancers
To explore whether CDKN2A SCND may also affect distant
metastasis of other cancers, we further mined The Cancer
December 2021 | Volume 11 | Article 801219
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Genome Atlas (TCGA) PanCancer SCNV datasets (Data File 2)
(6, 7, 31, 32, 41). We found that the frequency of CDKN2A
deletion was significantly and consistently associated with an
increased risk of local invasion (p<0.001) and distant metastasis
of various cancers without lymph metastasis (p<0.025; Figure
S1A), especially for head and neck squamous cell carcinoma
(HNSC), kidney clear cell carcinoma (KIRC), pancreas
adenocarcinoma (PAAD), skin cutaneous melanoma (SKCM),
and stomach adenocarcinoma (STAD/GC) (Figure S1B).
Mesothelioma (MESO) is an exception: significantly more
CDKN2A deletion was detected in non-metastatic MESO than
net distant metastatic MESO (p=0.045). Consistency with our
above results, such relationships could not be observed among
patients with lymph metastatic cancers (Figures S1C, D).

CDKN2A SCND Correlates With Short OS
of Patients With GC and Other Cancers
To analyse the association between CDKN2A SCND and OS of
GC patients, we emerged these data for the above 408 GC
patients with those 156 patients enrolled in our WGS study
together (25, 28). OS information was available for total 551
patients (Data File 1). In Kaplan-Meier analysis, OS of these GC
patients (n=364) without CDKN2A SCND was significantly
longer than those (n=187) with CDKN2A SCND (Cox
univariate regression analysis: hazard ratio=0.767, 95%
confidence interval=0.592-0.994; Figure 2A). Similarly, a
significant association between CDKN2A SCND and OS was
observed among GC patients in various sub-stratification groups
(Figures 2B–D).
Frontiers in Oncology | www.frontiersin.org 5
In addition, OS of pan-cancer patients (n=9384) without
CDKN2A deletion was longer than those (n=1418) with
CDKN2A deletion in TCGA project (p<0.001; Figure 2E and
Data File 2) (6, 7, 31–33). OS of MSKCC PanCancer patients
(n=6891) without CDKN2A deletion by target exon-captured
deep sequencing was also longer than those (n=639) with
CDKN2A deletion (p<0.001; Figure 2F and Data File 3) (34).
These results suggest that CDKN2A SCND may be a poor
survival factor not only for patients with GC, but also for
patients with other kinds of cancers.
CDKN2A SCND Promotes Migration and
Invasion and Inhibits Apoptosis of Cells
The CDR overlaps with the CDKN2A exon-2 (27), which is a
required exon for both P16INK4a and P14ARF (14). We further
studied whether P16INK4a and P14ARF co-inactivation by
CDKN2A-CDR deletion may play more roles in the
development and progression of GCs than individual P16INK4a

or P14ARF inactivation. Using CRISPR/Cas9, we were able to
remove the exon-1a of P16INK4a (P16-KO), the exon-1b of
P14ARF (P14-KO), and the common CDR of both P16INK4a&
P14ARF (CDR-KO) in human MGC803 GC cells (Figure 3A).
Two corresponding KO subclones were obtained and were
pooled for each genotype and used to study their effects on
alterations of cell behaviours. Long-term dynamic IncuCyte
analysis showed that CDR-KO cells migrated and invaded the
most among cells with different genotypes, as expected
(Figure 3B). The proportion of apoptosis of MGC803 cells
TABLE 2 | Association of somatic copy number variations (SCNVs) of the CDKN2A gene by P16-Light with clinicopathological characteristics of Chinese patients with
gastric carcinoma (GC) included in a cross-sectional study and a prospective study.

SCNVs of CDKN2A in GC patients (n=234) in the
cross-sectional study (26)

SCNVs of CDKN2A in pN0M0 GC patients (n=174) in the
prospective study (27)

Amp. (%) Diploid (%) Del. (%) Chi- square p-value Amp. (%) Diploid (%) Del. (%) Chi- square p-value

Sex Male 18 (10.8) 78 (47.0) 70 (42.2) 2.997 0.003* 20 (16.3) 54 (43.9) 49 (39.8) 2.634 0.105
Female 11 (16.2) 36 (52.9) 21 (30.9) 13 (25.5) 23 (45.1) 15 (29.4)

Age ≥60 yrs 15 (12.0) 58 (46.4) 52 (41.6) 0.528 0.446 15 (16.5) 43 (47.3) 33 (36.3) 0.129 0.709
<60 yrs 14 (12.8) 56 (51.4) 39 (35.8) 18 (21.7) 34 (41.0) 31 (37.3)

Location Cardia 1 (3.1) 17 (53.1) 14 (43.8) 1.665 0.197 11 (18.6) 23 (39.0) 25 (42.4) 0.59 0.442
Noncardia 28 (13.9) 97 (48.0) 77 (38.1) 22 (19.1) 54 (47.0) 39 (33.9)

Differentiation Mod./Well 8 (12.1) 26 (39.4) 32 (48.5) 2.014 0.156 12 (19.0) 21 (33.3) 30 (47.6) 1.737 0.188
Poor 21 (12.5) 88 (52.4) 59 (35.1) 19 (18.1) 53 (50.5) 33 (31.4)

pTNM stage I 1 (4.8) 14 (66.7) 6 (28.6) 0.584 0.445 12 (24.0) 24 (48.0) 14 (28.0) 1.983 0.159
II 5 (11.9) 25 (59.5) 12 (28.6) 19 (18.6) 43 (42.2) 40 (39.2)
III 10 (13.2) 35 (46.1) 31 (40.8) 2 (9.1) 13 (59.1) 7 (31.8)
IV 13 (13.7) 40 (42.1) 42 (44.2)

Invasion T1-2 2 (4.4) 26 (57.8) 17 (37.8) 0.643 0.423 12 (24.0) 24 (48.0) 14 (28.0) 3.140 0.076
T3-4 27 (14.4) 88 (46.8) 73 (38.8) 21 (16.9) 50 (40.3) 53 (42.7)

Baseline lymph N0 7 (10.8) 34 (52.3) 24 (36.9) 0 0.997 33 (19.0) 77 (44.3) 64 (36.8)
metastasis N1-x 22 (13.1) 80 (47.6) 66 (39.3)
Baseline distant M0 24 (12.5) 103 (53.6) 65 (33.9) 6.362 0.012 33 (19.0) 77 (44.3) 64 (36.8)
metastasis M1 5 (11.9) 11 (26.2) 26 (61.9)
Baseline hematogenous Negative 26 (12.6) 107 (51.2) 74 (35.7) 6.028 0.014 33 (19.0) 77 (44.3) 64 (36.8)
Metastasis Positive 2 (8.3) 6 (25.0) 16 (66.7)
Follow-up hematogenous Negative 33 (20.3) 73 (45.1) 56 (34.6) 5.817 0.016
Metastasis Positive 0 4 (33.3) 8 (66.7)
(Total) 29 (12.4) 114 (48.7) 91 (38.9) 33 (19.0) 77 (44.3) 64 (36.8)
December
 2021 | Volu
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with various CDKN2A KO genotypes was only one third (34.3%)
of that of CDKN2A wildtype (WT) cells (Figure 3C). The ratio of
phosphorylated RB1 (pRB1) to total RB1 protein was higher in
both CDR-KO and P16-KO cells than CDKN2A wildtype (WT)
and P14-KO cells in Western blot analyses (Figure 3D). In
contrast, the amount of P53 protein in these KO cells was much
lower than that in the CDKN2A wildtype cells. Similar results
were also observed in HEK293T cells with P14-KO, P16-KO, as
well as P16INK4a& P14ARF-shared exon-2 (P14&P16-DKO)
Frontiers in Oncology | www.frontiersin.org 6
(Figures 4A–D). These results suggest that CDKN2A SCND
may be a driver for GC development.

MGC803 cells were transiently transfected with a P16INK4A

overexpression vector in order to determine if the increased cell
proliferation is P16INK4A KO dependent. Long-term dynamic
IncuCyte analysis showed that overexpression of P16INK4A

greatly reversed the elevated proliferation phenotype of these
cells, showing that the enhanced proliferation of P16-KO cells is
P16INK4A inactivation-specific (Figure 5).
A B

D

E F

C

FIGURE 2 | Relationship between CDKN2A deletion in cancer tissues and overall survival (OS) of patients in Kaplan-Meier analysis. (A) OS curves for merged
patients with gastric carcinoma (GC) with and without CDKN2A deletion in P16-Light analysis. (B) OS curves for patients with non-cardiac GC with and without
CDKN2A deletion. (C) OS curves for patients with non-lymph metastatic (pN0) GC with and without CDKN2A deletion. (D) OS curves for patients with well or
moderately differentiated GC with and without CDKN2A deletion. (E) Overall survival curves for TCGA PanCancer patients with and without CDKN2A deletion,
according to the datasets (29–31). (F) Overall survival curves for MSKCC PanCancer patients with and without CDKN2A deletion, according to the datasets (32, 41).
Charts in (E, F) were adapted from images downloaded from the cBioport website.
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DISCUSSION

Hematogenous metastasis is the main recurrence route for
GC patients after curative resection, which is different
from lymphatic metastasis and direct peritoneal seeding.
Frontiers in Oncology | www.frontiersin.org 7
Hematogenous metastasis was associated with CD34-positive
vessel density, vasculogenic mimicry, high VEGF-D or
osteopontin expression (4, 5, 9, 12). Whether these factors
drive hematogenous metastasis is not clear. Recently, it was
reported that genetic inactivation of Cdkn2a by CRISPR/Cas9
A

B

D

C

FIGURE 3 | Comparison of behavioural analysis of MGC803 cells transfected with multiple CDKN2A KO genotypes. (A) CRISPR/Cas9 and corresponding single
guide RNA (sgRNA) knockout (KO) of CDKN2A exon-1b, 1a, and CDR in cells. Locations of sgRNAs and exons are identified, and a blue shadow is used to show
the 5.1-kb common deletion region (top chart). (B) Long-term dynamic IncuCyte studies were used to analyse the proliferation, migration, and invasion of pooled
clones with various CDKN2A inactivation genotypes. Nine or twelve wells are used to calculate the average value of each point. It is also possible to view the
standard deviation (SD). *P < 0.01 against CDKN2A wild-type control cells. (C) Using annexin V-isothiocyanate (FITC, FL1-A) and propidine iodide (PI, FL2-A)
labeling, flow cytometry was utilized to evaluate the percentage of apoptotic versus dead cells in various CDKN2A inactivation genotypes. The percentages in
parentheses represent the overall number of early and late apoptotic cells in various CDKN2A knockout genotypes. (D) The amounts of total RB1, phosphorylated
RB1 (pRB1), P16, P14, proteins in cells with different CDKN2A KO genotypes was determined by Western blot analysis.
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promoted lung metastasis of mouse with non-small cell lung
carcinoma transplanted subcutaneously (15). Through cross-
sectional, prospective, and experimental studies, here, we
reported that CDKN2A SCND was substantially correlated
with hematogenous metastasis of GCs in both the cross-
Frontiers in Oncology | www.frontiersin.org 8
sectional and prospective studies. The results of our functional
experiments further indicate that CDKN2A SCND could inhibit
P53 expression and promote RB1 phosphorylation. CDKN2A
inactivation also inhibited apoptosis and promoted proliferation/
migration/invasion of cancer cells. These phenomena
A

B

D

C

FIGURE 4 | Comparison of behavioural effects of several CDKN2A knockout (KO) genotypes on HEK293T cells. (A) CRISPR/Cas9 and corresponding single guide
RNA (sgRNA) knockout of CDKN2A exon-1b, 1a, and exon-2 in cells. The positions of exons and each sgRNA are identified, and a pink shadow is used to show the
5.1-kb common deletion region (top chart). (B) Long-term dynamic IncuCyte studies were used to analyse the proliferation, migration, and invasion of pooled clones
with various CDKN2A inactivation genotypes. Each point represents the average value of nine or twelve wells. Additionally, the SD value is also displayed. *P < 0.01
against CDKN2A wild-type control cells. (C) Using annexin V-isothiocyanate (FITC, FL1-A) and propidine iodide (PI, FL2-A) labeling, flow cytometry was utilised to
evaluate the percentages of apoptotic and dead cells in various CDKN2A inactivation genotypes. As indicated by the percentages in parentheses, the total number
of early and late apoptotic cells in various CDKN2A knockout genotypes was calculated. (D) Western blot analysis was used to evaluate the quantities of total RB1,
phosphorylated RB1 (pRB1), and P53 proteins in cells in various CDKN2A knockout genotypes.
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demonstrate that genetic CDKN2A inactivation may be a
frequent causal factor and useful predictor for hematogenous
metastasis of GCs.

Genetic inactivation of CDKN2A by SCND is very frequent
in many human cancers (24), which is also associated with
metastasis of cancers (23, 32–35). Our sub-stratification
analyses using public TCGA datasets show that the relationship
between CDKN2A deletion and cancer metastasis may be organ/
tissue-specific. While CDKN2A deletion increases the risk of
distant metastasis of HNSC, KIRC, PAAD, SKCM, and STAD/
GC, it decreases the risk of distant metastasis of MESO. In
addition, a strong relationship between CDKN2A deletion and
distant metastasis was observed in cancers without lymphatic
metastasis, but not in cancers with lymphatic metastasis.
This is consistent with our current results observed in these
patients enrolled in both the cross-sectional and prospective
studies. The reasons accounted for these differences are worth
further studying.

It is well known that tumor suppressor P53 is essential for cell
apoptosis and oncogene MDM2 promotes degradation of P53 via
protein ubiquitination (36). P53 mutations were reported as a
driver of metastasis signalling pathways (37). Most circulating
cancer cells die via PANoptosis, including anoikis, pyroptosis,
apoptosis, and necroptosis, within the bloodstream (38, 39).
Avoiding PANoptosis is essential for circulating cancer cells
adhering to endothelial cells, extravasating and cloning in
distant tissues. The activity of MDM2 is inhibited by P14ARF

protein within normal cells (40). As we reported recently (25),
P14ARF is co-inactivated in 92% of CDKN2A-deleted cancers. Both
genetic and epigenetic inactivation of function of CDKN2A gene
(P16INK4a, P14ARF, or both) inhibited apoptosis and senescence of
human cells and promoted experimental lung metastasis of cancer
cells (3, 15, 41). Once again, here, we found that knockout of
CDKN2A CDR by CRISPR/Cas9 indeed decreased the amount of
P53 protein and markedly inhibited the apoptosis of MGC803 GC
and non-tumor HEK293T cells. The increased risk of
hematogenous metastasis for patients with CDKN2A deleted GC
is in line with these results.

In conclusion, we found that CDKN2A SCND was a frequent
event in GC genomes and could be an useful predictor for
Frontiers in Oncology | www.frontiersin.org 9
hematogenous metastasis of GCs. CDKN2A SCND may be also a
causal factor for distant metastasis of other cancers through
decreasing cancer cell apoptosis and promoting the migration
and invasion of cancer cells via downregulation of P53 expression
and upregulation of RB1 phosphorylation.CDKN2A SCND leads to
inactivation of both P16INK4a and P14ARF (two endogenous
inhibitors for CDK4 and MDM2) in >90% CDKN2A-deleted
cancers, it needs to study whether CDK4 and MDM2 inhibitor
drugs could be used to prevent hematogenous metastasis of cancers.
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Supplementary Figure 1 | Relationship between CDKN2A deletion in TCGA
PanCancer and the status of cancer local invasion, lymph metastasis, and distant
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metastasis in sub-stratification analyses. (A) The frequency of CDKN2A deletion in
TCGA cancers without lymph metastasis; (B) The frequency of CDKN2A deletion in
cancers of various histological subtypes without lymph metastasis; (C) The
frequency of CDKN2A deletion in TCGA cancers with lymph metastasis; (D) The
frequency of CDKN2A deletion in cancers of various histological subtypes with
lymph metastasis. The exact numbers of cancer cases with and without CDKN2A
deletion, total cancer cases, the frequency (%) of CDKN2A deletion in each
subgroup of cancers are labeled, respectively. Significant p-values identified in a
chi-square test are also listed. T1-x, local invasion stages; M0 and M1-x, distant
metastasis-negative and distant metastasis -positive. BLCA, bladder carcinoma;
BRCA, breast carcinoma; ESCA, esophagus carcinoma; HNSC, head and neck
squamous cell carcinoma; LIHC, liver hepatocyte carcinoma; LUSC, lung
squamous cell carcinoma; LUAD, lung adenocarcinoma; KIRC, kidney clear cell
carcinoma; MESO, mesothelioma; PAAD, pancreas adenocarcinoma; SKCM, skin
cutaneous melanoma; STAD, stomach adenocarcinoma.
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