
Frontiers in Oncology | www.frontiersin.org

Edited by:
Antonella Santone,

University of Molise, Italy

Reviewed by:
Sanjay Aneja,

Yale University, United States
Weiwei Zong,

Henry Ford Health System,
United States

*Correspondence:
Elena Bertelli

bertellie@aou-careggi.toscana.it

†These authors have contributed
equally to this work and share

the first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 27 October 2021
Accepted: 07 December 2021
Published: 13 January 2022

Citation:
Bertelli E, Mercatelli L, Marzi C,

Pachetti E, Baccini M, Barucci A,
Colantonio S, Gherardini L,

Lattavo L, Pascali MA, Agostini S
and Miele V (2022) Machine and

Deep Learning Prediction Of
Prostate Cancer Aggressiveness

Using Multiparametric MRI.
Front. Oncol. 11:802964.

doi: 10.3389/fonc.2021.802964

ORIGINAL RESEARCH
published: 13 January 2022

doi: 10.3389/fonc.2021.802964
Machine and Deep Learning
Prediction Of Prostate Cancer
Aggressiveness Using
Multiparametric MRI
Elena Bertelli 1*†, Laura Mercatelli 1†, Chiara Marzi2†, Eva Pachetti 3,4, Michela Baccini5,6,
Andrea Barucci2, Sara Colantonio3, Luca Gherardini5, Lorenzo Lattavo1,
Maria Antonietta Pascali 3, Simone Agostini 1 and Vittorio Miele1

1 Department of Radiology, Careggi University Hospital, Florence, Italy, 2 “Nello Carrara” Institute of Applied Physics (IFAC),
National Research Council of Italy (CNR), Sesto Fiorentino, Italy, 3 “Alessandro Faedo” Institute of Information Science and
Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy, 4 Department of Information Engineering (DII),
University of Pisa, Pisa, Italy, 5 “Giuseppe Parenti” Department of Statistics, Computer Science, Applications(DiSIA),
University of Florence, Florence, Italy, 6 Florence Center for Data Science, University of Florence, Florence, Italy

Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa
aggressiveness, for which a biopsy is required, is fundamental for patient management.
Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative
assessment of mpMRI might provide the radiologist with an objective and noninvasive tool
for supporting the decision-making in clinical practice and decreasing intra- and inter-
reader variability. In this view, high dimensional radiomics features and Machine Learning
(ML) techniques, along with Deep Learning (DL) methods working on raw images directly,
could assist the radiologist in the clinical workflow. The aim of this study was to develop
and validate ML/DL frameworks on mpMRI data to characterize PCas according to their
aggressiveness. We optimized several ML/DL frameworks on T2w, ADC and T2w+ADC
data, using a patient-based nested validation scheme. The dataset was composed of 112
patients (132 peripheral lesions with Prostate Imaging Reporting and Data System (PI-
RADS) score ≥ 3) acquired following both PI-RADS 2.0 and 2.1 guidelines. Firstly, ML/DL
frameworks trained and validated on PI-RADS 2.0 data were tested on both PI-RADS 2.0
and 2.1 data. Then, we trained, validated and tested ML/DL frameworks on a multi PI-
RADS dataset. We reported the performances in terms of Area Under the Receiver
Operating curve (AUROC), specificity and sensitivity. The ML/DL frameworks trained on
T2w data achieved the overall best performance. Notably, ML and DL frameworks trained
and validated on PI-RADS 2.0 data obtained median AUROC values equal to 0.750 and
0.875, respectively, on unseen PI-RADS 2.0 test set. Similarly, ML/DL frameworks trained
and validated on multi PI-RADS T2w data showed median AUROC values equal to 0.795
and 0.750, respectively, on unseen multi PI-RADS test set. Conversely, all the ML/DL
frameworks trained and validated on PI-RADS 2.0 data, achieved AUROC values no
better than the chance level when tested on PI-RADS 2.1 data. Both ML/DL techniques
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applied on mpMRI seem to be a valid aid in predicting PCa aggressiveness. In particular,
ML/DL frameworks fed with T2w images data (objective, fast and non-invasive) show
good performances and might support decision-making in patient diagnostic and
therapeutic management, reducing intra- and inter-reader variability.
Keywords: prostate cancer, mpMRI prostate cancer aggressiveness, deep learning, machine learning, radiomics
1 INTRODUCTION

Prostate cancer (PCa) is the most frequent male malignancy and
the third cause of cancer death in European men with significant
consequences for healthcare systems (1). In biopsy-naïve men
the clinical suspicion of PCa is based on an elevated serum
prostate-specific antigen (PSA) level and/or an abnormal digital
rectal examination. However, multiparametric (mp) MRI is
strongly recommended before biopsy (2, 3), because the latter
procedure, if it’s not targeted, has low sensitivity and specificity,
thus leading to underdiagnosis of clinically significant PCa and
to overdiagnosis of non clinically significant PCa.

Indeed, over the last decades, mpMRI has become increasingly
valuable for the detection and staging of PCa, gaining a key role in
the diagnostic pathway (4) and apparent advantages compared to
the systematic transrectal ultrasonography-guidedbiopsy
(TRUSGB) (5). Firstly, it can rule out non clinically significant
(cs) PCa, thus reducing the number of unnecessary prostate
biopsies and overdiagnosis. Secondly, it also enables targeted
biopsies of suspected lesions, allowing better risk stratification
(6, 7). However, performing many mpMRI acquisitions and
reporting is an essential challenge for the uroradiological
community. Efforts have been made in creating and constantly
updating the Prostate Imaging Reporting and Data System (PI-
RADS) guidelines that recommend a systematized mpMRI
acquisition and define a global standardization of reporting (8).
In particular, the PI-RADS score assigns a numerical value in the
interval [1 - 5] to the suspected lesion, correlated with the
probability of the lesion being a cs malignancy. However, there
is still a lack of consensus on the detailed aspects of mpMRI
acquisition protocols and the radiologists’ requirements for
reading the examinations (e.g., experience prerequisites for
independent reporting are still absent) (9). For these reasons,
the assessment of csPCa is still based on visual, qualitative
evaluation with individual level reports, and the diagnostic
process is relatively slow, subjective, and dependent on the
experience level of the radiologist. For example, fewer cases with
PI-RADS score equal to 3, which corresponds to an indeterminate
probability of csPCa, have been reported from expert readers
compared to non-expert ones (6, 10). Additionally, the PI-RADS
score measures the probability of malignancy and not the PCa
aggressiveness. Thus, the biopsy is still needed to assess the csPCa
aggressiveness by measuring the International Society of
Urological Pathology (ISUP) Grade Group (GG) and the
Gleason Score (GS) (11). The assessment of PCa aggressiveness
is fundamental for patient management because lower-grade
cancers grow more slowly and are less likely to spread toward
other organs than high-grade cancers (4, 12–18). Therefore,
2

assessing the tumor aggressiveness is an essential step in guiding
the urologist’s therapeutic choice, together with the TNM stage
and other factors, e.g., individual life expectancy, general state and
health and preference of the individual patient. Quantitative
assessment of lesion aggressiveness on mpMRI might reinforce
MRI importance, role, and value in PCa diagnostic, prognostic
and monitoring pathway, providing the radiologist with an
objective and noninvasive tool and thus decreasing intra- and
inter-reader variability (19). This would permit the urologist to
accordingly choose and/or modify the management approach,
optimizing quality of life of many patients. In biopsy naïve
patients, those with non clinically significant PCa may directly
avoid or postpone any treatment or may begin active surveillance,
thus reducing the number of biopsies and lessening the risk of
overdiagnosis and overtreatment. During active surveillance, in a
protocol-mandated future perspective, together with PSA and
clinical data, quantitative mpMRI and relative analyses could
actively bring out lesion progression, maybe reducing the need
of re-biopsies.

In this view, radiomics deals with the extraction of high-
dimensional quantitative features from clinical images using
advanced mathematical algorithms (20, 21). These imaging
features can be related to physiological and clinical outcomes
to identify possible associations (22). Due to their high
dimensionality, Machine Learning (ML) methods are
increasingly being incorporated into radiomic studies (22). At
the same time, Deep Learning (DL) algorithms can learn valuable
features from raw images directly showing promising results in
various computer vision tasks and are emerging as a disruptive
alternative to feature engineering-based techniques (23). In
recent years, many studies used radiomics in combination with
ML/DL models on mpMRI data of PCa patients with the
ultimate goal of assisting the radiologist in the diagnostic
workflow (19). The frontrunners focused primarily on the
proof of concept of radiomics and ML/DL techniques to detect
prostate lesions or differentiate malign from benign lesions (24–
35). More recent literature investigated the clinically relevant
problem of identifying high-grade vs. low-grade tumors (19).
Despite the promising results, previous literature presents critical
issues that prevent a direct comparison among the different
results and a reliable application in daily clinical practice.
Specifically, from a clinical point of view, the outcomes have
been obtained by predicting at the MR slice level (28, 36–38)
rather than at the lesion level, as it is good practice in clinical
reporting. These results, therefore, can not be deployed in a real
clinical context. Moreover, only a few studies have used an
independent cohort to evaluate the obtained models on
external data (27, 39–45). Methodologically, previous works
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bertelli et al. ML/DL Prediction of PCa Aggressiveness
usually lack sufficient details to make them reproducible and
seem to suffer from data leakage, reporting overly optimistic
results (28, 36–38, 44–51). In mpMRI of PCa, the most common
data leakage causes are i) inappropriate validation schemes,
where the data split is based on the single MRI slice and not
on the whole lesion and/or patient (37, 38), ii) the absence of a
nested process for the hyperparameters optimization (28, 36, 37,
44–51). Moreover, in previous works the authors trained a small
number of specific algorithms, the selection of which is not been
adequately motivated (36, 38, 44–46, 49–51).

For these reasons, in this paper, we have investigated the
potential role of several ML and DL frameworks in predicting
PCa aggressiveness from mpMRI data, using a computational
workflow that prevents the previously mentioned issues. Indeed,
we trained, validated, and tested ML/DL frameworks (i.e., the
concatenation of preprocessing steps and the actual classification
models) using a patient-based nested validation scheme, to
perform, at the same time, hyperparameters optimization,
models selection, and the estimation of generalization
performance on unseen data, without data leakage, at lesion
level. Our cohorts contained overall 112 PCa patients, whose
peripheral lesions obtained a PI-RADS score ≥ 3. All the ML and
DL frameworks have been developed on data acquired following
PI-RADS 2.0 guidelines. To evaluate the learning capabilities of
ML/DL frameworks on data acquired with different protocols, a
PI-RADS 2.1 cohort has been used as additional test set and the
entire ML/DL analysis workflow has been repeated on a multi-
PI-RADS dataset, constructed by merging images acquired
following the PI-RADS 2.0 and 2.1 guidelines.
2 MATERIAL AND METHODS

2.1 Participants and MRI Examinations
Our study is monocentric and observational. Between June 2018
and December 2019, we enrolled 112 histopathologically
confirmed peripheral zone PCa patients who underwent free-
hand transperineal MRI/US fusion-guided targeted biopsy based
on a positive/indeterminate mpMRI result, i.e., PI-RADS score ≥
3. All mpMRI examinations were performed using a 1.5 T MR
scanner equipped with an anterior pelvic phased-array 18-
channel coil and a posterior spine phased-array 16-channel
coil (Magnetom Aera, Siemens Medical Systems, Erlangen,
Germany). Eighty-five patients have been acquired following
the PI-RADS 2.0 guidelines, while the other 27 have been
examined with mpMRI protocols according to the latest
guidelines of PI-RADS 2.1. Aware that the PI-RADS 2.1
guidelines did not change the requirements for T2w
acquisitions, in this study, the T2w image acquisition protocol
was also changed, to obtain a better quality image while adhering
to the guidelines (details in Supplementary Section 1.1). In our
study, we focused on the most clinically relevant images, i.e., T2w
images and ADCmaps derived from multi-b DiffusionWeighted
(DW) images. Three uro-radiologists (SA, EB, LM) with,
respectively, 10, 6, and 2 years of experience in prostatic
Frontiers in Oncology | www.frontiersin.org 3
radiology, evaluated all MRI exams and assigned the PI-RADS
scores in consensus. The lesions were manually segmented on
T2w images and ADC maps. We show examples of mpMR
images and segmentations in Figures 1–3. Histopathological
examination, performed on the specimen taken during biopsy,
provided the PCa aggressiveness by measuring the GS and the
ISUP GG, which better reflects PCa biology (52). Because of
different prognostic significance, we have identified low-grade
(LG) lesions [i.e., with ISUP GG ≤ 2 and GS ≤ 7 (3 + 4)] and
high-grade (HG) lesions [i.e., with ISUP GG≥3 and GS≥7 (4 +
3)]. Our final PI-RADS 2.0 cohort was composed of 85 patients
and 103 lesions, while PI-RADS 2.1 cohort was formed by 27
patients and 29 lesions (details in Table 1).

2.2 Prediction of PCa Aggressiveness
Using Machine Learning Techniques
In this study, we predicted the lesion aggressiveness (i.e., LG vs.
HG) from T2w images and ADC maps. In particular, we
exploited two different strategies: (i) conventional ML
techniques to identify the predictive power of the radiomic
features extracted from each lesion; (ii) DL architectures to
extract complex and aggressiveness-related features directly
from raw images. All the frameworks presented below were
trained, validated, and tested starting from either T2w images
only, ADC maps only, or the combination of the two acquisition
modalities, from now on referred as T2w/ADC/T2w+ADC. We
have detailed the experimental tests of ML/DL analysis in
Supplementary Section 1.2.

2.2.1 ML Analysis: Radiomics Features Extraction
and Models
For each slice, we computed a total of 95 2D radiomics features in
compliance with the Image Biomarker Standardisation Initiative
(IBSI) (details in Supplementary Section 1.3 and Tables S1, S2).
In the training set only, we performed a data augmentation by
oversampling the minority class (i.e., the HG group) to reduce
the effect of the imbalanced dataset (ratio LG : HG=2:1).
Accordingly, we applied either Adaptive Synthetic (ADASYN)
(53) or Synthetic Minority Oversampling TEchnique (SMOTE)
(54) and its variants, i.e., the BorderlineSMOTE (55),
SVMSMOTE (56) with default parameters.

Since, in general, it is not possible to define a priori the best
class of ML models in a given problem (57), we used several
popular and powerful supervised classes of ensemble classifiers.
They are able to combine the predictions of several base
classifiers with the aim of improving generalizability and
robustness over a single ML classifier. In particular, we used
three averaging methods, i.e., Bagging (58), Random Forests (59),
and randomized decision trees (a.k.a. extra-trees) (60). Also, we
employed three boosting methods, i.e., AdaBoost (61), Gradient
Boosting (62), and eXtreme Gradient Boosting (XGBoost) (63).
A grid consisting of different combinations of hyperparameters
to optimize has been defined for each algorithm (Table S3). We
detailed the training, validation and testing of the ML
frameworks in Section 2.2.3.
January 2022 | Volume 11 | Article 802964
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2.2.2 DL Analysis: Data Preprocessing and
CNN Architectures
In this study, we designed Convolutional Neural Networks
(CNN) working on 2D data. We cropped each slice containing
the tumor tissue around the center of the lesion yielding T2w
images of 64 x 64 pixels and ADC maps of 44 x 44 pixels.
Hereinafter, we will name C-DS (Cropped-Dataset) this dataset
of 2D images. In addition, from these cropped images, we
generated the L-DS (Lesion-Dataset) obtained by exploiting the
segmentation mask provided by radiologists (i.e., setting to zero
the intensity of pixels not belonging to the tumor lesion). The
former dataset was intended to provide a model robust against
segmentation inaccuracies, and to assess whether the tissue
Frontiers in Oncology | www.frontiersin.org 4
around the lesion contributed with helpful information (e.g.,
exploiting the contrast between tumor and benign tissue as a
potentially significant feature). The latter allowed a consistent
comparison with radiomics-based analysis and ML approach.
We adopted data augmentation techniques to compensate for
class-imbalance. In the training set only, we added new instances
of original HG images, generated by rotation (angle randomly
sampled in the range [-25, 25] degrees), translation (horizontal
and vertical shift randomly sampled in the range [-0.02, 0.02]
image width/height, respectively), and vertically and
horizontally flip.

Since it is not possible to define a priori the architecture of the
CNN that best performs a specific task, a two-step optimization
FIGURE 1 | MpMRI of a 76-years old patient with indeterminate mpMRI result (PI-RADS=4), PSA=14 ng/ml, GS=4+4 (ISUP 4). MpMRI zoomed images containing
the target lesion, respectively axial T2-weighted image (A), ADC map (C), and their relative lesion segmentations (B, D). The green (B) and red (D) arrows point out
the segmented lesion in T2 and ADC images, respectively.
January 2022 | Volume 11 | Article 802964
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strategy has been completed: a grid search to select the most
promising network architecture and a random search to
optimize the hyperparameters (details in Supplementary
Section 1.4 and Tables S4–S6). The output of the grid and
random searches was a set of six CNN architectures with their
best hyperparameters: three of them trained with L-DS T2w/
ADC/T2w+ADC images and the others trained with C-DS T2w/
ADC/T2w+ADC images. Moreover, we added two Attention
Gates (AGs) to the three optimal architectures trained on C-DS
T2w/ADC/T2w+ADC images (64). AGs help the CNN to focus
on target structures by suppressing irrelevant regions and
highlighting important ones with the goal of improving
prediction performance (64). Also, AGs showed to be more
Frontiers in Oncology | www.frontiersin.org 5
efficient when placed on layers handling higher-level and more
specific features (64). Hence, we tested different placements for
the AGs, considering only the middle and the final layers of the
architecture (details in Supplementary Section 1.4).

2.2.3 Training, Validation, and Test of ML/DL
Frameworks
In this work we used the term framework to refer to
concatenation of the different steps of our analysis. Indeed, ML
approach involved data standardization, data augmentation, and
classifier estimation. At the same time, DL consisted of the data
augmentation followed by the network that performs the
classification (Figure S1).
FIGURE 2 | MpMRI of a 65-years old patient with indeterminate mpMRI result (PI-RADS=3), PSA=5.49 ng/ml, GS=3+4 (ISUP 2). MRI zoomed images containing
the target lesion, respectively axial T2-weighted image (A), ADC map (C), and their relative lesion segmentations (B, D). The green (B) and red (D) arrows point out
the segmented lesion in T2 and ADC images, respectively.
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FIGURE 3 | MpMRI of a 69-years old patient with positive mpMRI result (PI-RADS=5), PSA level=7 ng/ml, GS=4+4 (ISUP 4). MRI zoomed images containing the
target lesion, respectively axial T2-weighted image (A), ADC map (C), and their relative lesion segmentations (B, D). The green (B) and red (D) arrows point out the
segmented lesion in T2 and ADC images, respectively.
TABLE 1 | Descriptive statistics of our cohorts. GS ≤ 3+4 is equivalent to ISUP GG ≤ 2, and GS≥4+3 corresponds to ISUP GG≥3.

PI-RADS 2.0 cohort PI-RADS 2.1 cohort

# patients 85 28
Age (years) (mean (STD) 66.72 (7.58) 68.64 (5.71)
# lesions 103 (76 with GS ≤ 3+4, 29 (21 with GS ≤ 3+4,

27 with GS≥4+3) 8 with GS≥4+3)
PI-RADS score (median ± IQR) 4 ± 0* 4 ± 0.625*
PSA (ng/ml) (mean (STD)) 8.34 (8.20)* 5.43 (2.48)*
Frontiers in Oncology | www.frontiersin.org
 January 2022 | Volum6
*Indicates significant differences (p-value < 0.5 at Mann-Whitney test) between PI-RADS 2.0 and PI-RADS 2.1 cohorts.
GS, Gleason score; IQR, interquartile range; ISUP GG, ISUP/WHO Grading Group; PI-RADS, Prostate Imaging – Reporting and Data System; PSA, Prostate-Specific Antigen, STD,
standard deviation.
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For each acquisition modality, the ML/DL frameworks have
been trained, validated, and tested using the following approach
(Figure 4): 87% of the entire PI-RADS 2.0 cohort was considered
as the development set 2.0, and the remaining 13% as the
independent test set 2.0. The PI-RADS 2.1 cohort has been
used in two different ways: firstly, we have considered the
entire cohort as an independent test set, and, secondly, we
have split it in development set 2.1, containing images of 19
PCa patients, and test set 2.1, with images of eight patients. This
last division allowed to create two new multi PI-RADS datasets.
Themulti PI-RADS development set consisted of the development
2.0 merged with development 2.1 and multi PI-RADS test set,
composed of test set 2.0 and test set 2.1.

On the development set 2.0, each model has been trained and
validated using a patient-level, stratified 5-fold cross-validation
(CV) strategy to perform framework selection along with
hyperparameters optimization (65). In the 5-fold CV, 4 folds
Frontiers in Oncology | www.frontiersin.org 7
were used as training set while the other one as the validation set
(details in Supplementary Section 1.5). The CV procedure has
been repeated ten times using different random splits to deal with
the variability in framework and hyperparameters selection
derived from a specific data split (66). We have computed the
average and standard deviation of the Area Under the Receiver
Operating curve (AUROC) across all repetitions to get the final
scores. The best frameworks were chosen based on the average
AUROC scores in the validation set. Finally, the best frameworks
were retrained on the whole development set 2.0 and tested on
the unseen test set 2.0 and test set 2.1, independently. Moreover,
the same ML/DL framework has been trained on the multi PI-
RADS development set and evaluated on the multi PI-RADS test
set. In order to consider the variability in the AUROC
measurement due to the randomness of our test data, we drew
additional bootstrap test sets of size equal to the original test set’s
one (67, 68). Briefly, we randomly sampled, with replacement,
FIGURE 4 | Nested validation scheme in our ML/DL analysis. (A) On development set 2.0 only, 5-fold CV was used to identify the best performing framework, along
with performing hyperparameters optimization. The best performing ML/DL framework was then used to train the final framework on the entire development set 2.0.
This framework was then evaluated on an unseen test set 2.0 and test set 2.1, independently. (B) The best performing framework was still trained on multi PI-RADS
development set (i.e., the union of development set 2.0 and development set 2.1 and evaluated on unseen multi PI-RADS test set (i.e., the union of test set 2.0 and
test set 2.1).
January 2022 | Volume 11 | Article 802964
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the original test set data at the lesion level. The bootstrap
sampling was repeated 1000 times, and the optimal ML/DL
framework was then tested on each of these new additional
bootstrap sample test sets, resulting in a series of AUROC values.
We computed the median, 5th and 25th percentiles of AUROC
values. Details about DL frameworks retraining has been
reported in Supplementary Section 1.5.
3 RESULTS

In the following, we report the performance of the best
ML/DL frameworks selected in the validation set in terms of
median AUROC for T2w/ADC/T2w+ADC data. Table 2 and
Figures 5A–H summarizes all the prediction performances.

3.1 ML Analysis
On the test set 2.0, the framework trained with radiomic features
extracted from T2w images showed the best AUROC value, i.e.,
0.750. In particular, for specificity = 0.833, sensitivity was 0.750
(Figure 5A). On the other hand, the framework trained on ADC
maps gave an AUROC no better than the chance level. The
framework trained on T2w+ADC data obtained AUROC =
0.625). Notably, for specificity = 0.727, sensitivity was 0.667
(Figure 5A). However, this performance did not exceed that
achieved by the framework trained on T2w data alone. All these
frameworks, trained on radiomics features extracted from PI-
RADS 2.0 T2w/ADC/T2w+ADC images, were tested also using
radiomics features extracted from PI-RADS 2.1 T2w/ADC/T2w
+ADC images. They all achieved AUROC values no better than
the chance level (details in Table S7 and Figure S2A). For the
ML frameworks trained, validated and tested un the multi PI-
RADS test set, the behaviour of the performance was similar to
that observed on the test set 2.0. Indeed, the framework trained
with radiomic features extracted from T2w images showed the
best AUROC value, i.e., 0.795. In particular, for specificity =
1.000, sensitivity was 0.666 (Figure 5B). Conversely, the
framework trained on ADC maps gave an AUROC no better
than the chance level. The framework trained on T2w+ADC data
showed good performances (i.e., AUROC = 0.682). Notably, for
specificity = 0.883, sensitivity was 0.600 (Figure 5B). However,
this performance was not better than that obtained by training
the framework on T2w images only.
Frontiers in Oncology | www.frontiersin.org 8
Eventually, in Table S8, we detailed the characteristics
of the best performing ML frameworks, along with their
optimal hyperparameters.

3.2 DL Analysis
On the test set 2.0, the AG framework trained with the C-DS T2w
images achieved the best performance, i.e., AUROC = 0.875. In
particular, for specificity = 0.727, sensitivity was 1.000
(Figure 5G). For ADC maps, the best framework was the AG
CNN trained with the C-DS, and achieved AUROC = 0.727.
Notably, for specificity = 0.727, sensitivity was 1.000 (Figure 5G).
Conversely, for T2w+ADC images, the best framework was the
AG-free CNN trained on the L-DS, and achieved AUROC= 0.750.
In particular, for specificity = 0.909, sensitivity was 0.667
(Figure 5C). In line with ML results, the DL framework trained
on T2w images achieved the overall best performance.
Consistently with ML results, the frameworks trained on PI-
RADS 2.0 T2w/ADC/T2w+ADC images and tested on PI-RADS
2.1 T2w/ADC/T2w+ADC images gave an AUROC around the
chance level (details in Table S7 and Figures S2B–D). The best
performing DL framework trained, validated and tested on the
multi PI-RADS test set was the AG-free CNN fed with L-DS T2w
+ADC images, achieving AUROC = 0.752, but the AG-free CNN
trained with L-DS T2w images only showed good performance
equally (i.e., AUROC = 0.750). In particular, for specificity = 0.778,
sensitivity was 0.600 (Figure 5D).

Finally, in Table S9, we reported the characteristics of the best
performing DL architectures, along with their optimal
hyperparameters. The optimal AG-free and AG CNN
architectures trained with C-DS T2w images, and the AG-free
CNN fed with C-DS T2w+ADC images have been represented in
Figures S3–S5 respectively.
4 DISCUSSION

This study aims to predict PCa aggressiveness using ML/DL
techniques on quantitative mpMRI data. In particular, we
focused on peripheral lesions considered radiologically
indeterminate or malignant (i.e., with PI-RADS ≥ 3), and
examined according to PI-RADS 2.0 and 2.1 guidelines. Firstly,
we extracted radiomic features from T2w images and ADC maps
of lesions and fed them to various ML models. Then, we trained
TABLE 2 | AUROC values of ML and DL analyses for T2w/ADC/T2w+ADC.

Framework Test set T2w ADC T2w+ADC

ML 2.0 0.750 [0.500, 1] 0.531 [0.250, 0.75] 0.625 [0.167, 1]
multi PI-RADS 0.795 [0.615; 1] 0.500 [0.300; 0.715] 0.682 [0.455; 1]

AG-free DL on L-DS 2.0 0.667 [0.385, 0.849] 0.667 [0.355, 0.905] 0.727 [0.231, 1]
multi PI-RADS 0.750 [0.568, 0.945] 0.714 [0.445, 0.883] 0.752 [0.564, 0.872]

AG-free DL on C-DS 2.0 0.775 [0.478, 1] 0.667 [0.392, 0.903] 0.700 [0.455; 0.858]
multi PI-RADS 0.524 [0.200, 0.818] 0.547 [0.393, 0.780] 0.574 [0.286, 0.819]

AG DL on C-DS 2.0 0.875 [0.639, 1] 0.750 [0.455, 0.911] 0.667 [0.301, 1]
multi PI-RADS 0.500 [0.278, 0.717 0.463 [0.234, 0.817] 0.288 [0.09, 0.529]
January 2022 | Volume
The AUROC values are reported as median [5th percentile, 95th percentile]. AG: attention gate; C-DS, cropped dataset; DL, deep learning; L-DS, lesion dataset; ML, machine learning.
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FIGURE 5 | (A) ROC curves of ML frameworks on the test set 2.0. (B) ROC curves of ML frameworks on the multi PI-RADS test set. (C) ROC curves of DL AG-free
CNN trained on L-DS test set 2.0. (D) ROC curves of DL AG-free CNN trained on L-DS multi PI-RADS test set. (E) ROC curves of DL AG-free CNN trained on C-DS
test set 2.0. (F) ROC curves of DL AG-free CNN trained on C-DS multi PI-RADS test set. (G) ROC curves of DL AG CNN trained on C-DS test set 2.0. (H) ROC
curves of DL AG CNN trained on C-DS multi PI-RADS test set.
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several DL architectures to directly analyze raw images. Both
workflows were carried out following a rigorous validation
scheme for hyperparameters optimization and estimation of
the generalization capabilities on unseen data.

The performances achieved by both ML and DL frameworks
trained on T2w data were higher than those obtained by training
on ADCmaps or T2w+ADC data. The best ML framework gave a
median AUROC equal to 0.795. Notably, for specificity = 1.000,
sensitivity was 0.666, while the best DL architecture showed an
AUROC equal to 0.875. In particular, for specificity = 0.727,
sensitivity was 1.000. The better performances on T2w imagesmay
be due to the higher spatial resolution and dynamic range of T2w
images, compared to ADC maps. Conversely, information derived
from ADC maps seems to be potentially confounding for ML/DL
frameworks. Although extremely useful for visual assessment, the
combination of the two acquisition modalities does not appear to
improve the training of ML/DL frameworks. Intriguingly, the best
performance of the ML framework was obtained on the multi PI-
RADS test set. To the best of our knowledge, this is the first time
that a ML framework has been trained and tested on mpMRI data
acquired with different acquisition protocols without any data
harmonization. Our results suggest that differences introduced in
radiomic features due to different T2w image acquisition protocols
do not hinder the ML models learning. In contrast, the
performance of DL frameworks on the multi PI-RADS test set
was worse (except for AG-free CNN trained with L-DS data),
likely due to the fewer PI-RADS 2.1 images compared to those
according to PI-RADS 2.0. Indeed, DL frameworks might need
more PI-RADS 2.1 images during the training phase to improve
performance on the multi PI-RADS test set. The best performance
of the DL framework was obtained by an AG CNN architecture
trained on T2w images containing both the lesion and the
surrounding tissue. The inclusion of AGs layers seems, in most
cases, to focus the attention of the entire architecture on the
Frontiers in Oncology | www.frontiersin.org 10
contour of the lesion, i.e., in the transition zone between the tumor
and healthy tissue (Figure 6). The additional information
provided by the out-of-lesion tissue might has improved the
learning of the DL framework, since it is known that MRI
consistently underestimates the size and extent of PCa lesions
(69, 70). The ML/DL frameworks trained on PI-RADS 2.0 T2w/
ADC/T2w+ADC data were tested on images acquired following
PI-RADS 2.1 guidelines, but all the performances were around the
chance level. Arguably, the features extracted are strictly related to
the image acquisition parameters making these frameworks
immature for a direct large-scale clinical use.

The results of our study are in line with previous works, which
report ML/DL models’ AUROC values in the interval [0.70 -
0.93] (28, 38, 44, 46–51). Albeit feature selection is out of the
scope of our work because it would be necessary to study also its
stability to vary training data and model selection, we analyzed
radiomic feature importance, providing insight into the data and
the models. For the ML frameworks trained with radiomic
features extracted from T2w images, those who got a better
AUROC value, the highest predictors of PCa were textural
features (see Supplementary Figures S6 and S7 for details).
This result confirms that the analysis of quantitative features (not
visible to the radiologist’s naked eye) by ML techniques
effectively contributes to the prediction of PCa aggressiveness
and could, in the future, be performed in a clinical context.

From a methodological point of view, we worked with 2D
data (i.e., 2D radiomic features and single axial slices for T2w/
ADC/T2w+ADC images) because some lesions were so small as
to be visible on only one axial slice. Considering the lesion a 3D
volume, regardless of the actual space occupied by the
segmentation as other authors have done (39–42, 44, 71),
seemed to be an overly forced assumption in most cases. In
addition, though, we reported the test sets’ performance on a
lesion level. This choice allowed us to obtain results that are in
A B

FIGURE 6 | Axial T2w MR image of a PCa lesion with PI-RADS=5 and GS=4+5. (A) Original image together with its cropped version of size 64x64. We fed AG DL
frameworks with the cropped images, i.e. the C-DS images. (B) Attention map obtained from the best performing AG DL framework fed with T2w C-DS images,
superimposed to the original cropped version of the T2w image and its segmentation.
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line with the radiologist assessment in a clinical context (19).
Some authors worked with 2D data, but reported the final
performance on slice level, making their results difficult to
compare to ours (36, 72–75). It is well-known that ML/DL
techniques perform better when trained on large and balanced
datasets (76, 77). We addressed the imbalance problem of our
datasets by using methods of randomly oversampling the
minority class for tabular and imaging data (78). The most
frequent algorithms used in the literature for PCa
aggressiveness prediction were ML logistic regression and DL
CNN, but without enough details about why those models were
chosen (19). Previous literature showed insufficient awareness of
the impact of the selected framework and hyperparameters on
the generalizability of the results (79). Since it is not possible to
define a priori which is the best performing ML/DL framework
in a specific case (57), we opted for a data-driven approach. We
reduced the potential overfitting caused by developing the ML/
DL frameworks on a relatively small cohort by adopting a
rigorous validation setup. We split T2/ADC/T2w+ADC data
into two groups: the development and the test set. The
development set was then further divided into training and
validation set to perform framework selection along with
hyperparameters optimization using a stratified 5-fold CV
scheme. We repeated the 5-fold CV ten times to compensate
for the sampling bias issue. It is essential to underline that, unlike
other works (74, 75), we performed a patient-based splitting, and
thus avoiding results inflated by the phenomenon of data leakage
(80). We used the average value of the AUROC in the validation
set to select the best ML/DL frameworks, and evaluated the
generalizability on test sets allocated in the hold-out procedure.
A strict comparison between ML and DL approaches was out of
the scope of our work. It is true that DL techniques have more
significant potential than the combination of hand-crafted
features extraction and ML analysis for extensive datasets with
thousands or even millions of instances. However, this is rarely
the case of medical image analyses, where datasets are usually
made up of hundreds/thousands of patients at best (81).

Our study has some limitations. Firstly, due to our rigorous
approach to collect MRI data with PI-RADS score within the
range [3 - 5] of peripheral zone PCa only, our sample size was
relatively small, though similar to previous studies (72, 82, 83).
Secondly, our study was monocentric. Given the complexity of
assessing PCa aggressiveness from radiological images,
monocentric acquisitions allowed us to keep the quantitative
imaging as comparable as possible across patients. Experience
showed that in PCa mpMRI, larger and multicenter/multi-
scanner/multi-protocols datasets are difficult to find (84).
Therefore, it is not surprising that the images used by most
previous studies were generated using a single scanner or two
scanners of the same vendor in one center.
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In conclusion, the quantitative assessment of mpMRI might
provide the radiologist with an objective and noninvasive tool for
supporting the imaging work-up of patients affected by PCa.
Actually, both ML and DL techniques applied on mpMRI seem
to be a valid aid in predicting PCa aggressiveness. In particular,
ML/DL frameworks fed with T2w images data (objective, fast
and non-invasive) show good performances and might support
decision-making in patient diagnostic and therapeutic
management, decreasing intra- and inter-reader variability.
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