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Clear cell renal cell carcinoma (ccRCC) accounts for 75%–85% of renal cell carcinoma
(RCC) and has a poor 5-year survival rate. In recent years, medical advancement has
promoted the understanding of the histopathological and molecular characterization of
ccRCC; however, the carcinogenesis and molecular mechanisms of ccRCC remain
unclear. Chromatin accessibility is an essential determinant of cellular phenotype. This
study aimed to explore the potential role of chromatin accessibility in the development and
progression of ccRCC. By the combination of open-access genome-wide chromatin
accessibility profiles and gene expression profiles in ccRCC, we obtained a total of 13,474
crucial peaks, corresponding to 5,120 crucial genes and 9,185 differentially expressed
genes. Moreover, two potential function modules (P2 and G4) that contained 129
upregulated genes were identified via the weighted gene co-expression network
analysis (WGCNA). Furthermore, we obtained five independent predictors (FSCN1,
SLC17A9, ANKRD13B, ADCY2, and MAPT), and a prognostic model was established
based on these genes through the least absolute shrinkage and selection operator-
proportional hazards model (LASSO-Cox) analysis. This model can stratify the ccRCC
samples into a high-risk and a low-risk group, from which the patients have distinct
prognosis. Further analysis demonstrated a completely different immune cell infiltration
pattern between these two risk groups. This study also suggested that mast cell resting is
associated with the prognosis of ccRCC and could be a target of immunotherapy. Overall,
this study indicated that chromatin accessibility plays an essential role in ccRCC. The five
prognostic chromatin accessibility biomarkers and the prognostic immune cells can
provide a new direction for the treatment of ccRCC.

Keywords: carcinogenesis, chromatin, clear cell renal cell carcinoma, computational biology, gene expression
profiling, weighted gene co-expression network analysis
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INTRODUCTION

Renal cell carcinoma (RCC) is among the top 10 most common
lethal malignant renal tumors in adults, and clear cell renal cell
carcinoma (ccRCC) accounts for 75%–85% of RCC (1). Most
ccRCC cases are resistant to chemotherapy and radiotherapy,
most likely due to their complicated molecular mechanisms.
Surgical excision is still the main treatment. Metastasis occurs in
30% of patients leading to poor 5-year survival rates (2). Early
identification and surgical treatment are beneficial for an
optimistic prognosis. However, the underlying molecular
mechanisms of ccRCC remain ambiguous and effective
therapeutic targets are lacking. Therefore, it is urgent to
investigate the molecular mechanism and identify genes that
are responsible for the carcinogenesis of ccRCC.

DNA is a dynamic structure containing various genetic
information, which is packaged into chromatin before it can be
stored in the nucleus. Chromatin regulation by chemical
modification of DNA or histones modulates gene expression
and is important for development, differentiation, and treatment
response of cancers. During the process of gene expression,
chromatin accessibility plays a crucial role via influencing the
interaction between genes and their targets. A previous study
found that some oncogenes (BRCA1 and MYC) are located in
vulnerable regions of chromosomes (2–4). Oncogenes are the
main factors responsible for the occurrence and development of
tumors. Therefore, exploring the relationship between chromatin
accessibility and oncogenes and their role in ccRCC is helpful to
clarify the underlying mechanisms. The genomic locations of
open chromatin can be uncovered by assay for transposase-
accessible chromatin using sequencing (ATAC-seq). ATAC-seq
is a high-throughput, sensitive, and rapid method for separately
assaying genome-wide chromatin accessibility (open chromatin).
ATAC-seq made it possible to assess the gene regulatory
landscape in primary human cancers, especially the oncogenes
that are usually upregulated in tumors (5).

This study aimed to identify the key chromatin accessibility
genes of ccRCC using the combination of open-access genome-
wide chromatin accessibility profiles, gene expression profiles,
and protein–protein interactions. Additionally, we evaluated the
prognostic value of these selected gene biomarkers in clear cell
renal cell carcinoma.
MATERIALS AND METHODS

Data Acquisition
The open-access genome-wide chromatin accessibility profiles
(ATAC-seq) containing 94,864 peakCalls generated from 16
ccRCC tissues were downloaded from the NCI Genomic Data
Commons (https://gdc.cancer.gov/) in The Cancer Genome Atlas
(TCGA). The RNA-sequencing (RNA-seq) data of the above 16
ccRCC patients were also included in the study. Moreover, after
removing the samples without complete clinical data, we extracted
the transcription data and clinical follow-up information of 250
ccRCC samples and 40 normal tissues from the UCSC Xena
dataset (https://xenabrowser.net/) for further analysis.
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Selection of Crucial Peaks and Genes
In the present study, we used edge package (http://bioconductor.
org/packages/edgeR/) to normalize and calculate counts per
million (CPM) with parameters (matrix = counts, log = TRUE,
prior.count = 5) for ATAC-seq and RNA-seq data, respectively.
Then, the correlation coefficient between ATAC-seq peak count
and RNA-seq gene count was calculated. The peaks and
corresponding genes with a correlation coefficient ≥0.6 and p-
value ≤0.05 were selected as crucial biomarkers. We applied the
ChIPseeker (version 1.22.1) software (6, 7) to annotate all crucial
peakCalls via the symbol (hg38) using R (version 3.6.3, Windows
x64 bit).

Identification of Differentially
Expressed Genes
We used linear models for microarray data package (limma
http://www.bioconductor.org/packages/release/bioc/html/
limma.html) to identify the differentially expressed genes (DEGs)
with a correlation coefficient ≥0.6 from 40 normal tissues and
250 ccRCC samples. Adjust p-value ≤0.05 and |logFC| ≥1were
defined as the cutoff standards (8).

Weighted Correlation Network Analysis for
the Crucial Peaks and Genes
Weighted gene co-expression network analysis (WGCNA) is a
method to analyze gene expression patterns of multiple samples,
which can cluster genes with similar expression patterns and
analyze the association between modules and specific traits or
phenotypes (9, 10). First, we applied the WGCNA analysis for the
crucial peaks to investigate the expression pattern, with power = 8,
maxBlockSize = 15,000, TOMType = “unsigned,”minModuleSize
= 30, reassignThreshold= 0, andmergeCutHeight = 0.25. Similarly,
we carried out WGCNA analysis in the genes correlated to these
peaks. Then, themoduleswere divided into several groups based on
the cluster tree in peaks and genes. Next, the group with the largest
number of crucial peaks and correlation DEGs and the group with
the largest number of crucial genes andDEGs were selected. Lastly,
the intersection among upregulated genes and the two groups was
identified as hub genes.

Functional Enrichment Analysis and
Protein–Protein Interaction Network
Construction
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene
and Genomes (KEGG) pathway enrichment were used to
understand the molecular function and pathway of hub genes
via the enrichGO and enrichKEGG packages (11). The Search
Tool for the Retrieval of Interacting Genes (STRING) was used
to construct the protein–protein interaction (PPI) network for
these hub genes, and the results were visualized by Cytoscape
software (12). The node and edge of the PPI network were
obtained based on the score >0.400 (medium confidence).

Construction of the Prognostic Model
In this study, the univariate Cox regression analysis and Kaplan–
Meier test were applied to screen candidate prognosis-related
genes. Then, we applied the least absolute shrinkage and
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selection operator (LASSO) analysis to further refine the
prognosis-related genes (13). Finally, we constructed a multiple
stepwise Cox regression model based on these selected genes, and
the formula for the risk score was as follows:

Risk score=Exp1b1+Exp2b2+Exp3b3+⋯

Exp represents the expression level of the gene and b represents
the coefficient.

Based on the model, a risk score was calculated for each
sample and these cases were divided into the high-risk and low-
risk groups. In order to assess the ability of the model for
predicting OS, the time-dependent receiver operating
characteristic (ROC) curve analysis and the Harrell’s
concordance index (C-index) were used in the study. The area
under the curve at 1, 3, and 5 years was used to quantify the
predictive ability of the model. The principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE)
analysis were used to explore the distribution of different groups
based on the expression level of genes. Moreover, we performed
the univariate and multiple Cox regression analyses to evaluate
the association between clinical factors and prognoses.

Immune Cell Infiltration Analysis
In order to understand the immune cell infiltration pattern of
ccRCC, we performed CIBERSORT analysis on the high- and
low-risk groups to quantify the composition of 22 types of
immune cells in the tumor (14). Then, we analyzed the
relationship between immune cells and risk scores to select the
risk-related immune cells. Finally, we use Kaplan–Meier analysis
to screen the immune cells related to prognosis.
RESULTS

Selection of Crucial Peaks and Genes and
Identification of DEGs
The workflow of this study is shown in Figure 1. In total, 250
ccRCC cases and 40 normal samples were included in our study,
and the clinical information of the ccRCC patients is shown in
Table 1. First, we calculated the correlation coefficient between
ATAC-seq peak count and RNA-seq gene count. A total of
13,474 crucial peaks with correlation coefficient ≥0.6 and p-value
≤0.05 and the corresponding 5,120 crucial genes were selected
(Figure 2). Figures 2B, C present the location distribution of the
13,474 crucial peaks in the genome. Most of the crucial peaks
were found located on the regions of promoters. Through the
limma package, we identified a total of 9,185 DEGs between
tumor and normal tissues, including 4,933 upregulated genes and
4,251 downregulated genes (Figure 2D). Then, for the 5,120
crucial genes, 740 upregulated genes and 932 downregulated
genes were screened out (Figure 2E). As shown in Figure 2F, the
gene expression and chromatin accessibility of DEGs was
consistent. The bar plots displayed in groups A, B, and C
present the peak count of DEGs from 16 ccRCC samples, the
gene count of DEGs from 16 ccRCC samples, and the gene count
of DEGs from 250 ccRCC samples, respectively. Compared with
Frontiers in Oncology | www.frontiersin.org 3
the downregulated genes, the upregulated genes have higher peak
counts, which represented to be easily bound by transcription
factors (Figure 2F).

WGCNA for Crucial Peaks and Genes
The 13,474 crucial peaks were selected for further WGCNA
analysis. In this study, we set 8 as the threshold power to obtain a
high average connectivity degree and a cluster dendrogram was
clustered according to the power (Figure 3A). In the cluster
dendrogram, 44 color modules were selected among crucial
peaks and divided into six groups based on the correlation
among modules (Figure 3B). Among the six groups, the P2
group contains the greatest number of peaks and DEGs
(Figures 3C, D). Similarly, we applied the WGCNA for the
5,120 crucial genes and set the power as 7. We obtained 17
modules and these modules were divided into four groups
(Figures 4A, B). The genes in these 17 modules were selected
to further analyze the relationship between traits (clinical stages)
and modules (Figure 4C). The G4 group was associated with
worse clinical status, while the G1 group was associated with
better clinical status. Moreover, the G4 group contains the largest
number of peaks and DEGs (Figures 4D, E). Therefore, we
considered that the DEGs in P2 and G4 may play potential roles
in ccRCC. We used the Sankey plot and Venn diagram to
investigate the overlap of DEGs in the P2 and G4 groups
(Figures 5A, B). Lastly, 129 upregulated genes and 205
downregulated genes were found in the G4 and P2 groups
(Figure 5B). The 129 upregulated genes were selected for
further analysis.
FIGURE 1 | The workflow of this study.
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Functional Analysis and
PPI Network Construction
GO functional and KEGG pathway enrichment analyses for the 129
upregulated genes are presented in Figures 5C, D. A significant
enrichment in the biological process was found in related to
extracellular matrix, such as extracellular matrix organization,
extracellular structure organization, and collagen fibril organization
(Figure 5C, p < 0.05). As for the cell component tests, the upregulated
genes were enriched in the construction of the membrane, such as the
external side of the plasmamembrane, endoplasmic reticulum lumen,
membrane raft, membrane microdomain, and membrane region. In
addition, these upregulated genes are mainly related to protein
regulation in molecular function, including protease binding,
peptidase regulator activity, peptide antigen binding, endopeptidase
inhibitoractivity, andendopeptidaseregulatoractivity.KEGGpathway
analysis presented that the upregulated genes were significantly
enriched in human papillomavirus infection, phagosome, cell
adhesion molecules, and so on. In order to understand the
relationship among the upregulated genes, a PPI network was
constructed based on these 129 differently expressed oncogenes. The
PPI network contained a total of 85 nodes and 201 edges (Figure 5E)
that represent the hub genes and pathways, respectively.

Construction of the Prognostic Model
Through univariate Cox regression analysis, 62 prognostic genes
with a p-value less than 0.05 were obtained. Further LASSO
A B

D E F

C

FIGURE 2 | Selection of crucial peaks and genes. (A) The distribution of correlation coefficient between peaks and genes. Neg, correlation coefficient ≤0; Pos1, 0 ≤

correlation coefficient ≤ 0.1; Pos2, 0.1 ≤ correlation coefficient ≤ 0.2; Pos3, 0.2 ≤ correlation coefficient ≤ 0.3; Pos4, 0.3 ≤ correlation coefficient ≤ 0.4; Pos5, 0.4 ≤

correlation coefficient ≤ 0.5; Pos6, 0.5 ≤ correlation coefficient ≤ 0.6; Pos7, 0.6 ≤ correlation coefficient ≤ 1. (B) The location distribution of crucial peaks in the
genome. (C) The location distribution of crucial genes in the genome. (D) The volcano plot of the DEGs between 250 tumor tissues and 40 normal tissues. Red,
upregulated genes; blue, downregulated genes. (E) The volcano plot of the differentially expressed crucial genes between 250 tumors and 40 normal tissues. Red,
upregulated genes; blue, downregulated genes. (F) The distribution of DEGs among ATAC-seq data, RNA-seq data, and transcription data. Group A, ATAC-seq
data; group B, RNA-seq data; group C, transcription data.
TABLE 1 | The clinical characteristics of the patients with ccRCC.

Variables ATAC-seq RNA-seq

n 16 250
Age
<60 5 106
≥60 11 144

Gender
Female 7 98
Male 9 152

Grade
Grade 1 1 3
Grade 2 6 106
Grade 3 4 100
Grade 4 3 37

Unknown 2 4
Stage
T
1 9 106
2 4 42
3 3 95
4 0 7
N
0 3 235
1 0 15
Unknown 13 0
M
0 4 209
1 1 41
Unknown 11 0

OS days (average) 760.06 1,362.72
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analysis selected 11 genes as potential prognostic markers.
Figure 6A shows that the lowest lambda value can be obtained
when 11 genes are involved. Figure 6B shows the LASSO
regression coefficient curve of 11 genes. Then, these 11 genes
were analyzed by multiple stepwise Cox regression model and
five genes (FSCN1, SLC17A9, ANKRD13B, ADCY2, and MAPT)
were finally used as independent predictors to construct the
prognostic model (Figure 6C). The model is as follows:
Frontiers in Oncology | www.frontiersin.org 5
Risk score = 0:2555ExpFSCN1+0:1725ExpSLC17A9

+0:3769ExpANKRD13B�0:1930ExpADCY2

−0:1259ExpMAPT

According to this prognostic model, we found that FSCN1,
SLC17A9, and ANKRD13B are oncogenes, and overexpression
of these genes represents a poor prognosis, whereas ADCY2 and
MAPT are tumor suppressor genes and associated with a better
A B

D E

C

FIGURE 4 | WGCNA for the crucial genes. (A) Cluster dendrogram of crucial genes. (B) Module–module correlation heatmap of 17 modules in crucial genes. Red,
high correlation; blue, low correlation. (C) Relationships between mRNA modules and clinical characteristics. (D) The distribution of crucial genes among four groups.
(E) The distribution of DEGs among four groups.
A B

DC

FIGURE 3 | WGCNA for the crucial peaks. (A) Cluster dendrogram of crucial peaks. (B)Module–module correlation heatmap of 44 modules in crucial peaks. Red, high
correlation; blue, low correlation. (C) The distribution of crucial peaks among six groups. (D) The distribution of DEGs and corresponding crucial peaks among six groups.
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prognosis of ccRCC. Based on the median risk score, ccRCC
patients were divided into the high-risk and the low-risk groups
(Figure 7A–C). As shown in Figure 7D, Kaplan–Meier survival
analysis and log-rank test were used to compare the differences in
OS between the high-risk group and the low-risk group. The
results showed that the prognosis of patients in the high-risk
group was worse than that in the low-risk group. In addition, the
values of the area under the curve of the ROC curve (AUC) of 1-,
3-, and 5-year survival rates were 0.814, 0.752, and 0.791,
Frontiers in Oncology | www.frontiersin.org 6
respectively, indicating that the prediction accuracy of this
prognostic model was superior (Figure 7E). PCA and t-SNE
analysis showed that patients in different risk groups were
distributed in two directions, which represented different gene
expression patterns between the two groups (Figures 7F, G).
Then, we conducted univariate and multivariate Cox regression
analyses to explore whether the genes selected in this study can
be used as independent prognostic factors of ccRCC. Univariate
analysis showed that risk score (HR = 1.278, 95% CI = 1.204–1.356,
A B

D

E

C

FIGURE 5 | Functional analysis and PPI construction of upregulated genes. (A) The Sankey plot. (B) The Venn diagram. (C) GO analysis. (D) KEGG pathway
analysis. (E) PPI network.
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p < 0.001), age (HR = 1.022, 95% CI = 1.004–1.040, p = 0.018),
grade (HR = 2.191, 95% CI = 1.653–2.905, p < 0.001), M stage
(HR = 4.129, 95% CI = 2.668–6.392, p ≤ 0.001), N stage (HR =
3.102, 95% CI = 1.602–6.003, p < 0.001), and T stage (HR =
1.896, 95% CI = 1.498–2.400, p < 0.001) were significantly
correlated with the prognosis of ccRCC patients (Figure 8A).
In addition, after adjusting for clinical characteristics such as age,
grade, T stage, M stage, and N stage, the risk score was still an
independent predictor of ccRCC patients in multivariate analysis
(HR = 1.161, 95% CI = 1.080–1.248, p < 0.001) (Figure 8B).
Figure 8C shows the superior predictive performance of this
gene model (AUC = 0.803) than age (AUC = 0.567), gender
(AUC = 0.489), grade (AUC = 0.762), M staging (AUC = 0.762),
and N staging (AUC = 0.529).
Immune Cell Infiltration Between the High-
Risk and the Low-Risk Groups
In this study, we evaluated the composition of 22 types of immune
cells in each tumor sample and compared the immune cell
infiltration patterns between the high-risk and the low-risk
Frontiers in Oncology | www.frontiersin.org 7
groups (Figure 9). As shown in Figures 9C, D, the pattern of
immune cell infiltration is completely different between the high-
risk and the low-risk groups, suggesting that the immune system
played a corresponding role in part through the five genes that
build the model. In addition, we found that there were significant
differences in plasma cells, Tregs, NK cells resting, NK cells
activated, macrophages M0, dendritic cells resting, and mast
cells resting between the high-risk and the low-risk groups.
Plasma cells, Tregs, NK cells resting, and macrophages M0
increased significantly in the high-risk group, while NK cells
activated, dendritic cells resting, and mast cells resting increased
in the low-risk group (Figure 9E). Then, through the correlation
analysis, we found that seven types of immune cells were related to
the risk score (plasma cells, Tregs, NK cells activated, macrophages
M0, dendritic cells resting, mast cells resting, and eosinophils)
(Table 2). Next, we obtained six hub immune cells via Venn
diagram analysis (Figures 10A–G). To further analyze the role of
these cells for the prognosis of ccRCC, we performed Kaplan–
Meier analysis. Finally, we found that mast cells resting are
associated with prognosis, which could be a target of
immunotherapy (Figure 10H).
A B

C

FIGURE 6 | Construction of the prognostic gene model. (A) Selection of optimal parameter (lambda) in LASSO analysis. (B) LASSO coefficient profiles of the 11 prognostic
genes. (C)Multivariate Cox regression analysis determines the five prognostic genes as independent predictors in ccRCC. *p < 0.05; **p < 0.01, ***p < 0.001.
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A

B

D

E

F

G

C

FIGURE 7 | Risk score analysis. (A–C) Gene model risk score distribution, survival times and status, and heatmap of the expression of five prognostic genes in
patients with ccRCC. The samples were classified into the low-risk and the high-risk groups based on the cutoff value of risk scores. (D) Kaplan–Meier curves of OS
for patients with ccRCC based on the prognostic model. (E) Time-dependent ROC curves of the prognostic model. (F) PCA plot. (G) t-SNE analysis.
A

B

C

FIGURE 8 | The univariate and multivariate Cox regression analyses. (A) Univariate Cox regression analyses. (B) Multivariate Cox regression analyses. (C) ROC
curves of the risk score and clinical characteristics for 1-year survival.
Frontiers in Oncology | www.frontiersin.org December 2021 | Volume 11 | Article 8143968

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Meng et al. Chromatin Accessibility Biomarkers in ccRCC
DISCUSSION

Because of the poor prognosis of ccRCC, it is critical to
understand the molecular mechanisms leading to its
development and progression. In recent years, multi-omics
analysis methods emerged and are often used in the study of
Frontiers in Oncology | www.frontiersin.org 9
hub genes in various cancers. For example, high-throughput
data such as large-scale gene expression profiles and protein–
protein interactions are used to screen hub genes in different
diseases. Integrated bioinformatics analysis and multi-omics
analysis for diseases and cancers enrich our knowledge of
important genes and pathways and provide new insights into
A

B

D

E

C

FIGURE 9 | The immune cell infiltration analysis between the high-risk and the low-risk groups. (A) The bar chart of the proportion of immune cells in the high-risk
group. (B) The bar chart of the proportion of immune cells in the low-risk group. (C) The correlation analysis between immune cells and risk scores in the high-risk
group. (D) The correlation analysis between immune cells and risk scores in the low-risk group. (E) Violin plots showing the different abundance of the immune cells
between the high-risk (red) and the low-risk (green) groups.
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their functions and mechanisms. These methods may aid in the
identification of target genes of interest for the diagnosis and
treatment of ccRCC.

Previous studies have used bioinformatics to investigate
genes that affect the survival of patients with ccRCC.
However, researchers obtained different results by using
different bioinformatics analytic methods when they tried to
identify the key genes of the same disease. Wei et al. reported
that the expression of certain hub genes (CDKN3, TPX2,
BUB1B, CDCA8, UBE2C, NDC80, RRM2, NCAPG, NCAPH,
PTTG1, FAM64A, ANLN, KIF4A, CEP55, CENPF, KIF20A,
ASPM, and HJURP) was closely associated with overall
survival and recurrence-free survival of patients with ccRCC
using KEGG pathway analysis and PPI network construction
(15). Similarly, Yuan et al. identified 10 hub genes (TOP2A,
MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR, and
PTGS2) and six ccRCC-related modules by using co-expression
analysis and PPI network construction (2). Different from the
previous studies, we introduced the analysis of ATAC-seq and
RNA-seq to detect the correlation between genes of chromatin
accessibility and gene expression patterns. Then, WGCNA
analysis was applied to identify the peak and gene modules
associated with clinical stages. Lastly, we used LASSO-Cox
analysis to further refine the prognosis-related genes in
the study.
Frontiers in Oncology | www.frontiersin.org 10
By calculating the correlation coefficient between ATAC-seq
peak count and RNA-seq gene count, we identified 13,474 crucial
peaks and the corresponding 5,120 crucial genes (correlation
coefficient ≥ 0.6; p-value ≤ 0.05). Then, we used the WGCNA
method to analyze the potential expression pattern in crucial
peaks and crucial genes. The P2 group and the G4 group were
screened as potentially functional modules for ccRCC and
contained 129 upregulated genes that were defined as potential
oncogenes. Among the 129 oncogenes, 62 genes were confirmed
to be associated with the prognosis of ccRCC. After the LASSO-
Cox analysis, we identified five independent predictors (FSCN1,
SLC17A9, ANKRD13B, ADCY2, and MAPT) to construct a
prognostic model, which can recognize the genome difference
among patients with ccRCC and divide these patients into the
high-risk and the low-risk groups. Moreover, this model has a
better performance than other clinical factors. Thus, our study
provides a reliable and accurate predictive method for the
prognosis of ccRCC patients.

In the GO and KEGG analyses, we found that the upregulated
genes were significantly enriched in the extracellular matrix and
human papillomavirus infection. As CAF-specific mediators,
remodeling of the ECM and immunomodulation affects the
cellular and structural architecture of each tissue in cancers
(16). ECM-associated macromolecules govern a wide range of
cell functions such as migration, invasion, adhesion, and
differentiation and are key players in immunopathology,
chronic inflammatory disease, tissue fibrosis, and cancer. The
association between ccRCC and HPV infection has not been well
studied. (17) reported that HPV infection, especially the high-
risk type of HIV, is associated with ccRCC. Simultaneously, some
research reported that immunotherapy allows a significant
benefit in improving efficacy and safety in patients with HPV-
positive anal cancer and head and neck cancers.

Among the five independent predictor genes, FSCN1 and
SLC17A9 were highly expressed in various tumors.
TABLE 2 | The correlation between immune cells and risk scores.

Cells R p-value

Plasma cells 0.14 0.032
T cells regulatory 0.19 0.0025
NK cells activated −0.18 0.0038
Macrophages M0 0.28 5.7e-6
Dendritic cell resting −0.15 0.018
Mast cell resting −0.3 1.8e-6
Eosinophils −0.14 0.025
A B D

E F G
H

C

FIGURE 10 | Comprehensive analysis for the immune cells. (A) Venn diagram. (B–G) Correlation analysis between the six hub immune cells and risk scores. (H)
Kaplan–Meier analysis of mast cells resting.
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Overexpression of FSCN1 and SLC17A9 predicted a poor
prognosis (18). FSCN1 is a member of the fascin family of
actin-binding proteins and plays a critical role in motility,
adhesion, and cell migration. In ccRCC, FSCN1 is an oncogene
that is regulated by the PI3K/AKT signaling pathway. The PI3K/
AKT inhibitors or knockdown GSK-3b decreased FSCN1
expression in ccRCC cells and attenuated ccRCC cell invasion.
SLC17A9, a transmembrane protein, participates in the vesicular
uptake, storage, and secretion of adenosine triphosphate (ATP).
High SLC17A9 expression correlates with poor survival in
hepatocellular carcinoma, gastric carcinoma, and colorectal
cancer. However, there is no research on the role of SLC17A9
in ccRCC. In the study, we found that SLC17A9 may be an
oncogene and represent a poor prognosis in ccRCC. The role of
ANKRD13 in cancers is poorly studied, with only three articles
on this family gene reported in PubMed (19). The ANKRD13
family proteins contain ubiquitin-integrating motifs that
recognize the Lys-63-linked ubiquitin chains appended to
EGFR after ligand biding. Nam-Yun Cho et al. identified
ANKRD13 as one of the eight cancer-specific methylated loci
in colorectal cancer using cancer-specific DNA methylation
markers. ADCY2 is known to associate with bipolar disorder
and severe chronic obstructive pulmonary disease (20). Aberrant
methylation of ADCY2 is observed in oral cancer, colorectal
cancer, prostate cancer, and urinary bladder cancer. In our study,
ADCY2 presents as a potential suppressor gene with better
prognosis. The MAPT gene is involved in dozens of
neurodegenerative diseases called tauopathies, including
frontotemporal lobar degeneration/frontotemporal dementia
(FTLD/FTD) and Alzheimer’s disease (AD) (21). Sun et al.
reported that low MAPT expression is associated with poor OS
and DSS and shorter PFI in ccRCC (21). These five biomarkers of
chromatin accessibility may provide potential therapeutic targets
for ccRCC.

Recently, multiple lines of evidence indicate that quantification
of immune cell infiltrates can predict the outcomes of patients with
ccRCC. The tumor microenvironment (TME) is composed of
stromal cells, immune cells, extracellular matrix molecules, and
inflammatory mediators (22). Cancer cells exploit the mechanisms
that immune checkpoint receptors may inhibit the activity of killer
and proinflammatory lymphocytes, following binding to specific
ligands, to inactivate tumor-infiltrating lymphocytes (TILs) in
order to escape from immunosurveillance and survive (23). In
the present study, we performed a comprehensive analysis on the
relationship between immune cells and chromatin accessibility
markers between the two distinct risk groups. Through
CIBERSORT analysis (14), we found that the pattern of
immune cell infiltration is completely different between the
high-risk and the low-risk groups, suggesting that the immune
system plays a corresponding role in part through the five genes
that we used to build the prognostic model. A previous study
suggested that CD8+ TILs and PD1+ TILs have a co-stimulatory
effect and a high density of CD8+ TILs is associated with poor
clinical outcome (24). In our study, we found that mast cells
resting are associated with good prognosis, which may be a target
Frontiers in Oncology | www.frontiersin.org 11
of immunotherapy. Chen et al. reported that infiltrating mast cells
promote renal cell carcinoma angiogenesis by modulating the
PI3K–AKT–GSK-3b–AM signaling pathway (25). Some similar
results were also found in triple-negative breast cancer and head
and neck cancer.

The limitation of this study is that normal tissue samples were
absent in the ATAC-seq data of the 16 ccRCC patients from
TCGA used in the study. More reliable and significant
discoveries might be obtained if we can combine ATAC-seq
data from normal tissue samples. Also, the results would be more
reliable if the study included clinical and basic experimental data
to support the results.
CONCLUSION

In conclusion, our study indicated that chromatin accessibility
plays a role in ccRCC. We identified five prognostic biomarkers
of chromatin accessibility (FSCN1, SLC17A9, ANKRD13B,
ADCY2, and MAPT) and constructed a prognostic model
based on these five biomarkers. This model can predict the
prognosis of ccRCC. In addition, we found that mast cells resting
are associated with the prognosis of ccRCC and could be a target
of immunotherapy.
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