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Background and Purpose: Breast ductal carcinoma in situ (DCIS) has no metastatic
potential, and has better clinical outcomes compared with invasive breast cancer (IBC).
Convolutional neural networks (CNNs) can adaptively extract features and may achieve
higher efficiency in apparent diffusion coefficient (ADC)-based tumor invasion assessment.
This study aimed to determine the feasibility of constructing an ADC-based CNNmodel to
discriminate DCIS from IBC.

Methods: The study retrospectively enrolled 700 patients with primary breast cancer
between March 2006 and June 2019 from our hospital, and randomly selected 560
patients as the training and validation sets (ratio of 3 to 1), and 140 patients as the internal
test set. An independent external test set of 102patients during July 2019 andMay2021 from
a different scanner of our hospital was selected as the primary cohort using the same criteria.
In each set, the status of tumor invasion was confirmed by pathologic examination. The CNN
model was constructed to discriminate DCIS from IBC using the training and validation sets.
The CNN model was evaluated using the internal and external tests, and compared with the
discriminating performance using themean ADC. The area under the curve (AUC), sensitivity,
specificity, and accuracy were calculated to evaluate the performance of the previous model.

Results: The AUCs of the ADC-based CNN model using the internal and external test
sets were larger than those of the mean ADC (AUC: 0.977 vs. 0.866, P = 0.001; and 0.926
vs. 0.845, P = 0.096, respectively). Regarding the internal test set and external test set, the
ADC-based CNNmodel yielded sensitivities of 0.893 and 0.873, specificities of 0.929 and
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0.894, and accuracies of 0.907 and 0.902, respectively. Regarding the two test sets, the
mean ADC showed sensitivities of 0.845 and 0.818, specificities of 0.821 and 0.829, and
accuracies of 0.836 and 0.824, respectively. Using the ADC-based CNN model, the
prediction only takes approximately one second for a single lesion.

Conclusion: The ADC-based CNN model can improve the differentiation of IBC from
DCIS with higher accuracy and less time.
Keywords: breast cancer, ductal carcinoma in situ, diffusion-weighted imaging, magnetic resonance imaging,
deep learning
INTRODUCTION

Breast cancer is the most common malignant tumor in women
worldwide and has the highest mortality rate among all malignant
tumors in women (1). Breast ductal carcinoma in situ (DCIS) is
the proliferation of malignant epithelial cells in ducts without
involving the basement membrane (2). DCIS has no metastatic
potential and has better clinical outcomes compared with invasive
breast cancer (IBC) (3). Mammographic screening programs in
many countries have led to a substantial increase in the early
detection of DCIS, which accounts for 20–30% of newly detected
breast cancers (4, 5). Higher detection rates have triggered anxiety
concerning the problem of overdiagnosis and subsequent
overtreatment. Therefore, the feasibility of pharmacological
intervention may be taken into consideration, and another
option would be watchful waiting rather than immediate
surgery. However, approximately one-quarter of lesions
diagnosed as DCIS via core needle biopsy may be upgraded to
IBCs on the final pathology with surgical specimens because the
limited number, size, and location of samples may miss IBCs (6,
7). Some patients with a missed diagnosis of IBCs may elect to
forgo surgery and pursue watchful waiting, but this management
strategy is not safe for these patients (8).

Magnetic resonance imaging (MRI) is a powerful tool for
discriminating breast lesions. MRI can noninvasively cover the
whole breast with high-spatial-resolution images. Diffusion-
weighted imaging (DWI) can provide a surrogate marker for
tissue microstructure and cell density by measuring the random
movement of water molecules (9). A previous study showed that
the apparent diffusion coefficient (ADC) obtained with DWI
could be used as a valuable noninvasive quantitative biomarker
to assess breast cancer invasiveness (10). However, it is not easy
for radiologists to select a representative region of interest (ROI)
of a lesion, particularly for nonmass lesions. Differences in ROIs
may lead to ADCs that do not truly reflect the lesion
microstructure and cell density. Furthermore, tumors interact
with the tumor microenvironment, and peritumoral tissue has
been indicated to provide helpful information for the diagnosis
and prognosis of tumors (11–13), while the conventional method
of ADC measurement usually ignores the additional peritumoral
information that helps assess invasion.

Deep learning algorithms have displayed excellent
performance in image recognition tasks (14). Many
convolutional neural network (CNN) models with superior
performance exist in deep learning, such as ResNet, AlexNet,
2

VGG, and InceptionV3. CNNs can scan all the pixels of the images
using convolution kernels and perceive the global information of
the images. Thus, CNNs may offer a promising alternative to
discriminate between DCIS and IBCs because of their advantages
of being efficient, accurate, and reproducible. Accordingly, this
study aimed to determine whether CNN applied to breast DWI
can aid in the preoperative differentiation of DCIS and IBCs.
MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of our hospital.
The requirement for obtaining informed consent from patients
was waived. We retrospectively searched for breast MRI
examinations using the picture archiving and communication
system. The inclusion criteria for this study were as follows: 1)
histologically confirmed pure DCIS or pure IBC; 2) preoperative
dynamic contrast-enhanced MRI examination. The exclusion
criteria were as follows: 1) preoperative endocrine therapy,
chemotherapy, or radiotherapy; 2) preoperative invasive breast
operation; 3) incomplete clinical data; 4) obvious artifacts in MR
images (Figure 1). From March 2006 to June 2019, 700 lesions
from 700 patients with primary breast cancers were included, of
which 400 lesions were IBCs and 300 lesions were DCIS. We
randomly selected 560 lesions as the training and validation sets
(ratio of 3 to 1) and 140 lesions as the internal test set. From July
2019 to May 2021, an independent external test cohort of 102
patients with primary breast cancers from our hospital was
selected as the primary cohort with the same criteria. A total of
102 lesions from these patients were included in this study.

MR Image Acquisition
Breast MRI examinations of the primary cohort were performed
using 3.0 T superconducting MR scanners (Verio or Trio;
Siemens Medical Systems, Erlangen, Germany) with a
dedicated breast surface coil (4-channel or 4-channel coils). All
the breast MRI examinations of the external test cohort were
performed using 3.0 T superconducting MR scanners (Prisma;
Siemens Medical Systems, Erlangen, Germany) with a dedicated
breast surface coil (18-channel coils). All the patients were
scanned in the prone position. After the standard bilateral T2-
weighted (T2W) axial and DWI fat-saturated axial sequences
with T1-weighted (T1W) gradient-echo VIEWS sequences, a
dynamic protocol was performed with six dynamic acquisitions,
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one before and five immediately after an elbow vein bolus
injection of gadolinium-dimeglumine (GE Healthcare) equal to
0.1 mmol per kg body weight, followed by a 20 ml saline flush.
The scanning parameters of DWI are summarized in Table 1.

Definition of ROIs and Mean ADC
For the delineation and confirmation of ROIs of the lesions on ADC
images, the images of T1W, T2W, and dynamic contrast-enhanced
sequences were referred. Open-source software (3D Slicer; https://
www.slicer.org/) was used to draw polygonROIs for the CNNmodel.
Frontiers in Oncology | www.frontiersin.org 3
The polygon ROIs were drawn to cover whole lesion slice-by-slice by
a radiologist with five years of experience in breast MRI analysis
blinded to information about histopathology. An example of polygon
ROIs is shown in Figure 2. Next, the polygon ROIs were confirmed
by a radiologist with more than 15 years of experience in breast MRI
analysis. To measure the mean ADCs of the breast lesions, round
ROIs with sizes ranging from 16 to 225 mm2 were manually placed
slice-by-slice for the whole lesion volume by the radiologist with over
15 years of experience, while cystic, necrotic, fatty, and hemorrhagic
areas were avoided. The ADCs were measured directly from the
picture archiving and communication system of the hospital. The
meanADCswere defined as the sum of the ADCs of all ROIs divided
by the number of ROIs.

Data Preprocessing
Data augmentation was applied to the training and validation
sets during the training, with random rotation from -10 to 10
degrees, stretching from 0.8 to 1.2, and shifting from -10 to 10
pixels. After the geometric image transformations, the original
size of the training and validation sets was expanded five times.
The data augmentation strategy can help prevent network
overfitting and avoid interference from various sources of noise
to improve the robustness of the model (15, 16). Based on
TABLE 1 | Scanning parameters of diffusion-weighted imaging protocols on 3.0
Tesla scanners.

Trio Verio Prisma

Orientation Axial Axial Axial
Repetition time (msec) 5000 4300 6400
Echo time (msec) 66 80 60
Field of view (cm) 34 × 34 34 × 34 34 × 34
Matrix size 256 × 256 256 × 256 256 × 256
Echo train length 1 1 1
Slice thickness (mm) 4.0 5.0 4.0
b value (s/mm2) 0, 1000 0, 1000 0, 1000
Gap (mm) 1.0 1.0 1.5
FIGURE 1 | Flowchart of inclusion and exclusion.
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https://www.slicer.org/
https://www.slicer.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yin et al. AI Discriminating Breast Cancer Subtype
polygon ROIs of each lesion, a block centered at the center of the
lesion containing the whole lesion region was cropped from MR
images, and all blocks were reshaped to a size of 128×128×22 by
zero-padding (Figure 2).

Network Architecture
The architecture of the network is shown in Figure 3. It
comprised two convolution layers, four residual blocks, four
max-pooling layers, two fully connected layers, and one softmax
layer. Dropout was performed for the first fully connected layers
to avoid overfitting. Finally, the softmax layer was used to obtain
the probability of classification. The residual block was inspired
by ResNet (17). All convolution layers were followed by a batch
normalization (BN) layer (18), and a leaky rectified linear unit
(LReLU) was used as the activation function.

Model Training and Testing
All preprocessing was conducted in Python (version 3.7.0;
Python Software Foundation, Wilmington, Del) using PyTorch
(version 1.4.0). The blocks from the training sets were fed into
the network to adjust the weight of the network. Before feeding
Frontiers in Oncology | www.frontiersin.org 4
into the network, all the blocks were standardized by subtracting
the mean and dividing by the standard deviation. During the
training process, the ADAM algorithm with a learning rate of
0.001 was used to minimize the loss (cross-entropy) function,
with a mini-batch size of 32. Finally, the model with the lowest
validation loss was selected. During the training phase, an L2
regularization strategy on weight and bias was applied to prevent
overfitting. The blocks from the two test sets were fed into the
network to output the predicted probability of every class, and
the class with the highest probability was chosen as the
classification result. All the experiments were performed using
a workstation equipped with two NVIDIA TITAN XP GPUs.

Statistical Analysis
All statistical analyses were performed using SPSS (IBM SPSS
Statistics for Windows, v.25.0, Armonk, NY) and Python. We
compared the diagnostic performance of the CNN model and
mean ADC on the internal test set and external test set. The gold
standard for the diagnosis of breast lesions was the postoperative
histopathology result, and the classification results derived from
the CNN models and the mean ADC were compared with the
FIGURE 2 | Delineation and preprocessing of regions of interest on apparent diffusion coefficient images.
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postoperative histopathology results. The area under the curve
(AUC) and its 95% confidence interval (CI), sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), F1 score, kappa value, and accuracy were
calculated. The cutoff value was determined by maximizing
Youden’s index. Significant differences between AUCs were
compared by DeLong’s test (19). We analyzed the clinical
characteristics of patients with primary breast cancers. Welch’s
t test or Student’s t test was used for continuous variables, and
Pearson’s chi-squared test was used for categorical variables. A p
value < 0.05 was considered statistically significant.
RESULTS

Clinicopathologic Data
The mean age was 48.5 years (range, 29–84 years) for patients in
the training and validation sets, 50.4 years (range, 31–79 years)
for patients in the internal test set, and 50.7 years (range, 35–74
years) for patients in the external test set. Among all 802 patients,
448 (55.8%) had undergone lumpectomy, and 354 (44.2%) had
undergone mastectomy. Surgical specimens revealed 253 (31.5%)
invasive lobular cancers, 202 (25.2%) invasive ductal cancers, and
347 (43.3%) DCIS cases. Among all the lesions, 688 (85.8%)
Frontiers in Oncology | www.frontiersin.org 5
presented as mass lesions, whereas 114 (14.2%) were nonmass
lesions. The clinicopathological characteristics of all participants
are listed in Table 2.
CNN Model and Mean ADC
Anoverview of the performance of the CNNmodel andmeanADC
is shown in Table 3. Regarding the differentiation of IBC and DCIS
in 140 patients in the internal test set, the CNN model yielded
excellent performance, with an AUC of 0.977 (95% CI: 0.957,
0.998), a sensitivity of 0.893, a specificity of 0.929, a PPV of 0.949,
anNPV of 0.852, an F1 score of 0.908, a kappa value of 0.809 and an
accuracy of 0.907. In the internal test set, the mean ADC of the IBC
group was 0.859×10−3 mm2/s (standard deviation, 0.148×10−3

mm2/s); in the DCIS group, it was 1.118×10−3 mm2/s (standard
deviation, 0.169×10−3 mm2/s) (Figure 4A). IBC showed
significantly lower ADCs than DCIS (P < 0.001). The optimal
threshold for an ADC of 0.980×10−3 mm2/s was applied to the
internal test set (Figure 4D), and the mean ADC at this threshold
showed an AUC of 0.866 (95% CI: 0.805, 0.927), a sensitivity of
0.845, a specificity of 0.821, a PPV of 0.877, an NPV of 0.780, an F1
score of 0.836, a kappa value of 0.661 and an accuracy of 0.836. As
shown in Figure 5A, the performance of the CNN model was
significantly better than that of the mean ADC (P = 0.001).
FIGURE 3 | Architecture of the convolutional neural network.
January 2022 | Volume 11 | Article 805911
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Regarding the identification of IBC and DCIS in 102 patients in
the external test set, the CNN model also achieved good
performance, with an AUC of 0.926 (95% CI: 0.876, 0.976), a
sensitivity of 0.873, a specificity of 0.894, a PPV of 0.906, an NPV of
0.857, an F1 score of 0.882, a kappa value of 0.764 and an accuracy of
0.902. The mean ADCwas also significantly lower in the IBC group
than in theDCIS group in the external test set (P < 0.001). Themean
ADC in the IBC group was 0.907×10−3 mm2/s (standard deviation,
0.178×10−3 mm2/s), while the mean ADC in the DCIS group was
1.138×10−3 mm2/s (standard deviation, 0.139×10−3 mm2/s)
(Figure 4B). The optimal threshold for an ADC of 1.029 × 10−3

mm2/s was applied to the external test set (Figure 4E), and themean
ADC at this threshold showed an AUC of 0.845 (95% CI: 0.766,
0.925), a sensitivity of 0.818, a specificity of 0.829, a PPV of 0.849, an
NPV of 0.796, an F1 score of 0.824, a kappa value of 0.646 and an
accuracy of 0.824. As shown in Figure 5B, the performance of the
Frontiers in Oncology | www.frontiersin.org 6
CNN model was slightly better than that of the mean ADC, while
there was no significant difference between them (P = 0.096).

Regarding the identification of IBC and DCIS in 560 patients
in the training and validation sets, the mean ADC in the IBC
group was 0.853×10−3 mm2/s (standard deviation, 0.159×10−3

mm2/s). In the DCIS group, the mean ADC was 1.123×10−3

mm2/s (standard deviation, 0.169×10−3 mm2/s) (Figure 4C). IBC
showed significantly lower ADCs than DCIS (P < 0.001). The
optimal threshold for an ADC of 0.985×10−3 mm2/s was applied
to the training and validation sets (Figure 4F), and the mean
ADC at this threshold showed an AUC of 0.868 (95% CI: 0.838,
0.899), a sensitivity of 0.864, a specificity of 0.820, a PPV of 0.861,
an NPV of 0.823, an F1 score of 0.845, a kappa value of 0.684 and
an accuracy of 0.845.

The training and validation curves of the CNN model that
reflect the process of training are shown in Figure 6. As the
TABLE 2 | Clinicopathological characteristics of the participants.

Characteristic Tra and Val Sets Internal Test Set External Test Set P value

Patients 560 140 102
Age 48.5 (29–84) 50.4 (31–79) 50.7 (35–74) 0.321
<40 y 118 (21.1) 26 (18.6) 13 (12.7)
40-49 y 193 (34.5) 47 (33.6) 38 (37.3)
50-59 y 142 (25.3) 44 (31.4) 34 (33.3)
≥60 107 (19.1) 23 (16.4) 17 (16.7)

Menopausal status 0.572
Premenopausal 293 (52.3) 67 (47.9) 55 (53.9)
Postmenopausal 267 (47.7) 73 (52.1) 47 (46.1)

Tumor size 0.848
≤2.0 cm 258 (46.1) 61 (43.6) 41 (40.2)
2.1-4.0 cm 253 (45.2) 67 (47.9) 51 (50.0)
>4.0 cm 49 (8.7) 12 (8.5) 10 (9.8)

Lesion position 0.053
Right 296 (52.8) 75 (53.5) 41 (39.9)
Left 264 (47.2) 65 (46.5) 61 (60.1)

Morphology 0.683
Mass 484 (86.5) 119 (85.3) 85 (83.1)
Non-mass 76 (13.5) 21 (14.7) 17 (16.9)

Histologic type 0.619
Invasive 316 (56.4) 84 (60.0) 55 (53.9)
DCIS 244 (43.6) 56 (40.0) 47 (46.1)

Tumor grade 0.063
Low 87 (15.5) 28 (19.9) 23 (23.1)
Moderate 298 (53.3) 81 (57.8) 45 (43.8)
High 175 (31.2) 31 (22.3) 34 (33.1)
January 2022 | Volume 11 | Articl
Tra and val sets, Training and validation sets; DCIS, ductal carcinoma in situ.
TABLE 3 | Performance of the CNN model and mean ADC.

Internal Test Set (140) External Test Set (102) Tra and Val Sets (560)

CNN Model Mean ADC CNN Model Mean ADC Mean ADC

Accuracy 0.907 0.836 0.902 0.824 0.845
Sensitivity 0.893 0.845 0.873 0.818 0.864
Specificity 0.929 0.821 0.894 0.829 0.820
PPV 0.949 0.877 0.906 0.849 0.861
NPV 0.852 0.780 0.857 0.796 0.823
F1 score 0.908 0.836 0.882 0.824 0.845
kappa value 0.809 0.661 0.764 0.646 0.684
AUC (95% CI) 0.977 (0.957-0.998) 0.866 (0.805-0.927) 0.926 (0.876-0.976) 0.845 (0.766-0.925) 0.868 (0.838-0.899)
AUC, area under the receiver operating characteristic curve; CI, confidence interval; CNN, convolutional neural network; NPV, negative predictive value; PPV, positive predictive value; Tra
and val sets, training and validation sets; ADC, apparent diffusion coefficient.
e 805911
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training epoch continued, the accuracy curves of the training and
validation sets gradually became stable after the rapid rise and
slow rise, and the loss curves of the training and validation sets
gradually became stable after the rapid decline and slow decline.
The similar trends of the two loss curves suggest that the CNN
model was not overfitted. The training was performed for 160
epochs, and the CNN model learned the entire training set once
Frontiers in Oncology | www.frontiersin.org 7
at each epoch. The CNN model achieved the best accuracy at the
60th epoch, and the assessments on the internal test set and
external test set were based on this best model. For the CNN
model, the training of the model took approximately 48 hours,
and the prediction took approximately one second for a single
lesion. For the mean ADC, it took approximately 3 to 8 minutes
to perform the measurement and calculation for a single lesion.
A B C

D E F

FIGURE 4 | Mean ADC of the invasive breast cancer group and breast ductal carcinoma in situ group in the internal test set (A) external test set (B) and training
and validation sets (C). Relationship between the Youden index and threshold in the internal test set (D) external test set (E) and training and validation sets (F).
A B

FIGURE 5 | Receiver operating characteristic curve analysis for the differentiation of breast ductal carcinoma in situ and invasive breast cancers in the internal test
set (A) and the external test set (B).
January 2022 | Volume 11 | Article 805911
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DISCUSSION

This study showed the exciting utility of the CNN model in
identifying IBC and DCIS. The CNN model showed good
performance, with AUCs of 0.977 and 0.926, sensitivities of 0.893
and 0.873, and specificities of 0.929 and 0.894 for the internal test
set and the external test set, respectively. The mean ADCs of DCIS
were significantly higher than those of IBC in our study. This
finding is in concurrence with those of previous studies (20). The
mean ADC of the internal test set and external test set showed
AUCs of 0.866 and 0.845, sensitivities of 0.845 and 0.818, and
specificities of 0.821 and 0.829, respectively. Overall, the
performance of the CNN model was better than that of the mean
ADC. Our study successfully developed a model for discriminating
IBC and DCIS in patients with breast cancer using CNN, and our
results showed an improved performance in the assessment of
pathological subtypes of breast cancer based on ADC images from
the preoperative scans of the patients.

DWI is a quantitative measurement technique that depicts the
Brownian motion of water molecules, and the ADC indirectly
shows the integrity of cell membranes and degree of cell crowding
(21). Therefore, the ADC provides some insight into the
biological characteristics of breast lesions. Although the mean
ADC has helped considerably to differentiate the pathological
subtypes of breast cancer, it represents only the average
measurement of voxels in the ROI area and does not consider
the spatial relationship among voxels. The CNN model obtained
a significantly higher AUC than the mean ADC in both the
internal test set and external test set, indicating that much spatial
information hidden in the ADC images of patients with primary
breast cancer is useful to differentiate among pathological
subtypes. This finding was also observed in a previous study (22).

ADC is an objectively and quantitatively measured variable
that is less dependent on reader and interobserver variabilities
than conventional morphologic features, such as shape, margin,
or distribution pattern (10, 23). However, the variability of the
ADC in breast DWI due to the signal-to-noise ratio, motion, off-
isocenter effects, different field strengths, sequence variants of the
Frontiers in Oncology | www.frontiersin.org 8
different platforms, and inconsistencies in the ROI definition
cannot be ignored (24, 25). In our study, for both the internal test
set and external test set, the mean ADC achieved satisfactory
performance, but the mean ADC and optimal thresholds were
quite different. Our findings were consistent with those of some
previous studies, which showed significant differences in the
ADCs of lesions between IBC (ranging from 0.65 to 1.31×10−3

mm2/s) and DCIS (ranging from 0.83 to 1.59 × 10−3 mm2/s) (20,
26, 27). These substantial heterogeneities indicate that
standardized measurement protocols, centralized quality
control and centralized analyses are needed for different
medical institutions, and different thresholds will be needed for
ADC images of patients with primary breast cancer obtained
from different scanners, protocols, and field strengths (28, 29).

In our study, the CNN model eliminated the challenge of
artificially selecting the optimal ADC cutoff value and had similar
performance on the internal test set and external test set. ADC
images were normalized to the range from 0 to 1. The normalization
method can partially eliminate the difference in data obtained from
different scanners. Additionally, unlike the MRI signal of T1W and
T2W sequences, which is nonlinearly related to proton density,
relaxation time, time of repetition, and time of echo, ADC is an
inherent physical value (22). Each ADC of a pixel-by-pixel volume
has the same drift tendency when using different scanners, protocols,
and field strengths. The advantage of the CNN model is that it
considers the spatial relationship of a pixel-by-pixel volume in the
task of identification and, may further ignore the differences from the
grayscale drift of ADC images. Therefore, ADC images may be less
affected by different scanners and could be good candidates to
construct CNN models using data from multiple sources.

Although the manual placement of round ROIs slice-by-slice is a
common method of measurement, the definition of these ROIs is
very tedious and time-consuming. Additionally, operator variability
in the definition of these ROIs is a significant factor currently
limiting the reproducibility of ADC measurements. In our study,
the blocks were generated based on polygon ROIs for the CNN
model, and these blocks contained some peritumoral parenchyma.
This method not only ensures a certain degree of repeatability but
A B

FIGURE 6 | Loss curves (A) and accuracy curves (B) of the training and validation sets.
January 2022 | Volume 11 | Article 805911
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also obtains additional peritumoral information that helps predict
invasion. The peritumoral/tumor ADC ratio is likely related to the
extensive hyaluronan accumulation and biological aggressiveness of
breast cancer (30). The peritumoral environment contain critical
and rich information related to tumor invasiveness, including
lymphovascular invasion, angiogenesis, lipids, and inflammatory
components, which can be used for diagnosis or prediction (13, 31).
Previous studies have confirmed that combining intratumoral and
peritumoral regions can achieve significantly better performance in
different tasks (32, 33).

This study has several limitations. First, this study had a
retrospective design, and our results were based on a limited
number of patients. Therefore, larger sample size studies are
needed in the future to confirm the results. Second, selection bias
may be present in our study, because these patients were not
consecutive cases. Third, although the possible benefits of
additional information from the peritumoral regions were
considered, the blocks were not the best choice for sampling
peritumoral information. An automatic segmentation algorithm
based on certain standards is a promising solution, but the
accuracy and stability of these algorithms still need improvement.
CONCLUSION

In summary, the ADC-based CNN model can improve the
differentiation of IBC from DCIS with higher accuracy and less
time. This strategy seems to be an effective alternative, valuable,
noninvasive method to assess breast cancer invasiveness. Thus, our
ADC-based CNN model has great potential to reduce overdiagnosis
and is a potentially useful decision support tool in clinical applications.
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