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Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via
distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate
replication-dependent nucleosome assembly during S-phase, while H3.3 variant is
regulated and incorporated into the chromatin in a replication-independent manner
through HIRA and DAXX/ATRX. Current literature suggests that dysregulated
expression of histone chaperones may be implicated in tumor progression. Notably,
ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3
variants in the chromatin, impair the chromatic state, lead to chromosome instability, and
impact gene transcription, potentially contributing to carcinogenesis. This review focuses
on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as
their oncogenic and tumor suppressive functions in tumorigenesis.
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INTRODUCTION

In eukaryotes, histone proteins wrap around the DNA to form nucleosomes, which are the building
blocks of chromatin. Each nucleosome core particle is composed of around 147bp of DNA and an
octamer of histones that is formed of two H3/H4 dimers and two H2A/H2B dimers. Histone H1 is a
linker histone that connects adjacent nucleosomes (1). Aside from the canonical histones, H2A,
H2B, H3, and H4, histone variants play a pivotal role in regulating chromatin dynamics and the
accessibility of the underlying DNA in a locus-specific manner (2). In contrast to the canonical
histone, non-canonical histone variant genes locate outside the histone gene clusters, contain
introns and their mRNAs have poly(A) tails, which increase the histone diversity. In addition,
canonical histones are expressed and incorporated into the chromatin during DNA replication in
the S phase (3–6), whereas the assembly of histone variants is replication-independent and spans all
phases of the cell cycle (2, 7). Thus non-canonical histone variants may play important roles in other
DNA-dependent processes outside the S phase, such as transcription initiation and elongation (8).

In human somatic cells, seven variants of H3 (H3.1, H3.2, H3.3, CENP-A, H3.1T, H3.X, and H3.Y)
have been identified (6). Canonical histone variants H3.1 and H3.2 are termed replication-coupled
histones because they are incorporated during DNA replication. In addition, H3.2 differs from H3.1 by
only one amino acid. Non-canonical histone variant H3.3 is encoded byH3F3A andH3F3B in humans,
and it differs from H3.1 by only five amino acids (6). H3.3 dysregulation is implicated in a variety of
biological processes: embryonic stem cell differentiation, epigenetic reprogramming, neuron plasticity,
centromeremaintenance, andDNAdamage response (9). To ensure the temporal and spatial correctness
of histone functions, histone needs the chaperones to bind histones directly after their synthesis. By
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definition, histone chaperones are a group of proteins that
neutralize the positive charge of histones to prevent non-specific
interactions between histones andDNA (10, 11). They are involved
in the storage, exchange, and deposition of histones on DNA for
assembly (12).Different histone chaperonesmediate the deposition
of canonical histones and histone variants. Canonical histone H3.1
relies on chaperone anti-silencing factor 1A (CAF-1) to incorporate
into chromatin in a replication-dependent manner. H3.3 variant
uses specific chaperones: HIRA, DAXX/ATRX complex, and DEK
to incorporate into the chromatin in a replication-independent
manner (13). Chaperones have been shown to prefer distinct sites
forH3.3 assembly. For example,H3.3 requiresHIRA to promote its
deposition at transient nucleosome-free regions, while DAXX/
ATRX is necessary for H3.3 enrichment at heterochromatin
(13, 14). DEK maintains chromatin integrity by controlling H3.3
deposition into specific genomic regions (6, 15, 16). Increasing
numbers of researchers have demonstrated that histone chaperones
are frequently mutated in tumors, indicating that they play a key
role in tumorigenesis. Here, we focus on the potential functional
roles of histone chaperone proteins CAF-1, HIRA, and ATRX/
DAXX in carcinogenesis (Figure 1).
HISTONE H3.1 CHAPERONE:
CAF-1 COMPLEX

As an evolutionarily conserved H3/H4 histone chaperone, CAF-
1 complex was first identified in DNA replication experiments
(17). In humans, CAF-1 consists of three subunits, P150
(CHAF1A), P60(CHAF1B), and P48(RBBP4), that were named
based on their apparent molecular weight following gel
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electrophoresis (17). The CHAF1A subunit contains a Winged-
Helix Domain (WHD) that binds DNA in a sequence-
independent manner. CHAF1A can interact with Proliferating
Cell Nuclear Antigen (PCNA) to target the CAF-1 complex at
the replication fork. The CHAF1B subunit can deliver H3/H4 by
directly interacting with anti-silencing function 1 (ASF1). The
P48 subunit contributes to the interaction of histone-modifying
enzymes and their substrates. P48 subunit binds independently
to fragments of H3/H4 using different interaction surfaces.
Overall, the function of CAF-1 complex is to deliver newly
synthesized H3/H4 dimers to the replication fork during S
phase of cell cycle (18) and participate in DNA damage repair.
CAF-1 AND CANCER

The CHAF1B subunit is overexpressed in a variety of tumors,
including high-grade glioma, melanomas, prostatic, renal,
cervical carcinomas, endometrial tumors, hepatocellular,
squamous cell carcinoma, salivary gland tumors, leukemia, and
breast cancer (19–29) (Table 1). Moreover, CHAF1B is a major
factor for driving metastasis in many different human tumors, as
increased protein levels can be used to accurately predict whether
or not these tumors will metastasize (18). In hepatocellular
carcinoma (HCC), knockdown of the CHAF1B gene reduced
the migration and invasion ability of HCC cells, suggesting that
the CAF-1 may function as an oncogene (22). In breast cancer,
CAF-1 has been shown to be a useful proliferation marker (24).
However, in another study, the downregulation of CAF-1 was
found to promote the progression of breast cancer (30). Gomes
et al. revealed that extracellular regulated protein kinases (ERK)
-dependent transfer signal promotes a switch in H3 variants
incorporated into chromatin by down-regulating histone
chaperones CAF-1 (31). In carcinoma cell lines, the ERK2
signaling reduces the levels of H3.1/H3.2 by suppressing
CHAF1B transcription, thus creating the “space” for gap-filling
with H3.3, leading to a HIRA-dependent H3.3 enrichment at the
promoter of EMT, resulting in tumor progression and metastasis
formation. There are few studies focused on CHAF1A, although
some have reported its reduction in squamous cell carcinoma
(26) and breast cancer (30), indicating potential and anti-cancer
effects. Overall these studies indicate that histone chaperones
may be valuable therapeutic targets for aggressive tumors.
HISTONE H3.3 CHAPERONE:
HIRA COMPLEX

The histone cell cycle regulator (HIRA) is an evolutionarily
conserved H3/H4 histone chaperone (32, 33). Human HIRA
was originally identified in DiGeorge syndrome patients, who
commonly have heart and brain abnormalities (34), and later
described as a histone chaperone (35). The HIRA complex is
composed of HIRA, Ubinuclein-1 (UBN1), and calcineurin-
binding protein 1 (CABIN1), which coordinate with ASF1 to
bind and deposit H3.3/H4 into the chromatin in a DNA
FIGURE 1 | This graph illustrates annotated domains of histone chaperone
complexes, along with individual 3D structures of chaperone subunits (3D
images from Uniprot 2021).
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replication-independent manner (36, 37). The HIRA subunit can
enhance the binding affinity of UBN1 towards H3.3. The UBN1
subunit is mainly responsible for specific recognition and direct
binding of H3.3 (38, 39). In addition to these core partners,
HIRA can also directly interact with ASF1b or ASF1a and
transfer H3.3/H4 dimers to HIRA complexes (40).

The HIRA complex deposits H3.3 mainly at euchromatin
regions such as promoters, enhancers, actively transcribed gene
bodies, gene regulatory regions, developmentally regulated
genes, and areas of DNA and chromatin damage and repair
(37, 41, 42). The HIRA complex interacts with the single-
stranded DNA (ssDNA)-binding protein replication factor A
(RPA) to deposit newly synthesized H3.3 at gene transcription
regulatory elements (42). It has been reported that HIRA can
promote transcription recovery after DNA damage as well as
maintain global nucleosomal architecture and genomic integrity
(32, 43, 44). Furthermore, HIRA binds to naked DNA in vitro
and non-nucleosomal regions in vivo, suggesting that deposition
of H3.3-gap filling is HIRA-dependent (45). Interestingly, some
has suggested that HIRA-mediated H3.3 deposition may be a
mechanism to maintain genomic stability when chaperone
protein CAF-1 mediated H3.1 deposition is impaired during
S-phase (6). Various lines of research suggest that HIRA is
involved in a range of processes including embryonic
development (46, 47), angiogenesis (48, 49), cellular senescence
(50, 51), and early neural development (52).
HIRA AND CANCER

HIRA is involved in cellular senescence and is closely related to
cancer carcinogenesis (Table 2). Cellular senescence is an
irreversible proliferation arrest triggered by short chromosome
telomeres, activated oncogenes, and cellular stress. Furthermore,
cellular senescence is a known tumor suppressor mechanism.
Hall et al. demonstrated that HIRA can interact with Cyclin-
CDK2, whose expression blocks S-phase progression and
promotes cellular senescence (54). HIRA can interact with
ASF1a to form facultative heterochromatin called senescence-
associated heterochromatin foci (SAHF), thereby inhibiting cell
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proliferation and causing cell senescence (50, 51). Another study
found that the HIRA mRNA overexpression in chronic myeloid
leukemia (CML). Majumder et al. demonstrated that the
downregulation of HIRA could induce the differentiation of
CML cells and inhibit their proliferation (53). Similarly, in a
metastasis-induced breast cancer model, a pronounced
upregulation of HIRA and a decrease of CAF-1 can be
observed (30). As a histone chaperone that mediates H3.3 gap-
filling, knockdown of HIRA suppresses the migration and
invasion of human breast cancer cell lines LM2 (30). These
studies suggest that HIRA may serve as a potentially effective
therapeutic target for metastatic cancer.
HISTONE H3.3 CHAPERONE:
ATRX/DAXX COMPLEX

In addition to HIRA, the ATRX/DAXX complex is another H3.3
chaperone protein. Alpha-thalassemia X-linked intellectual
disability (ATRX) and death domain-associated (DAXX)
proteins localize to promyelocytic leukemia nuclear bodies
(PMLNBs), which are multipurpose subnuclear domains
implicated in transcriptional activation, DNA replication,
apoptosis, and viral infection (55–57). The function of the
ATRX/DAXX complex as an H3.3-specific deposition complex
was identified through the purification of histone variant
chaperone complexes (58–60). The ATRX gene was first
identified in patients with the ATRX syndrome (61). ATRX
encodes a 2,492 amino acid protein with a molecular weight of
282,586 Da (62). The ATRX protein is a chromatin remodeling
factor initially described as a putative helicase protein due to
TABLE 1 | Expression of CAF-1 in tumor.

Cell Type/cancer type Cancer Expression Level Function References

High-grade glioma Increased (CAF-1/p60) Cancer Promoting (19, 20)
Melanomas Increased (CAF-1/p60) Cancer Promoting (21)
Prostatic cancer Increased (CAF-1/p60) Cancer Promoting (25)
Renal carcinomas Increased (CAF-1/p60) Cancer Promoting (23)
Cervical cancer Increased (CAF-1/p60) Cancer Promoting (23)
Cervical cancer Increased (CAF-1/p150) Cancer Promoting (29)
Endometrial tumors Increased (CAF-1/p60) Cancer Promoting (23)
Hepatocellular carcinoma Increased (CAF-1/p60) Cancer Promoting (22)
Squamous cell carcinoma Increased (CAF-1/p60) Cancer Promoting (26)
Salivary gland tumors Increased (CAF-1/p60) Cancer Promoting (27)
Breast cancer Increased (CAF-1/p60) Cancer Promoting (24)
Leukemia Increased (CAF-1/p60) Cancer Promoting (28)
Squamous cell carcinoma Decreased (CAF-1/p150) Cancer Promoting (26)
Breast cancer Decreased (CAF-1) Cancer Suppressing (30)
TABLE 2 | Expression of HIRA in tumor.

Cell Type/cancer type Cancer Expression
Level

Function References

Chronic myeloid
leukemia cells

Increased Cancer
Promoting

(53)

Breast cancer Increased Cancer
Promoting

(30)
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sequence homology with the DNA repair and recombination
Rad54 protein (63, 64). The ATRX protein contains two highly
conserved domains, an ADD (ATRX-DNMT3-DNMT3L)
domain in the N-terminal and an ATPase/helicase domain in
C-terminal (65–68). The ADD domain can recognize
H3K9me3containing nucleosomes in the absence of H3K4
methylation (69), so ATRX itself is an efficient reader of the
H3K9me3 histone mark via this domain (66, 70–75). The
ATPase/helicase domain belongs to the SWI/SNF2 (SWItch/
Sucrose Non Fermentable) family of chromatin remodeling
proteins (76). It also contains a plant homeodomain (PHD)
zinc finger domain, which is most similar to the DNA
methyltransferase 3 family of proteins (77). When ATRX binds
to nucleosomes or DNA, the ATPase chromatin remodeling
activity of the ATPase/helicase domain can be activated (77, 78).

DAXX was originally identified as a fatty acid synthase (FAS)
binding protein that induced apoptosis via Jun N-terminal kinase
(JNK) pathway (79) and further work identified it as a chaperone of
histone variant H3.3 (58). DAXX preferentially binds to promoter
regions and regulates H3.3 loading of immediate early genes after
neuronal stimulation (14, 80). DAXX is a transcription repressor
that interacts with histone deacetylases (HDAC) and DNA
methyltransferases (81). DAXX has four domains: the DAXX
helical bundle (DHB); DAXX histone-binding domain (HBD);
DAXX acidic domain and SUMO-interacting motifs (SIMs) (82).
The DHB domain contains a defined binding surface for a number
of DAXX-interacting proteins such as ATRX, Ras-association
domain family 1 isoform C (RASSF1C), p53, and mouse double
minutes 2 homolog (MDM2) (83). The HBD domain binds the
H3.3/H4dimer forH3.3-specific recognition (84). Crystal structure
analysis revealed that DAXX distinguishes H3.3 through direct
interaction with the variant-specific residues (87-90) in the core
histone fold of H3.3 (6, 60). The DAXX acidic domain appears to
increase the binding affinity to the H3.3/H4 dimer. DAXX has two
SIMs, located at the N- and C-terminus respectively. The four
domains are closely related to the regulation of DAXX transcription.
THE INTERACTION OF DAXX AND ATRX

The ATRX/DAXX complex is an ATP-dependent chromatin
remodeling complex, with ATRX being the core ATPase subunit
and DAXX being the targeting subunit (77). DAXX binds to the
Frontiers in Oncology | www.frontiersin.org 4
linker region of ATRX (residues between 1,189 and 1,326)
located between the ADD and ATPase domains through its N-
terminal DHB domain (77, 85) (Figure 2). ATRX binds
H3K9me3 via its ADD domain and heterochromatin protein 1
(HP1) via the PxVxL motif, thereby recruiting DAXX to
heterochromatin regions (86). Besides, the binding affinity of
DAXX/ATRX is stronger than DAXX and RASSF1C, p53, or
MDM2, mainly due to additional electrostatic interactions
between positively charged residues in 4HB and negatively
charged residues in ATRX (81, 83, 85, 87).
ATRX AND CANCER

There are two known Telomere Maintenance Mechanisms
(TMMs): telomerase-mediated telomere maintenance and
telomerase-independent telomere maintenance mechanism
termed alternative lengthening of telomeres (ALT) (88, 89). The
ALT pathway in cancer was first identified in 1997 (90). Unlike the
HIRA complex, the ATRX/DAXX complex facilitates H3.3
deposition at heterochromatin, such as telomeres (7, 60). As a
histone chaperone, the loss of ATRX/DAXX will impair H3.3
loading at telomeres, leading to ALT and chromosomal instability
(CIN) (91–95). Through telomere-specific fluorescence in situ
hybridization (FISH), Heaphy et al. revealed that all pancreatic
neuroendocrine tumors (PanNETs) samples with ATRX or DAXX
gene mutations displayed large, ultrabright telomere FISH signals.
This is auniversal featureofALT (92), suggesting that themutations
of ATRX and DAXX are highly related to the ALT. The ALT was
associated with DAXX or ATRXmutations in adult adrenocortical
tumorigenesis, but exclusively with ATRX mutations in pediatric
cases (96, 97). ATRX represses ALT and is required to maintain
genomic stability (98). However, Liu et al. demonstrated that there
is no significant association between ATRX mutation/loss of
expression and ALT in adult diffuse astrocytic tumors (99).
In addition, another study showed that in mouse embryonic stem
cells, although ATRX loss causes extensive genomic instability, it
does not on its own cause ALT or cancer (94, 100). Consistent with
this, a study led by Schwartzentruber et al. demonstrated that the
simultaneous presence of ATRX/H3F3A/TP53 mutations was
highly related to ALT (101). The gene H3F3A, which encodes
histone variant H3.3, was recurrently mutated in the pediatric
glioblastoma multiforme and led to the critical amino acid
FIGURE 2 | DAXX binds to the linker region of ATRX (residues between 1,189 and 1,326) located between the ADD and ATPase domains through its N-terminal
DHB domains.
January 2022 | Volume 11 | Article 806974

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wen and Chen Histone Chaperone in Carcinogenesis
mutations at the histone tail (K27M,G34R/V). Of note,mutations in
ATRXoverlapped significantly withmutations inH3F3A and tumor
suppressor TP53 (99, 101, 102), suggesting that there may be
collaborative effects among them (76). Intriguingly, H3.3-G34R/V
mutations co-occur with ATRX mutations (69, 101, 103), whereas
H3.3-K27M mutations did not (69). H3.3K27 often undergo
important post-translational modifications like methylation, which
is commonly associated with transcriptional repression (101). H3.3
mutations induce chromatin remodeling to produce different gene
expression profiles for the K27 and G34 mutations. Whole-exome
sequencing showed that genes involved in development and
differentiation are distinct among H3.3-K27 and H3.3-G34
mutants (101). ATRX loss-of-function will impair H3.3 loading at
telomeres and disrupt the heterochromatic state, facilitating
ALT (101).

In recent years, with whole-genome sequencings in cancer,
ATRX mutations/losses have been detected in a variety of
cancers, such as PanNETs (104–106), Glioblastoma multiforme
(GBM) (101), neuroblastoma (107), adrenocortical tumor (96, 97),
pediatric osteosarcoma (108), angiosarcomas (109), and Gliomas
(99). In PanNETs, there is a high ratio of inactivated to missense
mutations inDAXX/ATRX, suggesting that they function as tumor
suppressor genes. Intriguingly, patients with DAXX/ATRX
mutations often show prolonged survival than patients without
those mutations (105). In addition, whole-genome sequencing
suggests that ATRX is recurrently mutated in osteosarcoma and
is also associatedwithALT (108). These loss-of-functionmutations
ranged frompointmutations to frameshift insertions/deletions and
were mainly localized within the ADD and C-terminal helicase
domain (69, 101, 105, 110). As discussed above, while ATRX loss-
of-function is found invarious tumors, overexpressionofATRXhas
been reported in colorectal cancer cell lines (64, 111) (Table 3). For
instance, Athwal et al. demonstrated thatATRX is overexpressed in
colon cancer SW480 cells (111).
DAXX AND CANCER

DAXX mutations more frequently occur in the regions that
interact with ATRX and the H3.3/H4 dimer, suggesting that
the loss of H3.3 chaperone function of DAXX may lead to
Frontiers in Oncology | www.frontiersin.org 5
abnormal chromatin structures, epigenetic dysregulation, and
chromosome instability (82). DAXXmutations are relatively rare
compared to H3F3A and ATRX (101). For example, in
neuroblastomas, ATRX loss-of-function mutations play a role
in ALT which is related to worse prognosis (117). However,
DAXX mutations were not detected in neuroblastomas. DAXX
gene expression is not significantly changed in ALT-positive
neuroblastomas (117). In addition, mutations in ATRX and
DAXX were mutually exclusive (92, 101, 105), confirming that
they function together in the same pathway. The expression of
DAXX is often dysregulated in tumor cells (Table 4). For
example, DAXX is overexpressed in many types of cancer such
as prostate cancer (118, 120, 130), ovarian cancer (121, 122),
gastric cancer (123), and gliomas (14). DAXX is downregulated
in advanced gastric cancer (125) and human colon
adenocarcinoma cells (126, 127), lung cancer (128), and
PanNETs (129). One study suggests that DAXX binds to
anaphase promoting complex (APC) coactivators Cdc20 and
Cdh1 to inhibit the degradation of APC, thereby promoting
chromosome instability during prostate cancer development
(118). In addition, Puto et al. demonstrated that in prostate
cancer, DAXX binds to DNA methyltransferase (DNMT1)
resulting in hypermethylation of the promoter regions of the
apoptosis-and autophagy-relevant genes, represses autophagy,
and promotes tumorigenicity (119, 120). Overexpression of
DAXX promoted ovarian cancer cell proliferation, colony
formation, and migration, whereas DAXX depletion by RNA
interference had the opposite effects (121). DAXX acts as an
oncogene by interacting with PML to protect ovarian cancer cells
from DNA damage (121). A subsequent study showed that
DAXX promotes ovarian cancer ascites cell proliferation by
activating the ERK pathway and directly binding to CCAAT
enhancer binding protein-beta (CEBP-b) (122). Benitez et al.
proposed a model that DAXX removes H3.3 from the chromatin
by competing for chromatin binding to promote oncogene
transcription in PTEN-deficient PTEN-null cells (14). In oral
squamous cell carcinoma (OSCC) human samples and cell lines,
DAXX expression was frequently upregulated. A study showed
that DAXX silencing in OSCC cells suppresses cyclin D1
expression via the DAXX-TCF4 (transcription factor 4)
interaction, thereby reducing tumor growth (124). In gastric
TABLE 3 | Expression and mechanism of ATRX in tumor.

Cell Type/cancer type Cancer Expression Level Functional consequences References

Uterine leiomyomas UL subtype Decreased Activation the ALT pathway (112)
LAPC4 prostate cancer cells Decreased Activation the ALT pathway (113)
Glioblastoma multiforme (GBM) Decreased Activation the ALT pathway (101)
Angiosarcomas Decreased Activation the ALT pathway (109, 114)
Gastrointestinal stromal tumors Decreased Activation the ALT pathway (115)
PanNETs Decreased Activation the ALT pathway (104–106, 116)
Melanoma Decreased Activation the ALT pathway (110)
GBM Decreased Activation the ALT pathway (101)
Pediatric osteosarcoma Decreased Activation the ALT pathway (108)
Neuroblastoma Decreased Activation the ALT pathway (107)
Adrenocortical carcinoma Decreased Activation the ALT pathway (96, 97)
Adult diffuse astrocytic tumors Decreased Related to IDH1/2 and TP53 mutations (99)
Colorectal cancer cell lines Increased Related to overexpression of CENP-A (111)
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cancer, nuclear/cytoplasmic ratio (NCR) of DAXX expression
was found higher in gastric cancer tissues than adjacent normal
tissues (123). However, the expression of DAXX was decreased
in advanced gastric cancer samples. The upregulation of DAXX
in gastric cancer cells inhibited proliferation, migration, invasion,
and epithelial-mesenchymal transition (EMT). DAXX
overexpression inhibited the growth of gastric cancer through
downregulating snail family transcriptional repressor 3 (SNAI3),
a key inducer of EMT, by recruiting HDAC-1 into the nucleus
(125). Similarly, a study lead by Tzeng et al. demonstrated that
DAXX suppresses Tcf4 transcriptional activity and induces G1
arrest of colon cancer cells, functions as tumor suppressor (127),
and the knockdown of DAXX caused significant cell
proliferation and promote metastasis (126). In PanNETs,
DAXX/H3.3 complex suppresses target genes including
Stanniocalcin 2 (STC2) by promoting H3K9me3 (129),
suggesting that DAXX acts as a tumor suppressor. In another
study, DAXX functions as a tumor suppressor by inhibiting the
HIF-1a/HDAC1/Slug axis in hypoxia-induced lung cancer cells
(128). Furthermore, DAXX mutations usually mark the increase
of malignancy (119, 129). Similarly, the depletion of H3.3 leads
to loss of DAXX, because the HBD domain does not establish a
stable conformation without H3.3/H4 binding, revealing that the
physiological level of H3.3 is necessary for maintaining the level
of DAXX protein (81). Therefore, increased H3.3 levels in cancer
cells may augment the oncogenic function of DAXX through
increasing protein stability (82).
CONCLUSIONS

Histone chaperones play a critical role in the maintenance of global
nucleosomal architecture. Histone chaperone CAF-1 facilitates
histone H3.1 deposition in a DNA-synthesis-dependent manner.
Mutation of CAF-1 protein reduces the incorporation of H3.1 and
H3.2, leading to the increased incorporation of H3.3. Histone
variants H3.3 chaperone protein HIRA and ATRX/DAXXmediate
Frontiers in Oncology | www.frontiersin.org 6
DNA-synthesis-independent nucleosome assembly. The
chaperone HIRA promotes H3.3 deposition at transient
nucleosome-free regions (13). This could be a salvage pathway
to maintain chromatin integrity when CAF-1 mediated H3.1
deposition is impaired during DNA replication (6). Although
histone variant H3.3 was initially thought to be a marker of
transcriptional activation (59), it was later discovered to be
deposited into heterochromatic regions via ATRX/DAXX,
indicating that H3.3 deposition in repetitive regions may
contribute to chromatin stability (64). Mutations of histone
chaperones DAXX and ATRX reduce the level of histone variant
H3.3 (92) and active the ALT pathway in telomerase-negative
cancers, suggesting that the incorporation of H3.3 is necessary for
telomere maintenance (80, 131–133). In addition, inactivation
mutation of ATRX/DAXX can cause a shift towards HIRA-
mediated H3.3 deposition (2). Aside from mutations, imbalances
between H3.3 and H3.1 or H3.3/H3.1 and its chaperones may also
have detrimental effects on genome stability (134, 135). Nye et al.
proposed a “chaperone competition” model, in which changes in
chaperone expression cause their target histone variants to bind to
non-homologous partners, the location of histone variants, thereby
potentially promoting tumorigenesis (136). Histone chaperone
competition may lead to the incorrect deposition of canonical
histones and histone variants, thus results in activating the
expression of oncogenes and promoting the occurrence of cancer.

Taken together, both the up-and down-regulation of
expression of chaperone proteins can potentially contribute to
the occurrence of tumor. The contradictory conclusions
discussed above indicate that carcinogenesis is an extremely
complex process involving the interaction of multiple proteins
and signaling pathways. In addition, the chaperones play an
important role in the malignant transformation of tumors and
may serve as targets for cancer prevention and treatment. The
mechanisms of histone chaperones in tumorigenesis remain to
be fully elucidated. Further study should be done in histone
chaperones to explore the molecular mechanisms underlying
carcinogenesis and chromatin regulation.
TABLE 4 | Expression and mechanism of DAXX in tumor.

Cell Type/cancer type Cancer Expression Level Function Mechanism References

Prostate cancer Increased Cancer Promoting Binds to APC coactivators Cdc20 and Cdh1 and inhibits the degradation
of APC/binds to (DNMT1) and represses autophagy

(118, 119,
131)

Ovarian cancer cell Increased Cancer Promoting Interacts with PML (121)
Ovarian cancer ascites
cell

Increased Cancer Promoting Activate the ERK signaling pathway
and bind to CEBP-b

(122)

Gastric cancer Increased Cancer Promoting High NCR of DAXX (123)
PTEN-null cells Increased Cancer Promoting Remove H3.3 from chromatin (14)
OSCC Increased Cancer Promoting/

tumor-promoting
DAXX silencing reduces cyclin D1 expression via a D-TCF4 interaction (124)

Human gastric
carcinoma cell line
MKN45

Decreased Cancer
Suppressing

Repression of SNAI3 by recruiting HDAC-1 into the nucleus (125)

Colon cancer cell line
Hct116

Decreased Cancer
Suppressing

Suppresses Tcf4/Associated with reduced CD24 expression (126, 127)

Lung cancer Decreased Cancer
Suppressing

Suppress the HIF-1a/HDAC1/Slug axis (128)

PanNETs Decreased Cancer
Suppressing

Promote H3K9me3 (129)
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GLOSSARY

CAF-1 Anti-silencing factor 1A
HIRA Histone cell cycle regulator
DAXX Death domain-associated protein
ATRX Alpha-thalassemia X-linked intellectual disability
DNA Deoxyribonucleic acid
mRNA Messenger RNA
poly(A) Polyadenylic acid
CENP-A Centromere protein-A
H. sapiens Homo sapiens
WHD Winged-Helix Domain
PCNA Proliferating Cell Nuclear Antigen
ASF1 Anti-silencing function 1
UBN1 Ubinuclein-1
CABIN1 Calcineurin-binding protein 1
ssDNA Single-stranded DNA
RPA Replication factor A
CDK2 Cyclin-dependent kinase 2
SAHF Senescence-associated heterochromatin foci
CML Chronic myeloid leukemia
PMLNBs Promyelocytic leukemia nuclear bodies
ADD ATRX-DNMT3-DNMT3L
SWI/SNF2 SWItch/Sucrose Non Fermentable
PHD Plant homeodomain
FAS Fatty acid synthase
JNK Jun N-terminal kinase
HDAC Histone deacetylases
DHB DAXX helical bundle
HBD DAXX histone-binding domain
SIMs SUMO-interacting motifs
RASSF1C Ras-association domain family 1 isoform C
MDM2 Mouse double minutes 2 homolog
HP1 Heterochromatin Protein 1
TMMs Telomere Maintenance Mechanisms
ALT Alternative lengthening of telomeres
CIN Chromosomal instability
FISH Fluorescence in situ hybridization
PanNETs Pancreatic neuroendocrine tumors
GBM Glioblastoma multiforme
ERK Extracellular regulated protein kinases
CEBP-b CCAAT enhancer binding protein-beta
OSCC Oral squamous cell carcinoma
TCF4 Transcription factor 4
NCR Nuclear/Cytoplasmic Ratio
EMT Epithelial-mesenchymal transition
SNAI3 Snail family transcriptional repressor 3
STC2 Stanniocalcin 2
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