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Radiotherapy is an essential method for treating nasopharyngeal carcinoma (NPC), and
the segmentation of NPC is a crucial process affecting the treatment. However, manual
segmentation of NPC is inefficient. Besides, the segmentation results of different doctors
might vary considerably. To improve the efficiency and the consistency of NPC
segmentation, we propose a novel AttR2U-Net model which automatically and
accurately segments nasopharyngeal carcinoma from MRI images. This model is based
on the classic U-Net and incorporates advanced mechanisms such as spatial attention,
residual connection, recurrent convolution, and normalization to improve the
segmentation performance. Our model features recurrent convolution and residual
connections in each layer to improve its ability to extract details. Moreover, spatial
attention is fused into the network by skip connections to pinpoint cancer areas more
accurately. Our model achieves a DSC value of 0.816 on the NPC segmentation task and
obtains the best performance compared with six other state-of-the-art image
segmentation models.

Keywords: nasopharyngeal carcinoma, tumor segmentation, deep learning, spatial attention, recurrent
convolution, residual connection
1 INTRODUCTION

Nasopharyngeal cancer is a common malignant tumor occurring in the top and sidewalls of the
nasopharyngeal cavity, with 833,019 new cases of nasopharyngeal cancer and 468,745 deaths in
China alone during 2015 (1). Nasopharyngeal cancer affects a wide range of areas, from the nasal
cavity forward to the conus, down to the oropharynx, and up to the skull. Moreover, it is mainly
located in the central part of the head (2), making it difficult to treat with common surgical
treatments. As such, the current mainstream treatment is radiotherapy. The lesion segmentation is
one of the most critical factors affecting the effectiveness of radiotherapy.

However, traditional manual segmentation (Figure 1A) has three main drawbacks. First, the
segmentation still currently relies on specialized physicians to manually segment nasopharyngeal
January 2022 | Volume 11 | Article 8166721
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carcinoma. However, manual segmentation is very time-
consuming, taking at least 3 hour to complete the segmentation
of one single patient (3, 4). Second, as the radiotherapy process
progresses, the area of nasopharyngeal cancer keeps changing,
making it necessary to re-identify the lesion. This undoubtedly
increases the burden of doctors. Third, the effectiveness and
quality of manual segmentation may vary significantly among
physicians. Studies have shown that the segmentation area of
nasopharyngeal cancer might vary from one physician to another
for the same case (5, 6). The disagreement among physicians
increases the complexity and uncertainty of the treatment. Thus,
there is an urgent need for an automated and efficient method for
accurate nasopharyngeal carcinoma segmentation.

However, automatic segmentation of nasopharyngeal
carcinoma faces challenges from two main aspects, as shown in
Figure 1B. First, the shape and size of the cancerous area are
both very complex (7). Because of its invasive and aggressive
nature (8), it can spread to the parapharynx, skull base, and even
intracranial region. The size and shape of the cancerous area can
vary considerably from patient to patient or from one patient’s
different stages of the disease. Moreover, nasopharyngeal cancer
occurs primarily in and around the nasopharynx, in the center of
the head. The MR imaging of nasopharyngeal carcinoma may
include a wide range of tissues near the cancerous area, such as
the pharyngeal recess, pharyngeal orifice, pharyngeal tonsils,
sphenoidal sinus, superior, middle, and inferior nasal concha,
and hard and soft palate. Therefore, it is hard to distinguish
nasopharyngeal cancer from these peripheral tissues, even for
specialized doctors. Second, unlike most computer vision tasks
with similar image quality (9, 10), the MR imaging quality may
vary significantly for the same nasopharyngeal cancer. The
variation of the image can be a result of various factors (1).
MR imaging of nasopharyngeal cancer is highly dependent on
imaging equipment (2). The imaging quality of the same
equipment can be affected by the differences in physician’s
operation, contrast agent variation, and patient status.

In the last decade, deep learningmethods have been increasingly
used in computer vision, such as target detection (11, 12), salient
object detection (13, 14), video analysis (15, 16), and semantic
segmentation (17), especiallymedical image segmentation (18). For
example, Dey et al. propose a hybrid cascaded neural network for
liver lesion segmentation (19), Singh et al. use a generative
adversarial and convolutional neural network to achieve breast
tumor segmentation in mammograms (20), Conze et al. use
cascaded convolutional and adversarial deep networks to achieve
abdominal multiorgan segmentation (21) and use deep
convolutional encoder–decoders to achieve shoulder muscle MRI
segmentation (22). Many studies show that deep learning methods
can replace manual segmentation in medical image segmentation
tasks and achieve satisfactory segmentation results while saving
time and costs.

The most widely used structure among image segmentation
models is the U-Net (23). It consists of an encoding module and
a decoding module. The encoding module uses deep
convolutional neural networks to gradually extract the features
of the input image from local to global. The decoding module
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uses upsampling to recover the image resolution. Moreover, the
results of each decoding layer are fused with the results obtained
from the encoding layer by skip connection. However,
A

B

C

FIGURE 1 | The overview of AttR2U-Net model for automatic segmentation
of nasopharyngeal carcinoma. (A) The task of the AttR2U-Net model. (B) The
challenges of segmentation arise from two main aspects, in which orange
represents NPC internal causes and blue represents external cause. (C) The
four main mechanisms of our solution: attention mechanism to localize NPC
accurately, recurrent convolution to extract boundary details precisely,
residual connection to build a deeper and more efficient model, and
normalization to reduce the variations in MRI images.
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experiments find that the ordinary U-net structure seems
incompetent to segment complex tumors as nasopharyngeal
carcinoma. It frequently fails to determine the location of
nasopharyngeal cancer, especially when the cancerous area
exists only in one side of the patient’s head. In addition, the
model tends to include the surrounding tissues with similar
brightness in the identified cancerous area. As such, the results of
previous studies that use the classical U-Net structure to segment
nasopharyngeal carcinoma have relatively low precision rates in
NPC segmentation tasks. For example, Li et al. (24) only achieve
a DSC value of 0.74.

Based on the U-Net structure, we propose AttR2U-Net and
integrate several advanced deep learning method (Figure 1C),
including spatial attention, residual connection, recurrent
convolution, and normalization. Compared with general U-Net
models, our method is novel with the following four
main advantages:

• Our model introduces the attention mechanism so that it can
learn the importanceoffeatures at different spatial locations (25).

• Our model uses the recurrent convolution (26) instead of the
standard convolution to enhance the feature extraction
capability.

• Our model adds residual connections to the neural network.
It allows us to efficiently train deeper networks and solve the
network degradation problem (27).

• Our model applies normalization to all the input. It solves the
problem of contrast differences between different MRI
images.
Frontiers in Oncology | www.frontiersin.org 3
2 ATTR2U-NET FOR NPC SEGMENTATION

The AttR2U-Net model proposed is shown in Figure 2. We
incorporate three advanced computer vision methods, spatial
attention, recurrent convolution, and residual connection, into
the general U-Net through a sophisticated structural design.

The AttR2U-Net model consists of two parts: an encoder and
a decoder. It first normalizes the input nasopharyngeal
carcinoma image to solve the problem of contrast differences
between MRI images, improving the model’s efficiency. The
encoder with the residual connection and recurrent
convolution gradually reduces the image’s resolution. The
decoder implements upsampling through deconvolution with
residual connection and recurrent convolution. The encoder can
accurately extract local low-level and global high-level semantic
information layer by layer, whereas the decoder recovers the
high-resolution nasopharyngeal carcinoma segmentation map.

Additionally, by incorporating spatial attention in the feature
fusionprocess, ourmodel fuses the featuremap fromeach layer of the
encoder with the featuremap from the decoder at the corresponding
scales after passing through the attention block. Thus, ourmodel can
preserve both global macro-semantic information and local micro-
detail in the upsampling process. Finally, the decoding module
upsamples the feature map to the exact resolution as the input
image and outputs it as the segmentation map.

2.1 Attention Mechanism
The attention mechanism aims to extract the different importance
of each part of the input content, so that themodel can focus on the
FIGURE 2 | The architecture of AttR2U-Net: The encoder in AttR2U-Net consists of five Recurrent Residual Convolutional Blocks (RRCB). Each RRCB consists of a
1×1 convolution and two Recurrent Convolutional Layers, which loop Conv2d+BN+ReLU t times. Our model adds the input and output of each RRCN to achieve
the residual connection. After each RRCB layer, our model sets a 2 × 2 max pooling layer to reduce the scale of the image by half. The decoder is symmetrically
composed of four RRCBs, which are respectively connected with the first, second, third, and fourth encoding layer through the attention mechanism. The attention
map is fed to the RRCB after concatenating with the upsampling output. After each RRCB, our model places an Up-Conv layer, including an upsampling layer and a
Conv2d+BN+ReLU operation. Then output the segmentation result after a 1 × 1 convolution and a sigmoid layer.
January 2022 | Volume 11 | Article 816672
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needed parts of the input and ignore the less relevant parts.
DeepMind firstly proposes attention for image classification (28).
Then, it iswidely used in various deep learningfields in recent years,
including natural language processing (29, 30), image classification
(31), video classification (32), and emotion recognition (33).
Moreover, there are continuous studies to apply attention in deep
convolutional neural networks (34). It results in a number of studies
using attention for image segmentation, such as DANet (35) which
applies self-attention on the spatial domain and channel domain,
OCNet (36) which applies a semantic aggregation strategy, and
PANet (37) which applies pyramidal structure attention on
layer domain.

Inspired by Attention U-Net (38), our model implements spatial
attention by adding attention blocks to the general U-net structure
for the high-precision nasopharyngeal carcinoma segmentation.

Our model inserts the attention block in the skip connection
connecting the encoder and decoder. The input of each attention
block is the feature map Xe(i) output from the encoder on the
corresponding downsampling scale and the feature map Xd(i-1)

output from the upper layer in the decoder. The attention block
first linearly transforms them using channel-wise 1×1
convolutions with the parameters of We(i) and Wd(i-1), where
We(i) represents the parameters of the convolution to the input
from the encoder and Wd(i-1) represents the parameters of the
convolution to the attention guidance from the decoder. Our
model calculates the attention coefficients ai as

li = WT
e(i)Xe(i) +WT

d(i−1)Xd(i−1) + bli (1)

mi = Y T ( Re LU(li)) + bmi (2)

ai =
1

1 + e−mi
(3)
Frontiers in Oncology | www.frontiersin.org 4
where i refers to the level of the encoder or decoder, YT

corresponds to a 1×1 convolution, li denotes the result of a
linear transformation of input Xe(i) and attention guidance Xd(i-

1), and mi is the intermediate variable we define. Our model
defines the attention coefficients as the output of a sigmoid layer
ai and ai ϵ [0, 1]. According to the formula, our model utilizes
more accurate semantic information from the higher level to
guide the extraction of the attention region from the lower-level
feature map. The output of the attention block is the attention
coefficients and element-wise product of the input feature map.
We visualize attention coefficients to the attention map, as shown
in Figure 3.

Therefore, the output extracts the vital part of the input
feature map for the segmentation while weakening its
irrelevant part. In addition, our model uses soft attention. Its
main feature is differentiable, making it easier to learn
by backpropagation.
2.2 Recurrent Convolutional Block
The recurrent convolution is a commonly used method in text
classification (39). Some studies apply it to the field of computer
vision, such as Liang et al. (27) who use it in the Object
Recognition and Alom et al. (40) who use it in the image
segmentation. Inspired by the above studies, our model adds
the recurrent convolution block to make it applicable for
nasopharyngeal cancer segmentation.

In our model, recurrent convolutional layers replace standard
convolutional layers so that our model can keep deepening and
integrating contextual information on discrete time steps. It effectively
improves the ability to extract detailed features. By setting the total
time step parameter to t, the Conv+BN+ReLU operation repeats t
times in each recurrent convolutional block. The input for each
convolution is defined as follows:
FIGURE 3 | Radar plot showing the comparison of evaluation metrics obtained from each model in the comparison experiment. The five vertices of the radar plot
respectively represent the average DSC value, average sensitivity, average specificity, average precision, and average Jaccard similarity coefficient. Note that this
radar plot uses percentages to express the above evaluation metrics to make the comparison more distinguishable, as shown in equation 11.
January 2022 | Volume 11 | Article 816672
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I(t) = (Wf )
TX + (Wr)

TO(t − 1) + b (4)

showing that the input I(t) consists of the summationof the original
inputX and the outputO(t – 1) of the previous convolution.Wf and
Wr refer to the weights of the feedforward path and recurrent path,
and b is the bias. In addition, it is essential to note that X remains
constant throughout the iteration.

In our Recurrent Convolutional Block, each loop contains the
following operations:

y1,t = (W1,t )
Tx + b1,t (5)

y2,t ,i = g � y1,t ,i − my1,tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
1,t + e−5

q + b (6)

where t refers to the current time step,W1,t refers to theweight of an
ordinary convolution, b1,t refers to the bias, my1,t refers to the mini-
batchmean of y1,t,s 2

1,t refers to itsmini-batch variance, and g andb
are the two parameters to be learned. The second equation actually
completes a batch normalization operation on y1,t .

In general, at each time step t, the model does a convolution on
the input I(t). Then, the batch normalization (BN) and the
activation function (ReLU) were applied to get the output O(t) of
that time step and use it as one of the input terms for the next
time step.

2.3 Residual Connection
Residual connection (26) is a well-known deep learning method. It
represents the final output as a linear superposition of its input
and a non-linear transformation of its original output. It combines
them by direct summation. Many studies show that the
application of residual connection in deep neural networks can
effectively solve the network degradation problem (41, 42) and the
shattering gradient problem (43) during the backpropagation of
training. Besides, it can also make the training more accessible.

Let us assume that the mathematical representation of the
residual connection of the ith layer in the t-th time step is as:

xi+1,t = F½ai,txi,t + f ((Wi,t )
Txi,t + bi,t )� (7)

where xi,t is the input of the ith layer in the tth time step, a refers
to the modulating scalar, Wi,t refers to the weight of the
recurrent convolution of the i-th layer in the t-th time step,
and bi,t refers to its bias. f refers to the operation after recurrent
convolution in each time step, which denotes the batch
normalization and the ReLU activation function. F refers to
the operation after each time step. Here, F is set to identity. Thus,
when introducing the residual connection, our model defines a
linear summation of the convolutional output and input after
modulating as a new input for the next layer.

As the number of layers increases, the residual connections
keep recurring; the residual connections on layer I relative to the
previous layer i can be expressed as:

xI,i,t = (
YI−1

k=i

ak)xi,t +o
I−1

k=i

qI,k,t (8)
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qI,k,t = (
YI−1

h=k+1

ah)f ((Wk,t )
Txk,t + bk,t ) (9)

where xi,t refers to the input of the i-th layer in the t-th time step,
a refers to the modulating scalar,Wk,t refers to the weight of the
recurrent convolution of the kth layer in the tth time step, and
bk,t refers to its bias. f refers to the operation after recurrent
convolution in each time step. Moreover, qI,k,t is the intermediate
variable we define. Finally, xI,i,t is the input of layer I with
residual connections.

2.4 Normalization Method
Since the MRI data come from multiple batches of different MR
scans, and there are differences in contrast agents, physician
operations, etc., the brightness and contrast between images vary
significantly. For example, the brightness of some images may be
very dark, in which nasopharyngeal cancer appears as dark areas,
while the brightness of other images may be very bright, with
high contrast, in which nasopharyngeal cancer appears as bright
areas, as shown in Figure 1B. It often requires precise adjustment
during manual segmentation. In order to minimize the
additional difficulties caused by data variation for training, our
model normalizes all the input data.

Several previous studies also point that normalization can
make the data more uniformly distributed. It can effectively
improve the speed of solving the optimal solution by gradient
descent, making it easier for the model to converge and
potentially improve the model performance. Therefore, our
model applies the Z-score normalization to all images based on
all original pixels’ mean and standard deviation. It is also known
as standardization. Images after processing have a mean of 0 and
a variance of 1 conforming to the standard normal distribution.

2.5 Implementation Details
In the training process of AttR2U-Net, our model uses the Adam
optimizer (44) to implement the gradient descent method and set
the parameters b1 and b2 to 0.9 and 0.999, respectively. The
learning rate is dynamically adjusted using the learning rate
decay strategy. The model also uses L2 regularization (45),
dropout (46), and other mechanisms to solve the overfitting
problem to some extent. We train the model with the shuffled
nasopharyngeal carcinoma images with segmentation labels.
Moreover, we promptly test the model on the validation set at
the end of each training epoch to adjust the parameters.
3 EXPERIMENT

3.1 Materials
3.1.1 Data Acquisition
Our model uses MRI images from a total of 93 patients diagnosed
with nasopharyngeal carcinoma. The patients are scanned by the
Siemens Aera MRI system. The resulting MRI images are stored in
Digital Imaging and Communications in Medicine (DICOM) file
format. Specifically, all MRI data are T1-weighted, and contrast
agents are used during the imaging process. The scanning area
January 2022 | Volume 11 | Article 816672
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includes the entire head and neck region (approximately 100
slices), resulting in T1W+C images with a voxel spacing of
0.71875×0.71875×3mm3. We annotate the MRI images of each
patient with the nasopharyngeal cancer boundary at the pixel level
according to their pathological characteristics.

3.1.2 Data Preprocessing
To utilize the raw data for 2D image segmentation, we extract
956 slices containing the nasopharyngeal cancer region from the
DICOM files and transform them into 2D images. However, the
raw images contain a large amount of black backgrounds. Our
model crops each image to the region of interest (ROI) to reduce
unnecessary computing workload. The cropped image includes
the nasopharyngeal carcinoma area and the rest of the head
region. Then our model resizes them to 256 × 256. Our model
applies data augmentation methods, including rotation,
mirroring, and affine transformation. In the end, our dataset
includes 4,775 nasopharyngeal carcinoma images and their
segmentation labels. 80% of the data are used for the training
set, 10% are reserved as test set, and 10% are reserved as
validation set.

3.2 Evaluation Method
In the training process, our model uses the most commonly used
binary cross-entropy loss function, also known as BCELoss, to
evaluate the training effect. The loss value L is defined as:

L = −
1
No(ynln(pn) + (1 − yn)ln(1 − pn)) (10)

where N refers to the total number of pixels, yn denotes whether
the nth pixel belongs to the NPC region (if yes, then yn = 1), and
pn denotes the probability that the pixel belongs to the NPC
region according to our model’s prediction.

In the testing process, our model uses the test set of
nasopharyngeal carcinoma MRI images (478 images in total)
to evaluate the segmentation effect. To quantify the segmentation
performance of our model, DSC value (47), Jaccard similarity
(48), precision, specificity, sensitivity, and PR curve are used. In
addition, we also perform patient-wise 5-fold cross validation
experiments. We discuss our model performance in Results.

3.3 Comparison Method
In this study, we thoroughly review the field of computer vision
and identify six advanced image segmentation models: SEUNet
(49), FCDenseNet (50), NestedUNet (51), DeepLabV3 (52),
DANet (35), and FCN (53). We use the official model of the
corresponding papers and use the optimal parameters suggested
by the authors. We then train them with the same training set for
nasopharyngeal carcinoma segmentation and keep the same
maximum number of training epochs for each model. For each
comparison model, we select the best-performing trained model
from the training process.

In the testing process, we use the same nasopharyngeal
carcinoma segmentation test set to evaluate each model and
calculate five evaluation metrics (the same as those used by
AttR2U-Net) and plot PR curves. For demonstration, we also
select seven typical MRI images of nasopharyngeal carcinoma as
Frontiers in Oncology | www.frontiersin.org 6
inputs and compare the output of each model, which are then
compared with the manual segmentation result.
4 RESULTS

4.1 Performance of Our Model
The results show that our model is superior to other models for
nasopharyngeal carcinoma segmentation. The test results of our
model are as follows: The average DSC value obtained from the test
is 0.816, the average Jaccard similarity is 0.692, the average
precision is 0.825, the average specificity is 0.998, and the average
sensitivity is 0.814. The area under the curve (AUC) in the PR
curve (Figure 4, purple line) is 0.8945. We further compare the
segmentation map output from the model with the ground truth
obtained from manual segmentation in Figure 5 (row 2). Our
model achieves excellent segmentation results consistently across
most nasopharyngeal cancer cases, where the segmentation target
areas are large (Figures 5C, F, G) and small (Figures 5A, B, E).
Our model also handles shape variations in nasopharyngeal
carcinoma well. The performance is consistent across cases
where nasopharyngeal carcinoma is more regularly shaped
(Figures 5D, F) or less regularly shaped (Figures 5B, E). Overall,
the segmentation results of our model overlap well with the manual
segmentation ground truth.

We try to adjust the hyperparameter t of our model, where t
refers to the number of loops in each recurrent convolution
block. We set t to 1, 2, 3, and 4, respectively, and the comparison
results are shown in Table 1. We also use PR curves to visualize
the comparison, as shown in Figure 4A. From the above
comparison, our model achieves the best performance at t = 3.
4.2 Ablation Analysis
Ablation analysis aims to analyze the effectiveness of various
components of AttR2U-Net in improving the segmentation
accuracy of nasopharyngeal carcinoma. We compare the
performance of eight variants of AttR2U-Net on the
nasopharyngeal carcinoma segmentation task, including a
variant only with spatial attention, a variant only with
recurrent convolution, a variant only with residual connection,
a variant with spatial attention and recurrent convolution, a
variant with spatial attention and residual connection, a variant
with recurrent convolution and residual connection, the
skeleton, and the model without the normalization method.

The results shown in Table 2 indicate that our intact model
outperforms the eight comparison variants in several vital
metrics, especially DSC value. Given the small differences in
mean values for some metrics in Table 2, we perform a Kruskal–
Wallis test, where the p-values obtained from testing each variant
against our full model in terms of DSC values are 0.009 (Att
+Rec), 2 × 10–4 (Att+Res), 7 × 10–4 (Rec+Res), 7 × 10–6 (Only
Att), 1 × 10–14 (Only Rec), 3 × 10–7 (Only Res), 3 × 10–7

(Skeleton), 8 × 10–21 (Without Norm), indicating that each
variant is significantly different from our full model on DSC
values. We also plot PR curves for each ablation experiment as
shown in (Figure 4B). Therefore, combining spatial attention,
January 2022 | Volume 11 | Article 816672
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residual connection, recurrent convolution, and normalization
method can improve the segmentation performance on the
nasopharyngeal carcinoma to varying degrees. Specifically,
spatial attention improves the accuracy of macroscopic
localization, whereas residual connection and recurrent
convolution improve segmentation boundary detail .
Normalization solves the problem of contrast differences
between MRI images.

4.3 Comparison With State-of-the-Art
Models
We compare our model with six state-of-the-art models in a
comprehensive manner. The comparison models include
SEUNet, DANet, FCDenseNet, NestedUNet, DeepLabV3, and
FCN16. Examples of NPC segmentation results for each model
and their corresponding DSC values are shown in Figure 5. For
Frontiers in Oncology | www.frontiersin.org 7
cancerous regions with complex shapes, our model performs
better in detail retention and has a higher degree of agreement
with manual segmentation. For cases with abnormal cancerous
location, our model can find the exact region more accurately
than comparison.

We use the same five evaluation metrics as before to quantify
the comparison results. Our model outperforms the above six
comparison models in the critical metrics for nasopharyngeal
carcinoma segmentation. Here we list the test results of the three
models with the highest DSC values as follows: For NestedUnet,
the average DSC value is 0.790±0.047, 3.19% lower than ours, the
average Jaccard similarity is 0.657±0.063, 5.06% lower than ours,
the average precision is 0.741±0.058, 10.18% lower than ours, the
average specificity is 0.997±0.001, 0.10% lower than ours, and the
average sensitivity is 0.856±0.064, 4.91% higher than ours. For
DeepLabV3, the average DSC value is 0.787±0.040, 3.55% lower
than ours, the average Jaccard similarity is 0.651±0.054, 5.92%
lower than ours, the average precision is 0.706±0.057,
14.42% lower than ours, the average specificity is 0.996±0.001,
0.20% lower than ours, and the average sensitivity is 0.894±0.041,
8.95% higher than ours. For SEUNet, the average DSC value is
0.787±0.039, 3.55% lower than ours, the average Jaccard
similarity is 0.651±0.053, 5.92% lower than ours, the average
precision is 0.702±0.055, 14.91% lower than ours, the average
specificity is 0.996±0.001, 0.20% lower than ours, and the
average sensitivity is 0.903±0.043, 9.86% higher than ours.

Given the small differences in the mean values of certain
metrics in the model comparisons, we perform the Kruskal–
Wallis test, in which the p-values obtained from testing each
model against our model on DSC values are 0.001 (NestedUnet),
1.4 ×10–5 (DeepLabV3), 1.4 ×10–5 (SEUnet), etc., indicating that
each model is significantly different from our model on DSC
values. The box plots of DSC values obtained from the tests of
each comparison model and the Kruskal–Walis test results are
shown in Figure 6.

To show the performance differentiation among the models
more intuitively, we plot testing results as radar plots shown in
Figure 7. Additionally, the radar plot transforms the values of
each metric into percentage form to make 0.5 value 0% and the
maximum value 100%. The conversion formula is as:

Yi =
Xi − 0:5

Maxi − 0:5
� 100% (11)

where Maxi denotes the maximum value of the ith evaluation
metric, Xi denotes the test result of the model on that evaluation
metric. For the radar plots, the more peripheral the hexagon
enclosed by the model is, the better the model’s performance is.
The hexagon enclosed by our model is at the outermost part.
Moreover, our model ranks first in all evaluation metrics except
for a slightly lower SE value. In addition, we plot the specific
values of 3 key metrics (DSC value, Jaccard similarity, and
precision) for each model, as shown in Figure 8. Our model
achieves the maximum value on these three most widely used
evaluation metrics.

PR curves shown in Figure 9 compare our model with the
state-of-the-art model. Among the seven models, our model has
A

B

FIGURE 4 | (A) The PR curve of AttR2U-Net with t values of 1, 2, 3, and 4.
(B) The PR curve of the ablation analysis experiment includes 7 models with
different parts of AttR2U-Net. The PR curves use a form of the rose diagram
to show the comparison results more visually. The area value refers to the
area under the PR curve in a plane right-angle coordinate system, also known
as AUC. From (A), our model achieves the best performance when t is taken
as 2. From (B), our model has the largest AUC value and is at the outermost
part of the rose diagram.
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FIGURE 5 | Examples of NPC segmentation results: We select seven typical MRI images of nasopharyngeal carcinoma and present the segmentation results of our
model and seven models used for comparison. From top to bottom, the manual segmentation results and model segmentation results of our model, SEUNet,
DANet, FCDenseNet, NestedUNet, DeepLabV3, and FCN16, respectively. For each MRI image of nasopharyngeal carcinoma, we draw the manual segmentation
boundary with skyblue contours and the segmentation boundary of the corresponding model with purple contours and then calculate the DSC value, which is
displayed below the image. We mark the maximum DSC value for each image in red.
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the largest area under the curve (AUC). The four models with the
best AUC are AttR2U-Net (AUC = 0.8945), SEUnet (AUC =
0.8827, 1.32% lower than ours), DeepLabV3 (AUC = 0.8800,
1.62% lower than ours), and NestedUnet (AUC = 0.8779, 1.86%
lower than ours).

To further demonstrate our model’s generalization
performance, we also perform the patient-wise 5-fold cross
validation experiments. Table 3 presents the model comparison
results (DSC value) for the patient-wise 5-fold cross validation.
Our model achieves a mean DSC value of 0.7914±0.021
Frontiers in Oncology | www.frontiersin.org 9
(0.7078~0.7914) in cross-validation. The number of
nasopharyngeal carcinoma slices included in each patient case
varies widely, ranging from a few to dozens, resulting in different
sizes of the training set and test set between different fold numbers.
Thus, the results of each experiment in the patient-wise 5-fold
cross validation are somewhat different.

The above results suggest that our model is the most reliable
for the fully automated end-to-end nasopharyngeal cancer
segmentation task. For nasopharyngeal carcinoma, which is
relatively complex and difficult to segment accurately, the
TABLE 1 | Experiments indicate that our model achieves the best performance when t = 3.

t DSC JS PC SP SE

1 0.792 ± 0.045 0.659 ± 0.061 0.722 ± 0.067 0.996 ± 0.001 0.885 ± 0.046
2 0.815 ± 0.039 0.690 ± 0.055 0.750 ± 0.057 0.997 ± 0.001 0.898 ± 0.045
3 0.816 ± 0.041 0.692 ± 0.058 0.825 ± 0.058 0.998 ± 0.001 0.814 ± 0.057
4 0.803 ± 0.046 0.675 ± 0.063 0.743 ± 0.072 0.997 ± 0.001 0.885 ± 0.046
January 2022 | Volume 11 |
TABLE 2 | The ablation analysis validates the effectiveness of our model’s configuration.

Model DSC JS PC SP SE

Att+Rec+Res 0.816 ± 0.041 0.692 ± 0.058 0.825 ± 0.058 0.998 ± 0.001 0.814 ± 0.057
Att+Rec 0.799 ± 0.038 0.668 ± 0.052 0.725 ± 0.050 0.996 ± 0.001 0.896 ± 0.047
Att+Res 0.785 ± 0.051 0.650 ± 0.067 0.780 ± 0.060 0.998 ± 0.001 0.803 ± 0.084
Rec+Res 0.792 ± 0.033 0.658 ± 0.045 0.723 ± 0.047 0.996 ± 0.001 0.879 ± 0.041
Only Att 0.783 ± 0.044 0.646 ± 0.058 0.736 ± 0.065 0.997 ± 0.001 0.846 ± 0.056
Only Rec 0.739 ± 0.058 0.592 ± 0.002 0.679 ± 0.079 0.996 ± 0.001 0.827 ± 0.073
Only Res 0.775 ± 0.048 0.636 ± 0.064 0.753 ± 0.059 0.997 ± 0.001 0.808 ± 0.077
Skeleton 0.769 ± 0.063 0.632 ± 0.080 0.713 ± 0.089 0.996 ± 0.002 0.858 ± 0.076
Without Norm 0.716 ± 0.060 0.562 ± 0.072 0.686 ± 0.071 0.996 ± 0.001 0.764 ± 0.097
FIGURE 6 | Box plots of the DSC values obtained from the tests on the test set and its Kruskal-Walis test results. The results show that our model achieves the
highest DSC values in the test of nasopharyngeal carcinoma segmentation and is significantly different from other models.
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AttR2U-Net structure could achieve better performance in terms
of accurate localization and detail preservation of the
cancerous region.
5 DISCUSSION

This study designed a novel model for automatic nasopharyngeal
carcinoma segmentation called AttR2U-Net featuring spatial
attention, residual connection, recurrent convolution, and the
normalization method. The combination of these features
dramatically improves the segmentation performance, allowing
our model to take a closer step to the full automation of the
nasopharyngeal carcinoma area segmentation. Accurate
segmentation of the nasopharyngeal carcinoma area is critical
to patients’ radiotherapy. Our end-to-end AttR2U-Net model
can efficiently segment the nasopharyngeal carcinoma region in a
certain degree of accuracy, significantly saving specialized
physicians valuable time and circumventing the boundary
variances caused by different physicians. We demonstrate that
our model is more robust to irregular shapes of nasopharyngeal
carcinoma than state-of-the-art models in the literature.
FIGURE 7 | Radar plot showing the comparison of evaluation metrics
obtained from each model in the comparison experiment, which includes our
model, DANet, DeepLabV3, FCDenseNet, FCN, NestedUNet, and SEUNet.
The five vertices of the radar plot respectively represent the average DSC
value, average sensitivity, average specificity, average precision, and average
Jaccard similarity coefficient. Note that this radar plot uses percentages to
express the above evaluation metrics to make the comparison more
distinguishable, as shown in equation 11.
Frontiers in Oncology | www.frontiersin.org 10
FIGURE 8 | Comparison plots of specific values of 3 key evaluation metrics:
include average DSC values, average Jaccard similarity coefficient, and
average precision obtained from the test on the nasopharyngeal cancer
segmentation test set.
FIGURE 9 | The PR curve of model comparison on the nasopharyngeal
carcinoma segmentation test set. The area value indicates the AUC value of
each PR curve, and it can be seen that the AttR2U-Net model has the
highest AUC value and is located at the outermost part.
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In previous studies of lesion segmentation, deep learning and
artificial intelligence techniques are widely used in relatively
simple tasks such as segmentation of organs like lung (54),
liver (55), and ventricular (56), pancreas (57). Unlike the
segmentation in the organs above, the segmentation of
nasopharyngeal carcinoma has a higher complexity. It is
because its location is in the brain, and the tissue structure in
the human brain is the most complex in the human body. The
differentiation between nasopharyngeal carcinoma and the
surrounding tissues is extremely challenging as its cancerous
area is usually mixed with surrounding tissues. Even a
professional doctor takes a long time to build one patient’s
manual segmentation. In addition, compared with other
computer vision tasks (58, 59), extremely high precision and
detail preservation hold higher stakes for medical image
segmentation, as inaccuracies in NPC segmentation may lead
to damages of the patient’s brain.

Our model achieves a DSC value, a commonly applied
measure of the similarity of segmentation results to ground
truth, of 0.816 on the nasopharyngeal carcinoma segmentation
task. In this study, we compare AttR2U-Net with six other
advanced image segmentation models and do ablation analysis
experiments. To the best of our knowledge, our model achieves
the highest level of performance among fully automated
nasopharyngeal carcinoma segmentation models. Specifically,
our model design performs more precise localization and
higher detail preservation of nasopharyngeal cancer
segmentation. As such, our model has significant practical
implications for the NPC treatment.

However, our model still has a small number of outlier cases
with poor segmentation, mainly those nasopharyngeal
carcinomas with a large extent, highly unconventional shape,
and extremely remote positions. Our model may be used to assist
physicians in segmenting the cancerous region. Nevertheless,
given the importance of this segmentation for radiotherapy, it
still cannot perform the segmentation task thoroughly in a fully
standalone manner. The physician’s post-check and calibration
remain necessary.
6 CONCLUSION

This study proposed a fully automated end-to-end segmentation
model called AttR2U-Net for nasopharyngeal cancer segmentation.
Frontiers in Oncology | www.frontiersin.org 11
Our model creatively combines several advanced computer vision
methods, including spatial attention, residual connection, recurrent
convolution, and normalization. Compared with other state-of-the-
art image segmentation models, our model has the highest
segmentation performance. Additionally, our model has excellent
efficiency relative to manual segmentation. Thus, it is a promising
model to assist physic ians in the radiotherapy of
nasopharyngeal carcinoma.
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TABLE 3 | Results (DSC value) of model comparison experiments using patient-wise 5-fold cross validation.

Model Fold number Mean

1 2 3 4 5

AttR2U-Net 0.8020 0.8044 0.8030 0.7552 0.7923 0.7914 ± 0.021
Nested UNet 0.8080 0.7870 0.8023 0.7295 0.7627 0.7779 ± 0.032
SEUnet 0.8118 0.7893 0.7926 0.7353 0.7588 0.7776 ± 0.030
FCDenseNet 0.7871 0.7561 0.7932 0.7327 0.7126 0.7563 ± 0.035
DeepLabV3 0.7722 0.7435 0.7708 0.7059 0.7499 0.7485 ± 0.027
DANet 0.7651 0.7269 0.7474 0.6933 0.7146 0.7295 ± 0.028
FCN 0.7461 0.6885 0.7247 0.6727 0.7072 0.7078 ± 0.029
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