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Mouse models of cancer provide a powerful tool for investigating all aspects of cancer
biology. In this study, we used our recently developed machine learning approach to
identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin
and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to
discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS
identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then
evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic
mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the
presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model
on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–
Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients
compared to CMS-1 patients (p = 0.024) and added significant prognostic value in
multi-variable analysis of clinical and molecular factors, namely, age, pathological stage,
and PAM50 molecular subtype. Thus, application of CMS to digital images of routine
workflow H&E preparations can provide unbiased biological stratification to inform
patient care.

Keywords: mouse mammary tumor, metastasis, human breast cancers, transfer learning, cellular morphometric
biomarkers, cellular morphometric subtypes, overall survival (OS)
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INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed cancer in
women, and is the second leading cause of cancer death among
women in the U.S. Breast cancer is highly heterogeneous in
regard to molecular events, histological properties, and clinical
outcomes; hence, stratification of BC is mandatory for precision
diagnosis, prognosis, and treatment of patients. Currently, the
presence of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2) are used
to make many clinical decisions about treatment. The molecular
landscape has also been used to classify BC into genomic
subtypes that have prognostic value (1, 2). For example, one of
the first classifications based on microarray analysis of gene
expression describes five subtypes, namely, luminal A, luminal B,
HER2 positive, basal-like, and normal-like, and showed
significantly different outcomes across subtypes (3). Other
genomic tests report the activity of specific genes to predict the
likelihood of recurrence or metastatic progression to aid clinical
decision-making. The prognostic implication of genetic
alterations, such as BRCA1, BRCA2, and PALB-2 germline
mutations, are also widely used in women with familial history
of breast cancer (4). But the oldest and most basic classification
is that by microscopic examination of the histology that
encompasses the morphological features of cancer cells, their
distribution, and the organization of local surrounding
tissue. The World Health Organization classification recognizes
at least seventeen distinct histological subtypes; thus, the
complexity and variety of the disease warrants an automated,
unbiased approach.

Mouse models have an essential role in cancer research to
understand the genetic basis of mammary tumor development
and progression, to investigate consequences of frequent
mutations, to study the processes leading to and impacting
tumor development, and to identify and test putative therapies
(5–7). As in BC, mouse mammary cancer is diverse in terms of
histological characteristics and molecular and genetic alterations.
Human breast cancer diversity is particularly well modeled in
carcinomas arising in transgenic mice lacking expression of
Trp53 in mammary epithelium (8).

We recently developed an artificial intelligence (AI)
framework (CMS-ML: Cellular morphometric subtyping via
machine learning) to identify cellular morphometric biomarker
(CMB) used to discover cellular morphometric subtype (CMS).
We applied this framework to low grade gliomas, and discovered
CMS associated with specific molecular alterations, immune
microenvironment and prognosis (9). In the present study, we
used the same framework to identify CMB and discover CMS
from digital images of standard hematoxylin and eosin (H&E)
staining of mouse mammary tumors. We then evaluated the
CMB and CMS learned from one mouse mammary tumor model
to interrogate a different mouse mammary tumor model and
then applied these to human BC. Our analyses showed that the
application of CMS-ML to digital images of routine workflow
H&E preparations provide unbiased biological stratification that
can be used to inform patient care.
Frontiers in Oncology | www.frontiersin.org 2
METHODS

Animal Models
Two animal models were used in this study, i.e., orthotopicTrp53-
null mammary transplant model (referred to herein as Trp53-null)
and MMTV-Erbb2 transgenic mouse model (referred to herein as
Erbb2). In Trp53-null model, mammary tumors were developed
from transplants of non-irradiated Trp53−/− BALB/c mammary
gland fragments into cleared fat pads of female F1Bx hosts, where
F1Bx mice were the progeny of the cross (BALB/c × SPRET/EiJ)
F1 × BALB/c (10). The work related to Trp53-null model was
approved by the Animal Welfare and Research Committee at
Lawrence Berkeley National Laboratory. For the Erbb2 model,
mammary tumors were derived from a female F1BX population of
the progeny of the cross (C57BL/6 × FVB/N MMTV-Erbb2) F1 ×
FVB/N. Mice with only one primary mammary tumor were
selected to ensure that the metastatic foci were from that tumor
(11). The work related to Erbb2 model was approved by the
Institutional Animal Care and Bioethical Committee of
Universidad de Salamanca. We leveraged data derived from two
previous studies (10, 11), and did not carry out any additional
animal work.

Data Collection
The training data was digital images of H&E-stained sections of
formalin-fixed paraffin-embedded (FFPE) Trp53-null mammary
tumors (Supplementary Table 1) (10). Tumors were detected by
palpation. Upon detection, tumor size was measured using
digital calipers. For tumor bearing mice, survival was defined
as the time from tumor onset (tumor size about 2 × 2 mm) to
euthanasia (tumor size reaches 10 × 10 mm). The independent
validation specimens and associated data were mammary tumors
from the MMTV-Erbb2 transgenic model (Supplementary
Table 2) (11). Distant metastases were detected by gross
evaluation and histopathology. Only mice with a single
primary mammary tumor were selected for this study to
ensure that the metastatic foci originated from this tumor. The
patient data consisted of digital micrographs of diagnostic H&E
histology slides and the corresponding clinical information from
The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-
BRCA) cohort (Supplementary Tables 3, 4). The inclusion
criteria were primary BRCA with diagnostic slides and overall
survival (OS) information available. Note, diagnostic slides
without magnification information were excluded.

Identification of Cellular Morphometric
Biomarkers
We developed AI pipeline based on stacked predictive sparse
decomposition (SPSD) (12) to discovery the underlying cellular
morphometric characteristics from the 15 cellular morphometric
features extracted from the diagnostic micrographs of H&E
stained sections of FFPE mouse tumors (one slide per mouse
per tumor), and thereafter identified 256 Cellular Morphometric
Biomarkers (CMB) for cellular object representation.
Specifically, in this study, we used a single network layer with
256 dictionary elements (i.e., CMB) and sparsity constraint 30 at
February 2022 | Volume 11 | Article 819565
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a fixed random sampling rate of 1,000 cellular objects per whole
slide imageof tumorhistology from themouse training cohort. The
pre-trained SPSD model reconstructs each cellular region
(represented as a vector of 15 morphometric properties) as a
sparse combination of pre-identified 256 CMB, and after that
represents each cellular object as the sparse code (i.e., sparse
coefficients) during reconstruction, where the sparsity constraint
leads to the reconstructionmainly contributed by the top 30 CMB.

Clinical and Biological Evaluation of
Cellular Morphometric Biomarkers
We evaluated the prognostic impact of representative CMB with
the most prominent variations mined from mouse cohort with
Cox proportional hazards regression (CoxPH) model (survival
package in R, Version 3.2-3). Also, we examined the effects of
high or low levels of representative prognostic significant CMB
on OS using Kaplan–Meier analysis (survminer package in R,
Version 0.4.8) and log-rank test (survival package in R, Version
3.2-3), where both mouse cohorts and the TCGA-BRCA cohort
were divided into CMB-high and CMB-low groups per CMB
(survminer package in R, Version 0.4.8).

Construction of Mouse-/Patient-Level
Cellular Morphometric Context
Representation
The mouse-/patient-level cellular morphometric context
representation was constructed based on pre-identified 256
CMB as an aggregation (i.e., max-pooling) of all the cellular
sparse codes extracted via pre-built SPSD model from the
cellular objects belonging to the digital micrographs of H&E
stained, FFPE diagnostic slides of the same patients. Specifically,
it consists of steps as follows, (1) delineation of cellular
architecture and extraction of cellular morphometric properties
from diagnostic slides of each mouse/patient; (2) construction of
cellular sparse codes for the cellular objects belonging to each
mouse/patient based on pre-identified 256 CMB and pre-built
SPSD model; and (3) aggregation (i.e., max-pooling) of all
cellular sparse codes belonging to the same patient to form the
mouse-/patient-level cellular morphometric representation.

Identification of Mouse CMS and
Translation to Human Breast Cancer
The mouse mammary tumor subtype was identified based on
mouse-level cellular morphometric context representation through
consensus clustering strategy (13) (ConsensusClusterPlus package
in R, Version 1.50.0) with k-mean clustering, Euclidean distance,
and 500 bootstrapping iterations; and the optimal number of
subtypes was determined by the consistency of cluster assignment
(consensus matrix) and the prognostic impact of subtypes. During
mouse subtype translation, for a human breast cancer patient, the
subtype was assigned as follows: (1) construct patient-level cellular
morphometric context representation with pre-built CMB and
SPSD model; (2) calculate the Euclidean distances between the
representation of the new patient and the mean representation of
each pre-identified mouse mammary tumor subtype; and (3) assign
the new patient to its closest subtype yielding smallest Euclidean
Frontiers in Oncology | www.frontiersin.org 3
distance. During fine-tuning, the human breast cancer subtype
was identified based on patient-level cellular morphometric
context representation (built upon CMB learned from mouse
mammary tumors) through consensus clustering strategy (13)
(ConsensusClusterPlus package in R, Version 1.50.0).

Clinical Evaluation of Patient Subtype
The latest clinical data of the TCGA-BRCA cohort was
downloaded from Genomic Data Commons (GDC, https://
portal.gdc.cancer.gov/), and the CMS translation from mouse
to each breast cancer patient in the TCGA-BRCA cohort was
achieved through the application/refinement of pre-built mouse
mammary tumor subtype model as described previously. The
translational relevance was assessed as follows: (1) the prognostic
impact of patient CMS subtype was evaluated on the OS of the
TCGA-BRCA cohort with univariate and stepwise multivariate
Cox proportional hazards regression (CoxPH) models (survival
package in R, Version 3.2-3), and the subtype-specific survival
was visualized through Kaplan–Meier curve (survminer package
in R, Version 0.4.8); (2) survival prediction, based on
multivariate CoxPH model, was evaluated for the prediction of
5-, 10-, and 20-year survival rates of BRCA patents, where the
multivariate CoxPH model was constructed with selected
variables (i.e., clinical factors, molecular factors, and patient
subtype) based on their significant and independent prognostic
impact. The survival prediction performance was evaluated
based on the area under the curve (AUC) with 1,000
bootstraps at a sampling rate of 0.8 on the TCGA-BRCA cohort.

Association of CMS With
Molecular Features
Differentially expressed genes (DEGs) between patient CMS were
estimated (edgeR package in R, Version 3.30.3) based on the
count data of the TCGA-BRCA cohort, where genes with
|log2FC| >0.585 (FC: fold change; FC = 1.5) and FDR <0.05
were selected and visualized via volcano plot (EnhancedVolcano
package in R, Version 1.6.0). Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were performed (14) (clusterProfiler
package in R, Version 3.16.1) to exam the biological functions
of DEGs. The total mutation number of each TCGA-BRCA
sample was calculated (maftool package in R, Version 2.4.05)
(15) based on MuSe (16) preprocessed mutation data. The
infiltration scores of immune cells and overall immune
infiltration score were estimated via R package “ConsensusTME”
(version: 0.0.1.9000) (17), and the total T cell infiltration score was
calculated according to the method introduced by Senbabaoglu
et al. (18).

Statistical Analysis
Survival differences between subtypes or groups were examined
using the log-rank test. Differences in the immune cell
infiltration and genomic heterogeneity (tumor mutation
burden) between subtypes were analyzed using the Mann–
Whitney non-parametric test. p-Value (FDR corrected if
applicable) less than 0.05 was considered to be statistically
significant. All analysis was performed with R (Version 4.0.2).
February 2022 | Volume 11 | Article 819565
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RESULTS

Study Design and Characteristics of
Patient Cohorts
The overall study design is illustrated in Figure 1. Specifically, we
identified CMB from the whole slide images of carcinomas
arising from Trp53-null mammary epithelium orthotopically
transplanted in syngeneic wildtype mice (referred to herein as
Trp53-null). This training cohort consisted of 154 specimens.
Additional information, namely, histological tumor subtype and
survival (the time from tumor detection to euthanasia, details see
Methods section) were generated from our previous study (10)
(Supplementary Table 1). The validation mouse mammary
tumor cohort consisted of 53 specimens of mammary tumors
arose in MMTV-Erbb2 transgenic mice, referred to herein as
Erbb211 (Supplementary Table 2). Additional information was
the presence or absence of metastases. Human BC consisted of
1,085 diagnostic slides from 1,017 primary BC from the TCGA-
BRCA cohort (Supplementary Tables 3, 4).

Identification of CMB from Trp53-Null
Mouse Mammary Tumors
The AI pipeline recognized and delineated over 75 million
cellular objects in the Trp53-null tumor training set of digital
micrographs of H&E stained FFPE sections, where each cellular
object was represented with 15 morphometric properties as
described in our previous work (9). Next, we optimized and
trained our stacked predictive sparse decomposition (SPSD) (12)
model to discover CMB based on pre-quantified cellular objects
randomly selected from the training mouse mammary tumor
histopathological slides. After training, the pre-built SPSD model
reconstructed each cellular object as a sparse activation of the
Frontiers in Oncology | www.frontiersin.org 4
pre-identified 256 CMB (Supplementary Figure 1), which led to
the novel representation of every single cellular object as the 256-
dimentional sparse code (i.e., reconstruction coefficient); and
thereafter, the corresponding cellular morphometric context
representation of each tumor sample in aggregation of all
delineated cellular objects belonging to the same specimen.

Correlation Between Trp53-Null Survival
and CMB
We next evaluated the association of the 256 CMB in the Trp53-null
training set concerning survival using CoxPH analysis. This analysis
revealed that 248 out of 256 CMB had a significant prognostic
impact (FDR <0.05). Specifically, within the top 30 CMB with the
most prominent variations, 27 were significantly and positively, and
2 were significantly and negatively associated with survival
(Figure 2A and Supplementary Table 5). Representative
examples of CMB demonstrated the capability of our AI pipeline
in detecting interpretable cellular subtypes. Specifically, CMB_13
represents a pleomorphic tumor nucleus; CMB_249 represents a
lymphocyte; CMB_120 represents the nucleus of a myoepithelial or
myofibroblast; and CMB_205 represents a condensed tumor cell
nucleus (Figure 2C).

The training mouse mammary tumor cohort was divided into
two groups based on relative abundance of CMB_13, CMB_120,
CMB_249, or CMB_205. Kaplan–Meier curves further
confirmed significant association of these four CMB with
survival (p <0.01, Figure 2D).

Identification of CMS in Trp53-Null
Mammary Tumors
We next determined if the 256 CMB could stratify the training
mouse mammary tumor cohort by performing consensus cluster
analysis to define CMS (Supplementary Figure 2). Two
significantly different (p = 0.0001) subtypes, CMS-1 and -2,
were identified (Figures 3A, B). CMS-1 was characterized by
higher relative abundance of 23 CMB and CMS-2 was
characterized by higher relative abundance of 131 CMB. We
next determined whether subtype was associated with survival
using Kaplan–Meier analysis. CMS-2 tumors were significantly
associated with shorter survival than subtype 1 tumors (p =
0.0084, Figure 3C). Importantly, the CMS adjusted for
pathological subtypes (i.e., adenocarcinoma, spindle cell
carcinoma, and squamous cell carcinoma) were significantly
associated with survival (HR: 1.893, 95%CI: 1.154–3.104, p =
0.011; Figure 3D).

Translation of CMB and CMS to
Erbb2 Model
We next applied the CMB and CMS learned from the training
Trp53-null tumor cohort to class i fy Erbb2 tumors
(Supplementary Table 2). The CMS model stratified the Erbb2
validation mouse cohort into two CMS consisting of 35 and 18
tumors each. Moreover, the specimens of CMS-1 and 2 were
clearly separated by the tumor-level cellular morphometric
context representation (p = 0.001, Figure 3E).

CMS subtype was significantly associated with tumor
metastasis in the Erbb2 cohort (p = 0.004, Figure 3F).
FIGURE 1 | Graphical illustration of our study design with knowledge mining
from one mouse mammary model and translation to another mouse
mammary tumor model and human breast cancer.
February 2022 | Volume 11 | Article 819565
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Cross-validation with logistic regression model built upon CMB
positively associated with metastasis (i.e., CMB_13, OR: 1.282,
95%CI: 1.142–1.492, FDR = 0.001; and CMB_249, OR: 1.078,
95%CI: 1.022–1.143, FDR = 0.008), using 60% training samples,
40% testing samples and 100 bootstrapping iterations, predicted
metastasis status with accuracy (Figure 3G; AUC: 0.84, 95%CI:
0.65–1.00; Sensitivity: 0.79, 95%CI: 0.64–1.00; and Specificity:
0.75, 95%CI: 0.65–0.96). In addition, representative CMB
examples showed significant and consistent differences in
Frontiers in Oncology | www.frontiersin.org 5
relative abundance between metastatic and non-metastatic
tumors (Supplementary Figure 3).

Translation of CMB and CMS to Human
Breast Cancer
We next asked if the pre-built SPSD model and CMB learned
from mouse mammary tumors was applicable to human breast
cancer, where the 256-dimentinal cellular morphometric context
representation of each BC in the TCGA-BRCA cohort was an
A B

D

E

C

FIGURE 2 | Cellular morphometric biomarkers (CMB) learned from mouse mammary tumors and extracted from human breast tumors. (A) Top 30 CMB
learned from the Trp53-null cohort with most prominent variations; (B) Top 30 CMB extracted from the TCGA-BRCA with most prominent variations; (C) Examples
of representative CMB learned from the Trp53-null cohort. (D, E) KM curves for representative CMB learned from the Trp53-null cohort, and the TCGA-BRCA
cohort, respectively.
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aggregation of all delineated cellular objects belonging to the
same specimen.

Univariate Cox proportional hazard regression (CoxPH)
analysis on the TCGA-BRCA cohort showed that 241 of the 256
CMB had significant prognostic association (FDR <0.05).
Frontiers in Oncology | www.frontiersin.org 6
Specifically, of the top 30 CMB with the most prominent
variations, 22 were prognostically favorable (HR <1) and 2 were
prognostically unfavorable (HR >1) (Figure 2B and
Supplementary Table 6). It should be noted that all 22
favorable CMB were also favorable in the mouse training cohort
A

B D

E F G

IH J

C

FIGURE 3 | Cellular morphometric subtypes (CMS) identified from one mouse mammary tumor model are informative in another mouse mammary tumor model and
provides translational impact on human breast cancer. (A) Consensus clustering model for CMS identification and translation from one mouse mammary tumor
model to another mouse mammary tumor model and human breast cancer. (B) CMS-specific samples in the Trp53-null cohort form distinct clusters in sample-level
cellular morphometric context space. (C) CMS-specific samples in the Trp53-null cohort show significant difference in survival. (D) CMS in the Trp53-null cohort is a
significant and independent prognosis factor. (E) CMS-specific samples in the MMTV-Erbb2 transgenic mouse mammary tumors cohort form distinct clusters in
sample-level cellular morphometric context space. (F) CMS in MMTV-Erbb2 transgenic mouse mammary tumors cohort is significantly enriched with metastasis
presence. (G) Cellular morphometric biomarkers predict metastasis presence in MMTV-Erbb2 transgenic mouse mammary tumors cohort with accuracy. (H) BC-
CMS-specific patients in the TCGA-BRCA cohort form distinct clusters in patient-level cellular morphometric context space. (I) BC-CMS-specific patients in the
TCGA-BRCA cohort show significant difference in OS. (J) BC-CMS in the TCGA-BRCA cohort is a significant and independent prognostic factor.
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and the 2 unfavorable CMB were also unfavorable in the mouse
training cohort. Moreover, the Kaplan–Meier analysis showed
significant association with the levels of each representative
CMB with OS (p <0.05, Figure 2E). These were informative in
both non-triple-negative BC (non-TNBC) patients (p <0.05,
Supplementary Figure 4A), and triple negative breast cancer
(TNBC) patients (p <0.05, Supplementary Figure 4B).

Based on the CMB and CMS from mouse model, we classified
the TCGA-BRCA cohort into two subtypes (subtype 1: 648
patients; subtype 2: 369 patients; Supplementary Table 3). The
patient stratification with mouse CMS model showed clear
separation (Supplementary Figure 5A), and was further
refined by re-applying consensus clustering analysis on the
TCGA-BRCA cohort (Supplementary Figure 5B). Compared
with the mouse CMS model, the refined CMS model (referred to
herein as BC-CMS) led to statistically consistent patient
stratification (Chi-square test, p = 9.07e−179; subtype 1: 595
patients; subtype 2: 422 patients) with slightly improved
patient clusters (Supplementary Figure 5B). Moreover, the
patient-level cellular morphometric context representation in
the TCGA-BRCA cohort formed significantly separable groups
in all BC patients (p = 0.001, Figure 3H), non-TNBC patients
Frontiers in Oncology | www.frontiersin.org 7
(p= 0.001, Supplementary Figure 4C), and TNBC patients (p =
0.001, Supplementary Figure 4C), respectively. Given the
statistical consistency between mouse CMS and BC-CMS
models, we used the BC-CMS on the TCGA-BRCA cohort in
the rest of the study.

Molecular Annotation Underlying BC-CMS
of Human Breast Cancers
To gain insight into molecular differences underlying the BC-
CMS, we used available transcriptome data from the TCGA-
BRCA cohort and identified a total of 111 genes that are
differentially expressed between BC-CMS (|log2FC|>0.585, FDR
<0.05, Figure 4A and Supplementary Table 7), where 50 and 61
genes were upregulated and downregulated, respectively, in
subtype 2 compared to subtype 1. Gene ontology (GO)
functional enrichment analysis of the differentially expressed
genes (DEGs) demonstrated significant enrichment (FDR <0.05)
for biological processes involved humoral immune response,
regulation of tube size, regulation of blood vessel size,
regulation of blood vessel diameter, and regulation of tube
diameter (Figure 4B and Supplementary Table 8). Cellular
component GO terms significantly enriched (FDR <0.05) in
A

B

D

E

C

FIGURE 4 | Differentially expressed genes (DEGs) between two BC-CMS and associated functional enrichment analyses. (A) Volcano plot depicting the differentially
expressed genes with FC >1.5 and FDR <0.05. (B) Biological process (BP) enrichment analysis on DEGs. (C) Cellular component enrichment analysis on DEGs.
(D) Molecular function enrichment analysis on DEGs. (E) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on DEGs.
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the DEGs included Golgi lumen, and collagen-containing
extracellular matrix (Figure 4C and Supplementary Table 9).
Molecular function GO terms (FDR <0.05) included extracellular
matrix structural constituent conferring compression resistance,
extracellular matrix structural constituent, and hyaluronic acid
binding (Figure 4D and Supplementary Table 10). KEGG
analysis indicated that DEGs were significantly enriched (FDR
<0.05) in pentose and glucuronate interconversions, drug
metabolism—cytochrome P450, and drug metabolism—other
enzymes (Figure 4E and Supplementary Table 11). Together
these findings indicate potential molecular mechanisms that
differentiate the two BC-CMS including differences in tumor
vascularization and immune infiltration.
Frontiers in Oncology | www.frontiersin.org 8
Association of BC-CMS With Tumor
Immune Microenvironment
Using TCGA-BRCA expression profile data, we found that BC-CMS
2wasassociatedwith significantly increased tumorpurity (Figure5A;
p=0.04), stromal score (Figure5C; p=0.005),fibroblasts (Figure5D;
p = 0.0065), angiogenesis (Figure 5E; p = 0.001), apoptosis
(Figure 5F; p = 0.00039), epithelial–mesenchymal transition
(Figure 5G; p = 0.00064), and hypoxia (Figure 5H; p = 0.011); and
significantly decreased stemness score (Figure 5B; p = 0.0022); and
marginally descreased mitotic spindle (Figure 5I; p = 0.065).

We also investigated the association of BC-CMS with the
inferred immune microenvironment. Compared to TNBC
subtype 1 patient group, TNBC subtype 2 patient group
A B

D E F

G IH

C

FIGURE 5 | TCGA-BRCA BC-CMS shows significant differences in the relative abundance of (A) Estimate score (that infers tumor purity); (B) Stemness score;
(C) Stromal score; (D) Fibroblasts; (E) Angiogenesis; (F) Apoptosis; (G) Epithelial mesenchymal transition; (H) Hypoxia; and (I) Mitotic spindle.
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(Supplementary Figure 6) were characterized by inference of
significantly more B cells (p = 0.032), CD4+ T cells (p = 0.03),
CD8+ T cells (p = 0.042), T regulatory cells (p = 0.038),
macrophages M2 (p = 0.04), endothelial cells (p = 0.045),
monocytes (p = 0.019), plasma cells (p = 0.046), and immune
score (p = 0.041). In contrast, the non-TNBC subtype 2 patient
group, compared to the subtype 1 group (Supplementary
Figure 6), had significantly more B cells (p = 0.048), endothelial
(p = 0.017), and fibroblasts (p = 0.0042).

Clinical Significance of BC-CMS in Human
Breast Cancer
We examined the association between BC-CMS and clinical and
tumor characteristics in the TCGA-BRCA cohort. Surprisingly,
there was no significant association between BC-CMS and
clinical or molecular prognostic factors, namely, histological
type, pathological stage, PR/ER/Her2 status (Supplementary
Table 4), indicating that CMS adds independent information.

Kaplan–Meier analysis showed significantly shorter overall
survival (OS) of subtype 2 patients compared to subtype 1 patients
in all BC patients (p = 0.024, Figure 3I), non-TBNC patients (p =
0.018, Supplementary Figure 4D), and TNBC patients (p = 0.036,
Supplementary Figure 4D). Furthermore, univariate and
multivariate CoxPH models indicated the independent prognostic
impact of BC-CMS in the TCGA-BRCA cohort after adjustment for
other significant clinical and molecular factors, namely, age,
pathological stage, and PAM50 subtype (1, 2) (HR: 1.798, 95%CI:
1.231–2.627, p = 0.002; Figure 3J and Supplementary Table 12). The
combination of BC-CMS and clinical and molecular factors provided
significantly improved (p <0.05, Figure 6) prediction of 5-, 10-, and
20-year OS compared to classical models with only clinical and
molecular factors. Thus, BC-CMS adds additional prognostic value.
DISCUSSION

This study is aimed to develop and validate an AI-powered
knowledge mining and transfer framework across mouse
Frontiers in Oncology | www.frontiersin.org 9
mammary tumor models and species (i.e., human breast
cancer), which help maximize the translational impact of
discoveries from mouse model to human patients. We used an
AI pipeline to identify CMB from digital micrographs of
diagnostic H&E histology slides of Trp53-null mouse
mammary tumors that were used to define two CMS. These
CMB and CMS were validated in the MMTV-ErbB2 transgenic
mouse model. CMS-2 associated with shorter survival in Trp53-
null tumors and development of metastasis in Erbb2 tumors. We
then translated this to digital H&E micrographs of human breast
cancers from the TCGA-BRCA cohort. BC-CMS has
independent prognostic significance after adjusting for other
clinical and molecular factors. The application of CMS to
digital images of routine workflow H&E preparations thus
provides unbiased biological stratification to inform patient care.

The conservation of the cellular morphometric environment
across species further validates the use of the mouse as a model to
study human BC development. Mouse mammary tumor
development in the Trp53 null model has many similarities to
human breast cancer, including the progression from pre-
neoplastic lesions to ductal carcinoma in situ to tumors of
diverse histopathology and a subset of the tumors expressing
the estrogen receptor (ER+) (19, 20). Herschkowitz et al.
reported (8) that the transcriptional profiles of Trp53 null
tumors could be classified into multiple molecular subtypes,
namely, two basal-like, a luminal, a claudin-low, and a subtype
unique to this model, which we also found (21). Notably,
translation of transcriptomic signatures obtained from Trp53
null mammary tumor model informs the diversity of human BC
(21, 22). Conserved gene expression features exist between
murine mammary carcinoma models and BC (7). Our study
shows that CMB and CMS identified from mouse mammary
tumors in the Trp53-null model also classify human BC and have
clinical significance, supporting similarities of the biological
processes in Trp53-null mammary tumors and human BC.

The insights gained from CMS-ML are further extended by the
pragmatic considerations.Diagnostic pathology iswidelypracticed
using FFPE preparations and standard H&E staining that are
A B C

FIGURE 6 | BC-CMS significantly improves prognosis prediction of BRCA patients. (A) ROC curves for the prediction of 5-, 10-, and 20-year overall survival of
BRCA patients using all significant prognostic factors; (B) ROC curves for the prediction of 5-, 10-, and 20-year overall survival of BRCA patients using all significant
prognostic factors except BC-CMS; (C) Comparison of predictive power between BC-CMS included and BC-CMS excluded models using bootstrapping strategy
with 80% sampling rate and 1,000 iterations.
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readily available throughout the world. Digital micrographs of
these preparations can be shared and analyzed using our AI
pipeline to provide accessible, low-cost added value in a range of
clinical care settings. Indeed, a comparable approach in colorectal
cancer was used to predict clinically relevant RNA expression
classifiers from H&E images, providing feasible, cost-efficient
biological stratification within routine workflows (23). Similarly,
our data associating BC-CMS with specific molecular features
suggest that further refinement of the BC-CMS may be a low-
cost alternative to classify intrinsic molecular subtypes that are
currently uses as clinical decision tools.

CMB identified tumor infiltrating lymphocytes, among other
distinctive cell types (Figure2C), that canbe prognostic inBC (24).
The tumor immune microenvironment is gaining traction as
valuable prognostic and predictive information. Clinical trials
have shown that patients with metastatic triple-negative breast
cancer are more likely to respond to checkpoint inhibitors if cells
express PD-L1, but the predictive value of PD-L1 expression is
quite modest (25). The tumor immune microenvironment can
range from hot, in which T cells are present but incapacitated or
exhausted, to cold, which by definition lacks T-cell infiltration,
exhibits little immune cytotoxicity, and predicts adverse outcomes
in cancer patients (26). Inflamed, ‘hot’ cancers are thought to be
prime targets for checkpoint immunotherapy, while so-called
‘cold’ tumors devoid of TIL are inherently resistant (27). As
suggested by the association of inferred immune cell types from
the TCGA transcriptomics, we anticipate further refinement of
CMB could inform this aspect of cancer therapy.

In conclusion, we developed a pathology-image-based
biomarker and subtype detection and translation framework
that stratifies (1) an independent mouse mammary tumor
cohort into groups with different metastasis risk; and (2) the
TCGA-BRCA cohort into two groups with different OS associated
with specific molecular features and immune infiltrate.
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