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DNA lesions arising from both exogenous and endogenous sources occur frequently in
DNA. During DNA replication, the presence of unrepaired DNA damage in the template
can arrest replication fork progression, leading to fork collapse, double-strand break
formation, and to genome instability. To facilitate completion of replication and prevent the
generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in
allowing replication to proceed in the presence of lesions in the template. The two main
DDT pathways are translesion synthesis (TLS), which involves the recruitment of
specialized TLS polymerases to the site of replication arrest to bypass lesions, and
homology-directed damage tolerance, which includes the template switching and fork
reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source
of mutagenesis, potentially contributing to the development of cancer. The capacity of
TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs
such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during
homology-directed DDT the nascent sister strand is transiently utilised as a template for
replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance
pathways in replication, mutagenesis and chemoresistance, a more complete
understanding of these pathways can provide avenues for therapeutic exploitation. A
number of small molecule inhibitors of TLS polymerase activity have been identified that
show synergy with conventional chemotherapeutic agents in killing cancer cells. In this
review, we will summarize the major DDT pathways, explore the relationship between
damage tolerance and carcinogenesis, and discuss the potential of targeting TLS
polymerases as a therapeutic approach.
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Ler and Carty DNA Damage Tolerance Pathways
INTRODUCTION

It is estimated that up to 50,000 DNA lesions can occur per cell in
a single day, an average of around 2,000 DNA lesions per cell per
hour (1). While the majority of DNA damage is removed by
repair pathways, including nucleotide excision repair and base
excision repair, prior to cells entering S-phase, lesions can
remain in the DNA template during DNA replication. The
main DNA polymerases that carry out genomic DNA
replication, polymerase d (Pol d) on the lagging strand and
polymerase ϵ (Pol ϵ) on the leading strand, can both be blocked
by DNA damage in the template strand, leading to replication
fork stalling, fork collapse, chromosome breakage and genomic
instability. To resolve this problem, DNA damage tolerance
(DDT) pathways that allow replication of damaged DNA to
continue while reducing genomic instability, are present in
virtually all organisms (1–4).
THE MAIN DNA DAMAGE TOLERANCE
PATHWAYS IN EUKARYOTES

There are two main DDT pathways described in eukaryotic cells,
namely (i) translesion synthesis (TLS) and (ii) homology-
directed DDT (Figure 1). TLS involves the recruitment of
specialized TLS DNA polymerases to the arrested replication
fork to facilitate lesion bypass, which can take place either
directly at the replication fork, or behind the fork by repriming
DNA synthesis at daughter strand gaps (DSGs) (Figure 1) (5). In
response to DNA damage, monoubiquitination of the clamp
protein proliferating cell nuclear antigen (PCNA) results in
recruitment of the specialized TLS polymerases required to
bypass the DNA lesion. Lesion bypass takes place either
directly at the site of the arrested fork, or during gap-filling
subsequent to replication restart away from the lesion site (6, 7)
(Figure 1). However, despite some exceptions discussed below,
bypass by TLS polymerases contributes to mutagenesis owing to
the tendency for base misincorporation opposite lesions (7–9). In
fact, the error-prone nature of TLS polymerases has been
implicated both in the development of cancer and in
promoting chemoresistance in cancer cells (10–12). Hence,
TLS is considered an error-prone DDT pathway (13).

In addition to TLS, damage tolerance can also take place
through homology-directed DDT, which consists of two
Abbreviations: ATR, ataxia telangiectasia and RAD3-related protein; ATRIP,
ATR-interacting protein; DDT, DNA damage tolerance; FA, Fanconi anemia; FR,
fork reversal; HTLF, helicase-like transcription factor; PARP, Poly(ADP-ribose)
polymerase; PCNA, proliferating cell nuclear antigen; PIP, PCNA-interacting
peptide; PPI, protein-protein interactions; Rev1-CT, Rev1 C-terminal; RIR, Rev1-
interacting region; RPA, Replication protein A; SHPRH, SNF2 histone linker PHD
RING helicase; SMARCAL1, SWI/SNF-related matrix associated actin-dependent
regulator of chromatin subfamily A-like protein 1; SPARTAN, SprT-like domain
at the N-terminus; ssDNA, single-stranded DNA; TLS, translesion synthesis; TLSi,
translesion synthesis inhibitor; TS, template switching; UBM, ubiquitin-binding
motif; UBZ, ubiquitin-binding zinc finger; USP1, ubiquitin carboxyl-terminal
hydroxylase 1; USP7, ubiquitin carboxyl-terminal hydroxylase 7; XP-V,
xeroderma pigmentosum variant; ZRANB3, Translocase zinc finger RANBP2
type –containing 3.
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pathways, fork reversal (FR) and template switching (TS)
(Figure 1) (5). Both FR and TS are initiated through the
polyubiquitination of PCNA, and involve a temporary switch
from the damaged template strand to using the newly-
synthesized copy of the complementary strand on a
homologous sister chromatid as the template for DNA
synthesis. Because an undamaged template is copied, FR and
TS are error-free lesion bypass pathways (5). Fork reversal
involves formation of a ‘chicken foot’-like DNA structure,
allowing the replisome on the arrested nascent strand to gain
access to the homologous sister template (14, 15) (Figure 1). In
contrast, TS occurs following repriming at DSGs generated at
lesion sites behind the replication fork (16, 17). TS involves
strand invasion, where the newly-synthesized strand from the
homologous sister chromatid transiently serves as a template for
nascent strand synthesis to allow the replication machinery to
bypass the lesion (13, 18) (Figure 1).

On a biochemical level, the process of damage tolerance is
complex, requiring multiple proteins. While these proteins are
potential targets for development of novel cancer therapeutics, a
more complete understanding of the molecular genetics, cell biology
and biochemistry of damage tolerance is necessary to advance this
potential. The present review provides an overview of the main
DDT pathways in human cells, and discusses recent advances in
targeting these pathways to develop cancer therapeutics.

Initiation of DNA Damage Tolerance (DDT)
Both the TLS and TS pathways share common initial steps.
Stalling of the replicative DNA polymerase at a DNA lesion site
together with ongoing helicase activity at the replication fork
generates a region of single-stranded DNA (ssDNA) on the
template strand which is bound by replication protein A
(RPA). The ssDNA-RPA complex recruits ATRIP, and
activates the ataxia telangiectasia and RAD3-related protein
(ATR)-dependent replication checkpoint (18–20). At the same
time, the chromatin remodelling protein INO80 binds to the
stalled replication fork (18, 21–23). This, in conjunction with the
RPA-ssDNA complex facilitates the recruitment of the RAD18
E3 ubiquitin ligase to the site of DNA damage (18, 23–26). At the
lesion site, RAD18 recruits the E2 ligase RAD6, leading to the
formation of the E2-E3 ubiquitinase (18, 25, 27–30) which
monoubiquitinates PCNA on K164 (18, 25, 31–33).
Monoubiquitination can be facilitated by other E3 ligases such
as ring finger protein 8 (RNF8) in conjunction with the E2 ligase,
Ubiquitin-conjugating Enzyme H5c (UbcH5c) (34). At this step,
the two DDT pathways diverge, with monoubiquitination of
PCNA on K164 resulting in the induction of TLS, while
polyubiquitination at K164 leads to homology-directed
DDT (Figure 2).

Translesion Synthesis
Following monoubiquitination of PCNA, one or more TLS
polymerases are recruited to the stalled replication fork.
Human TLS polymerases comprise proteins belonging to 4
families: the Y-family (Rev 1, Pol h, Pol i and Pol k), the A-
family (Pol q), the B-family (Pol z) and the archaeo-eukaryotic
primase (AEP) family (PrimPol) (6, 35–38). In Y-family TLS
February 2022 | Volume 11 | Article 822500
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Ler and Carty DNA Damage Tolerance Pathways
polymerases, the active site that catalyses lesion bypass is located
within the conserved N-terminal domain (39, 40), while the
variable C-terminal region facilitates recruitment of the protein
to stalled forks (39, 40). Y-family TLS polymerases can bind
directly to K164-ubiquitinated PCNA through ubiquitin-binding
zinc fingers (UBZ) found in Pol h and k, or to ubiquitin-binding
motifs (UBM) present in Pol i and Rev1 (39). The PCNA-
interacting peptide (PIP) boxes on Pol i, h and k, and the BRCA1
C-terminus (BRCT) domain in the N-terminal of Rev1, also
facilitate the binding of TLS polymerases to PCNA (39, 41, 42).
Frontiers in Oncology | www.frontiersin.org 3
TLS generally occurs by either a ‘one-polymerase’mechanism
or a ‘multiple-polymerase’ mechanism (35). Upon replication
fork stalling in the presence of DNA damage, the replicative
polymerase (d or ϵ) is replaced by a TLS polymerase. Following
this step, in the one-polymerase mechanism, a single TLS
polymerase inserts nucleotides at the lesion site and continues
to extend the replicated DNA strand past the lesion site, and is
then replaced again by the replicative polymerase (35). The
multiple-polymerase mechanism usually involves two TLS
polymerases working in concert, such that one polymerase
FIGURE 1 | Schematic diagram showing the main DDT pathways in eukaryotic cells. TLS pathways are highlighted in red; homology-based damage tolerance
pathways are highlighted in green. Image generated with BioRender.com.
February 2022 | Volume 11 | Article 822500
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Ler and Carty DNA Damage Tolerance Pathways
inserts a nucleotide opposite the lesion site, while the other
extends the primer beyond the lesion site (35, 40, 43). Rev1
incorporates a single dCTP opposite a lesion site, but does not
carry out subsequent polymerization (44–48). During bypass by
S. cerevisiae Rev1, the lesion on the template strand is flipped
into an extra-helical position and stabilised inside a hydrophobic
pocket of Rev1, where it remains during incorporation of the
incoming cytosine (49). The R324 side-chain of Rev1 displaces
the DNA lesion, acting as an alternative template for Watson-
Crick base pairing with the incoming cytosine (49). Following
phosphodiester bond formation coupled with the hydrolysis of
pyrophosphate, hydrogen bonding between the cytosine and
R324 is broken (49). Rev1 then dissociates from the DNA and
the lesion is reincorporated into the double helix (49).

Y-family DNA polymerases are characterised by a more open
active site that can accommodate altered bases, and by the
absence of 3’->5’ proofreading exonuclease activity (9, 40, 50,
51). For example, the active site of human Pol h can
accommodate the two covalently-linked thymine bases in a
UV-induced cis-syn thymine-thymine CPD lesion (50, 51). A
b-strand in the little finger (LF) domain of the protein provides a
molecular splint that stabilises the newly-synthesized double-
stranded DNA into a B-form structure, preventing CPD-induced
duplex distortion and frameshift formation, which facilitates
efficient and accurate Pol h-mediated bypass of thymine-
thymine CPDs (40, 50, 51).
Frontiers in Oncology | www.frontiersin.org 4
As noted above, the capacity of TLS polymerases to
accommodate altered bases in the active site, and the absence
of 3’ to 5’ exonuclease activity facilitate lesion bypass (Table 1).
Bypass is often at the cost of replication fidelity (70). The
accuracy of TLS polymerases is lesion-dependent, such that
specific TLS polymerases are more accurate than others when
encountering particular lesions (70). For example, Pol q
predominantly incorporates the correct base when replicating
across a 1,N6-ethenodeoxyadenosine lesion in human cells (66).
However, Pol q also plays an important role in the error-prone
bypass of UV-induced cis-syn thymine-thymine CPDs and (6–4)
PP lesions (66). By preventing the collapse of arrested replication
forks and thereby reducing genome instability, error-prone
lesion bypass by Pol q protects against UV-induced skin
cancer in mice (66). The overall fidelity of lesion bypass during
TLS results from a combination of the biochemical properties of
the individual TLS polymerases, the affinity of the polymerases
for the lesion, as well as the sequence context of the lesion (9, 71).

Homology-Directed DDT
In addition to the error-prone TLS pathway, lesion bypass during
S-phase can occur through the error-free homology-directed
DDT pathways, FR and TS. Error-free DNA damage tolerance
requires PCNA polyubiquitination, mediated by the recruitment
of one of the yeast RAD5 homologues, SNF2 histone linker PHD
RING helicase (SHPRH) or helicase-like transcription factor
FIGURE 2 | Schematic diagram showing key proteins involved in the initial steps of DNA damage tolerance pathway activation at an arrested replication fork. PCNA,
proliferating cell nuclear antigen; RPA, replication protein A; UBC13, Ubiquitin-conjugating enzyme E2 13; MMS2, Ubiquitin-conjugating enzyme variant MMS2.
Image generated with BioRender.com.
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(HLTF), to the RAD6/RAD18 complex (2). In the FR pathway,
remodeling of the stalled replication fork into the characteristic
‘chicken-foot’ structure (Figure 1) is initiated by the recruitment
of the helicase protein SMARCAL1, which binds directly to
ssDNA and removes bound RPA (5, 72–74). Following the
removal of RPA, translocase zinc finger RANBP2-type
containing 3 (ZRANB3) then promotes further fork reversal (5,
75–77). Binding of the Fanconi anemia complementation group
M (FANCM) helicase to the protein-DNA complex leads to the
formation of a four-way junction (78, 79). The reversed fork is
stabilized by BRCA1, BRCA2 and RAD51, which bind to the
exposed ends of the nascent leading and lagging strands and
prevent MRE-11-mediated exonucleolytic degradation (5, 80–
83). Following successful lesion bypass, regression of the reversed
fork from a four-way junction into the original three-way
junction (Figure 1) is catalysed by RecQ-like helicase
(RECQ1), Werner syndrome RECQ-like helicase (WRN) and
DNA replication helicase/nuclease 2 (DNA2) (5, 84, 85).

In the TS pathway (Figure 1), following polyubiquitination of
PCNA, the 9-1-1 complex binds to the 5’ end of the gap on the
nascent DNA strand and recruits exonuclease 1 (EXO1) (18, 86).
A RAD51-ssDNA presynaptic filament, stabilized by RAD55/
RAD57, then forms on the ssDNA region of the template strand
(87–89). ATP-dependent DNA helicase SRS2 (SRS2) disrupts the
nucleofilament and opposes the action of RAD55/RAD57; the
balance between these processes determines the overall stability
Frontiers in Oncology | www.frontiersin.org 5
of the RAD51-ssDNA presynaptic filament (18, 90, 91). The
nucleofilament, with RAD52 and RAD54, carries out both the
homology search and strand invasion of the sister chromatid (18,
89, 92). After complementary base-pairing between the invading
strand and the homologous template, DNA pol d is recruited and
continues DNA replication, generating a D-loop and
subsequently a sister-chromatid junction (SCJ) (18, 89, 93–95).
D-loop formation is negatively regulated by SRS2 (18, 96).
Finally, the slow growth suppressor 1 (SGS1)/DNA
topoisomerase 3 (TOP3)/RECQ-mediated genome instability
protein 1 (RMI1) complex pries the SCJ apart, regenerating the
normal double-helical DNA structure (16, 18, 97, 98) (Figure 1).

Regulation of DDT Pathway Choice
The type of PCNA ubiquitination plays a key role in the choice of
DDT pathway between either TLS or homology-directed DDT
(5, 9, 99). PCNA monoubiquitination leads to TLS, while
polyubiquitination results in the initiation of homology-
directed DDT. The overall level of ubiquitinated PCNA is also
regulated by ubiquitin-specific processing protease 7 (USP7), by
the USP1/upstream activation factor (UAF1) complex, and by
enhanced level of genomic instability 1 (ELG1) (99–103).
Following UV irradiation, USP1 undergoes auto-cleavage and
degradation, increasing the level of modified PCNA (104). It has
been proposed that the extent of replication arrest is a factor in
determining the type of PCNA ubiquitination, such that
prolonged replication arrest leads to polyubiquitination of
PCNA molecules that remain bound at the arrest site,
promoting a switch to homology-directed DDT (99).
Alternatively, homology-directed DDT could be activated first
where HLTF is recruited together with the RAD6/RAD18
complex, resulting in the immediate polyubiquitination of
PCNA (99). In addition to ubiquitination, PCNA undergoes
other related modifications. Protein inhibitor of STAT (PIAS1
and PIAS4)-mediated SUMOylation of PCNA on K164
promotes template switching rather than TLS (105). After TLS
is completed, monoubiquitinated PCNA is modified by the
addition of interferon-stimulated gene 15 (ISG15) molecules,
leading to recruitment of USP10 and PCNA deubiquitination
(99, 106, 107). Understanding the interplay between PCNA
modification and the choice of DNA damage tolerance
pathway is an important area for further study.

Regulation of TLS
Since TLS polymerases are generally error-prone it is critical that
TLS activity is tightly regulated. The main points of regulation of
TLS involve the interactions between TLS polymerases, accessory
proteins, RAD18 and PCNA (108). CHK1 and CLASPIN are
essential for binding of RAD18 to chromatin (18, 109). SIVA1,
TIMELESS and HLTF play important roles in PCNA
monoubiquitination (18, 109–111), while protein with SprT-
like domain at the N-terminus (SPARTAN) is crucial both for
binding of RAD18 to chromatin and for monoubiquitination of
PCNA (112, 113).

Regulation of the TLS pathway also occurs at the level of the
individual polymerases, where TLS polymerases undergo post-
translational modification including ubiquitination,
TABLE 1 | Examples of lesion bypass by human TLS polymerases.

TLS
polymerase

Gene
Name

Lesions bypassed

Rev1 REV1 UV-induced lesions (52)
8-oxoguanine (8-oxoG) (53)
Trans-anti-benzo[a]pyrene-N 2-dG (53)
1,N 6-ethenoadenine adducts (53)

Pol h POLH UV-induced lesions, particularly T-T CPDs (54)
N-2-acetylaminofluorene (AAF)-modified guanine (54)
Cisplatin-induced guanine-guanine intrastrand
adducts (54)
8-oxoG (55) Abasic sites (56)

Pol i POLI N2-guanine adduct (57)
5-hydroxycytosine (5-OHC) (58)
5-hydroxyuracil (5-OHU) (58)
5,6-dihydrouracil (5,6-DHU) (58)
8-oxoG (58)
T-T (6–4) PP (59)

Pol k POLK Thymine glycol (60)
Benzo[a]pyrene-guanine adducts (BP-G) (61)
8-oxo-dG (62)
Acetylaminofluorene-modified G (62)
Abasic site (63)

Pol q POLQ Abasic sites (64)
Thymine glycols (65)
1,N 6-ethenoadenine adducts (66)
UV-induced lesions (66)

Pol z REV3 T-T (6–4) PP (67, 68)
CPD (68)
Extender polymerase for numerous lesions

PrimPol PRIMPOL AP site (69)
UV, ultraviolet; CPD: cyclobutane pyrimidine dimers; T-T 6-4 PP, thymine-thymine 6-4
photoproducts; XP-V, xeroderma pigmentosum variant; AP site, apyrimidinic/apurinic site.
February 2022 | Volume 11 | Article 822500
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SUMOylation and phosphorylation (as shown in Table 2 for
human Pol h). In the absence of DNA damage in the template, or
when DNA lesions have been bypassed, TLS polymerases are
monoubiquitinated, switching the protein from an open
conformation, where the C-terminal ubiquitin-binding domain
is available to interact with monoubiquitinated PCNA, to a
closed conformation, where this domain is bound in cis to
ubiquitin and is unable to interact with PCNA (128). For
human Pol h, in the closed conformation ubiquitination of one
of the four lysines K682, K686, K694 and K709 results in
interaction between the ubiquitin moiety and the UBZ domain
of the polymerase which competes with ubiquitinated PCNA for
UBZ binding, thereby abrogating the PCNA interaction (118,
128). Following UV-induced DNA damage in non-small cell
lung and colon carcinoma cell lines, ubiquitinated Pol h is
polyubiquitinated by mouse double minute 2 homologue
(MDM2) resulting in degradation by the proteasome by 24
hours post-irradiation (121, 128). The other Y family TLS
polymerases Rev 1, Pol i and Pol k are also ubiquitinated (51,
128). In addition to ubiquitination, Pol h undergoes
SUMOylation (126, 127). PIAS1-dependent SUMOylation on
K163 targets Pol h to difficult-to-replicate regions of the genome
such as fragile sites even in the absence of exogenous DNA
damage (127). Following completion of TLS, SUMOylation of
Pol h on multiple lysine residues prevents ongoing interaction
with ubiquitinated PCNA, leading to SUMO-targeted ubiquitin
ligase (STUbL)-mediated ubiquitination of Pol h and its’
exclusion from damage sites (127).

TLS polymerase activity is also modulated by phosphorylation.
Pol h is phosphorylated at a number of sites in the C-terminus by
protein kinases including ATR, CDK2 and PKC. Following DNA
damage, ATR-mediated phosphorylation of Pol h on serine 601
(114) releases it from sequestration by Pol d-interacting protein of
38 kDa (PDIP38), freeing Pol h to bind to monoubiquitinated
PCNA (115). This links ATR activation by replication arrest-
Frontiers in Oncology | www.frontiersin.org 6
induced single-stranded DNA, with recruitment of TLS
polymerases to the arrested fork (115). Pol h is additionally
phosphorylated by PKC on S587 and T617 (129), and on serine
687byCDK2,which increases the stability of thepolymerase in late-
S and G2/M (125).

In addition to post-translational modification of specific
proteins, TLS is regulated at the transcriptional level. Following
DNA damage, POLH expression is p53-dependent (130), while
POLK expression is regulated by the aryl hydrocarbon receptor
(AhR) (131, 132). A recent report shows that TLS is negatively
regulated by Pumilio RNA Binding Family Member 1 (PUM1), a
protein that mediates mRNA decay (133). miRNAs have also
been identified which modulate expression of DNA damage
tolerance proteins. Examples include MiR-145 and miR-630
which downregulate RAD18 expression, and miR-93 and miR-
619 which downregulate Pol h expression (39, 134).
Furthermore, alternative polyadenylation of the POLH mRNA
transcript in lung and bladder cancer cells generates three
transcripts having 3’-UTR sequences of 427, 2516 or 6245
nucleotides, respectively (135). Of note, miR-619 only targets
the longer transcript, while the shortest transcript is resistant to
miR-619, and is responsible for increased Pol h expression and
cisplatin resistance in cancer cell lines (135).

Regulation of Homology-Directed DDT
Interplay between fork-protective and fork-degradative factors
plays a key role in modulating fork reversal (104). BRCA1,
BRCA2 and RAD51 shield the nascent DNA strands at the
reversed fork from degradation by the exonuclease action of
MRE-11 (5, 80, 81). WRN helicase interacting protein 1
(WRNIP1) also protects reversed forks from structure-specific
endonuclease subunit SLX4 (SLX4)-mediated fork cleavage and
subsequent DNA2-mediated fork degradation (136–138). The
interaction of polyubiquitinated PCNA with ZRANB3 slows fork
progression, promoting fork reversal through the translocase
TABLE 2 | Proteins regulating Pol h function in TLS.

Regulatory protein Function

ATR Phosphorylates Pol h on serine 601 and releases it from PDIP38 (114, 115)
NBS1 Binds to RAD18 and facilitates recruitment of Pol h to DNA damage sites (18, 116, 117)
SIVA1 Binds to PCNA to facilitate RAD18 recruitment and Pol h focus formation (18, 110)
SPARTAN Binds to RAD18 and prevents its removal from DNA (18, 112, 113)
HLTF Required for recruitment of Pol h (18, 111)
PirH2 Facilitates monoubiquitination of Pol h (39, 118, 119)
USP7 Deubiquitinates Pol h and allows it to bind to PCNA to initiate TLS (39, 120)
MDM2 Polyubiquitinates Pol h and marks it for degradation (39, 121)
PAF15 Removal of ubiquitinated PAF15 allows PCNA to bind to Pol h (39, 122); terminates TLS by removing Pol h from PCNA (39)
PARP10 Facilitates monoubiquitination of PCNA (39, 123)
CHK1, CLASPIN and
TIMELESS

Promote binding of RAD18 to PCNA (39, 109)

SART3 Facilitates the binding of RPA to ssDNA and the interaction between Pol h and RAD18 (39, 124)
CDK2 Phosphorylates Pol h and increases its stability (39, 125)
PIAS1 SUMOylates Pol h at K163 to promote recruitment to replication forks (126); SUMOylates Pol h at multiple sites to target it for removal

from PCNA (127)
STUbL Extracts Pol h from DNA damage sites (127)
SPARTAN, Protein with SprT-like domain at the N terminus; HLTF, helicase-like transcription factor; PirH2, p-53 induced RING-H2 protein; USP7, ubiquitin carboxyl-terminal hydroxylase
7; MDM2, mouse double minute 2 homologue; PAF15, PCNA-associated factor 15; PARP10, poly (ADP-ribose) polymerase 10; SART3, squamous cell carcinoma antigen recognized by
T Cells 3; CDK, cyclin-dependent kinase; PIAS1, Protein Inhibitor of Activated STAT 1.
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activity of ZRANB3 (75, 76). Recruitment of SMARCAL1 to the
stalled fork is regulated by ATR-mediated phosphorylation,
thereby limiting the extent of fork reversal (136, 139). Poly
(ADP-ribose) polymerase 1 (PARP1) modulates fork reversal
and fork restart by inhibiting RECQ1 helicase, and prolongs FR
by preventing RECQ1-mediated regression of reversed forks to
three-way junctions (15, 85, 136).

Template switching is regulated at a number of points including
PCNA polyubiquitination, the formation of the RAD51-ssDNA
presynaptic filament and SCJ formation [reviewed in (18)]. The
chromatin remodeling protein INO80, and the human Rad5
orthologues, HLTF and SHPRH are important for PCNA
polyubiquitination (140). Chromatin remodeling by INO80
facilitates the addition of K63-linked polyubiquitin chains to
PCNA by HLTF and SHRPH (5, 23, 141–143). The stability of
the RAD51-ssDNA filament involved in homology searching is
negatively regulated by SRS2 (18, 144, 145), while exonuclease 1
(EXO1), INO80 and high mobility group protein 1 (HMO1)
facilitate SCJ formation (18, 23, 89, 146).
DNA DAMAGE TOLERANCE
AND CARCINOGENESIS

The role of TLS in preventing cancer is clearly demonstrated in
the sun-sensitive skin cancer-prone disease xeroderma
pigmentosum variant (XP-V), where the absence of Pol h as a
result of inactivating mutations in POLH (147, 148) leads to
prolonged replication arrest at the sites of UV-induced lesions in
the template. In the absence of error-free bypass of UV-induced
CPDs by Pol h in XP-V cells, error-prone lesion bypass is carried
out by polymerases including Pol i and Pol z, resulting in
increased mutagenesis that contributes to skin carcinogenesis
in XP-V patients (9, 149). However, error-prone TLS can also
play an anti-carcinogenic role. As noted, error-prone bypass of
UV-induced lesions by Pol q protects against skin cancer in mice,
by allowing ongoing DNA synthesis to proceed thereby
preventing strand break formation and the resulting genomic
rearrangements (66). As a source of spontaneous mutagenesis,
low-fidelity TLS polymerases may play a role in driving
carcinogenesis. Y-family TLS polymerases in particular have
been implicated as a source of somatic mutations in tumors
(150). For example, Pol hmutational signatures are found in the
genome of cancer cells from patients with malignant B-cell
lymphoma and chronic lymphocytic leukemia (151).

Polymorphisms in genes encoding TLS polymerases are also
associated with increased cancer risk. Polymorphisms in REV1
and POLI, leading to single amino acid substitutions in Rev1 and
Pol i, were associated with increased risk of squamous cell
carcinoma and adenocarcinoma, respectively (152), while
POLH polymorphisms are associated with increased risk of
malignant melanoma (153). In addition to polymorphic
variants, sequencing of tumor DNA has revealed somatic
mutations in TLS polymerase genes in a number of tumor
types (10, 154). While the functional significance of most of
Frontiers in Oncology | www.frontiersin.org 7
these mutations remains to be determined experimentally,
mutations in TLS genes that affect protein function could in
principle lead to genome instability and contribute to tumor
development, or alter the response of tumor cells to
chemotherapeutic DNA damaging agents (10).

TLS polymerases are overexpressed in a number of different
cancers. It has been proposed that overexpression of TLS
polymerases can facilitate error-prone replication and
adaptation of the cancer cells to targeted therapy (155). For
example, expression of TLS polymerases i, k, l, m and Rev1 was
upregulated in colorectal cancer cells following treatment with
inhibitors of B-RAF or EGFR signalling (155). However, whether
increased levels of TLS polymerases directly contribute to the
acquisition of adaptive mutations requires further investigation.
In non-small-cell lung tumors increased expression of Pol h is
associated with poorer prognosis (156, 157), while increased
expression of Pol i is associated with oesophageal squamous cell
cancer and directly correlates with the degree of metastasis (158).
Pol i expression also correlates with the grade of bladder tumors
(159), while high expression of Pol k in glioblastoma tumors is
associated with poor prognosis (160).

From the perspective of cancer treatment, TLS can increase the
tolerance of cancer cells to DNA damage induced by
chemotherapeutic anti-cancer agents, thus promoting cancer cell
survival, and increasing the mutational burden as result of error-
prone lesion bypass. Pol k plays a role in the response to the
alkylating agent temozolomide used in the treatment of
glioblastoma. Increased expression of Pol k enhanced the
resistance of human glioblastoma cell lines to temozolomide
while down-regulation sensitised the cells to the drug (135). Pol h
can bypass cisplatin-induced intrastrand lesions (161–163), and
also plays a role in interstrand crosslink repair (164, 165). Human
cells lacking Pol h are more sensitive to platinum-based
chemotherapeutic agents (162, 163, 166–168). Overexpression of
Polh and Pol z contributes to cisplatin resistance in ovarian cancer
stem cells and human glioma cells (169, 170). It was recently shown
that PrimPol enhances survival of cisplatin-treated BRCA-deficient
human ovarian cancer and osteosarcoma cells (171). PrimPol
promotes repriming by reinitiating DNA synthesis downstream
of blocking lesions in the template, thereby preventing fork reversal
anddegradation (171). In addition topromoting resistance todirect
DNA-damaging agents, TLS polymerase levels also affect the
response to signalling pathway inhibitors. Pol k increased the
resistance of melanoma cells to the B-RAF inhibitor vemurafenib
(70). Although the mechanisms of TLS polymerase overexpression
in cancer cells remain to be elucidated, overexpression of Pol k is
regulated through activation of the aryl hydrocarbon receptor
(AhR) by the endogenous tryptophan-derived ligand kyneurin, as
well as by DNA damaging agents such as benzo[a]pyrene (B[a]P)
(131, 132, 172, 173). In the case of Polh, expression is regulated in a
p53-dependent manner after exposure of cells to DNA
damage (130).

Other than DNA polymerases, alterations to regulatory
proteins that play a role in TLS may also contribute to cancer
development. For example, RAD18 deletions were identified in
5% of pancreatic tumors and 11% of renal cell carcinoma tumors
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examined (174). Increased expression of RAD18 in a variety of
human cancer cell lines (including H1299 non-small cell lung
carcinoma cells, H157 and H650 adenocarcinoma cells and
U2OS osteosarcoma cells) leads to excessive activation of the
TLS pathway, contributing significantly to hypermutability
(150). RAD18 protein levels can be increased by upregulation
of melanoma antigen-A4 (MAGE-A4), which binds to and
stabilises RAD18, activating the TLS pathway (175). The RAD5
ortholog HLTF, important in PCNA polyubiquitination, is
downregulated through promoter methylation in colon cancer
cell lines and in primary tumors (176).
DDT PATHWAYS AS
THERAPEUTIC TARGETS

Given the role of DNA damage tolerance pathways in driving
chemoresistance, there is potential to sensitize cancer cells to
chemotherapy by inhibiting these pathways (177). To date, the
major focus has been on identification of TLS inhibitors. A
number of inhibitors of TLS-mediated lesion bypass have been
reported (Table 3) and are discussed below. The inhibitors fall
broadly into two categories: (i) inhibitors that directly interfere
with TLS polymerase catalytic function and (ii) inhibitors that
interfere with protein-protein interactions (PPIs) to inhibit
TLS indirectly.

Direct Inhibitors of TLS Polymerases
In recent years, several TLS polymerase inhibitors have been
reported (187). Examples include indole thiobarbituric acid
(ITBA) and its’ derivatives (185, 186). ITBA binds directly to
the finger and LF domains of Pol h, which may prevent the
polymerase from binding to ssDNA and interfere with
nucleotide incorporation (186). The ITBA derivative ITBA-12
inhibits Pol h and Pol k activity (186), while ITBA-16 and ITBA-
19, containing N-1-naphthoyl and N-2-naphthoyl Ar-
substituents have increased specificity towards Pol h (186).
The ITBA derivative, PNR-7-02 which binds to the little finger
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domain and inhibits Pol h function, acts synergistically with
cisplatin to kill chronic myeloid leukaemia and ovarian cancer
cell lines (185). An indole-aminoguanidine analogue, IAG-10,
binds human Pol k preventing the N-clasp domain from holding
the LF domain in place, triggering a conformational change that
decreases the contact between the protein and the DNA template
(190). IAG-10 synergises with temozolomide to kill glioblastoma
cell lines in culture (190). This supports the concept that direct
inhibitors of TLS polymerases can increase the cytotoxic effects
of conventional chemotherapeutic agents (190).

In addition to the identification of novel compounds that
inhibit TLS polymerases, certain existing small molecules in
clinical use have been reported to inhibit TLS. These include
candesartan cilexetil, used clinically as an angiotensin-II receptor
antagonist in the treatment of hypertension (191); manoalide, a
phospholipase A2 inhibitor with both analgesic and anti-
inflammatory properties (192), and MK-886, a leukotriene
antagonist (193). Candesartan cilexetil, manoalide and MK-886
were shown to inhibit the in vitro activity of purified human Pol
k on undamaged DNA templates and to inhibit bypass of a g-
HOPdG lesion by Pol k (178). Candesartan cilexetil, but not the
other two compounds, sensitised Pol h-deficient XP-V cells to
UV radiation (178). The fungal-derived molecules 3-O-
methylfunicone, and Penicilliols A and B have been identified
by screening for natural products that inhibit TLS polymerases
(183). 3-O-methylfunicone, isolated from an Australian sea salt
fungal strain, inhibits Y-polymerases k, i and h (183), competing
directly with the DNA template-primer for interaction with the
DNA binding domain of Pol k (183). 3-O-methylfunicone
decreased the growth of two cervical carcinoma and colon
carcinoma cell lines, while having little effect on the growth
and proliferation of normal human cells (183). Penicilliols A and
B, isolated from a strain of Penicillium daleae, also inhibit
mammalian Y-family polymerases, in particular Pol i (184).

Recent reports (188, 189) demonstrating that novel inhibitors
of human Pol q synergise with HR-deficiency or resistance to
PARP inhibition to kill cancer cells provides strong support for
the strategy of targeting specialised DNA polymerases in cancer
TABLE 3 | Inhibitors of TLS polymerases.

Inhibitor TLS polymerase(s) Effect on cancer cells

Candesartan cilexetil Pol h, Pol i, Pol k Sensitises XP-V cells to UV radiation (178)
Manoalide; MK-886 Pol k Inhibit Pol k in vitro but do not sensitise XP-V cells to UV radiation (178)
Cholesterol hemisuccinate Pol h, Pol i, Pol k Not reported (179)
Penta-1,2,3,4,6-O-galloyl-beta-D-
glucose

Pol h, Pol i, Pol k Not reported (180)

Pinophilins A and B Pol h, Pol i, Pol k Inhibit proliferation of cancer cell lines (181)
b-Sitosteryl (6’-O-linoleoyl)-
glucoside

Pol h, Pol i, Pol k Not reported (182)

3-O-methylfunicone Pol i, Pol k Inhibits cervical and colon carcinoma cell growth; sensitises cervical carcinoma cells to UV radiation (183)
Penicilliols A and B Pol h, Pol i, Pol k Not reported (184)
PNR-7-02 Rev 1, Pol h Sensitises chronic myeloid leukaemia and ovarian cancer cell lines to cisplatin (185)
IAG-10 Pol k Sensitises glioblastoma cell lines to temozolomide (186)
JH-RE-06 Rev1 Sensitises melanoma cells to cisplatin; reduces melanoma tumor volume in mouse model (177, 187)
Novobiocin Pol q Synthetic lethality with olaparib in HR-deficient ovarian cancer cells; tumor regression in mouse model (188)
ART558; ART812 Pol q Synthetic lethality with olaparib in HR-deficient colon cancer cells; inhibition of HR-deficient tumor xenografts

in rat model (189)
February 2022 | Volume 11 | Article 822500

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ler and Carty DNA Damage Tolerance Pathways
therapy. The Pol q inhibitors include the antibiotic novobiocin
(188) and the synthetic small molecule allosteric inhibitor
ART558 (189). When used in conjunction with PARP
inhibitors, Pol q inhibitors induce synthetic lethality in HR-
deficient cancer cells. PARP is required for repair of single strand
breaks and inhibition of PARP-dependent single-strand break
repair increases the level of double-strand breaks in the genome.
Novobiocin synergistically increased the cytotoxic effects of the
PARP inhibitors rucaparib and olaparib in BRCA1-deficient
human retinal pigment epithelial cells and ovarian cancer cell
lines, respectively (188). In mouse studies, novobiocin sensitized
tumors arising from PARPi-resistant ovarian carcinoma cells to
treatment with olaparib, resulting in tumor regression (188). The
novel small molecule ART558 induced synthetic lethality in
PARPi-resistant BRCA2-deficient human colon cancer cells
treated with olaparib (189). ART812, a more bioavailable
derivative of ART558, inhibits tumor xenograft growth in a rat
model (189). Mechanistically, the cytotoxic effects of the Pol q
inhibitors are synergistic with HR-deficiency and PARP inhibitor
resistance due to the effect of the molecules on Pol q activity in
the Theta-mediated end-joining pathway of DNA double-strand
break repair (188, 189).

Inhibitors of TLS Polymerase PPIs
Protein-protein interactions (PPIs) play a critical role in lesion
bypass. PPIs include the key interactions between Ub-PCNA and
TLS polymerases, as well as interactions between inserter and
extender TLS polymerases, for example between Rev1 and other
TLS polymerases, and between the Rev7 and Rev3 subunits of the
Pol z complex. A number of PPI inhibitors have been developed
based on detailed structural information on the interaction
domains of the target proteins (194).

Inhibitors of Interactions Between PCNA
and TLS Polymerases
Indirect inhibitors of TLS can inhibit the recruitment of TLS
polymerases to PCNA, thereby preventing lesion bypass. Small
molecule inhibitors of the PCNA/PIP-box interaction compete
with the PIP-box sequence of TLS polymerases for binding to
PCNA during the initiation phase of TLS. The compound 3,3’,5-
triiodothyronine (T3) and its synthetic derivative T2 amino
alcohol (T2AA) were reported to inhibit the PCNA/PIP-box
PPI (195). T2AA and its analogues suppressed TLS in NER-
deficient human cells, decreased cell division in osteosarcoma
cells treated with cisplatin (196), and inhibited interstrand DNA
cross-link (ICL) repair, slowing proliferation of cervical cancer
cells (196). Consistent with the importance of the PCNA-PIP box
interaction, a novel compound which specifically targets the L126
toY133 region of the PIP-interaction loop of PCNA sensitises cancer
cells to cisplatin (197).Other inhibitorsof thePCNA/TLSpolymerase
interaction specifically prevent the recruitment of Rev1 to PCNA.
One small molecule inhibitor, compound 1, binds Rev1 directly via
the UBM2 motif and prevents interaction with K164-ubiquitinated
PCNA (198). Compound 1 increased the cytotoxicity of both 4-
hydroxycyclophosphamide and cisplatin by up to 10-fold in cultured
cells (198).
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Inhibitors of PPIs Between Inserter and
Extender Polymerases
Inhibitors of essential PPIs between inserter and extender TLS
polymerases have also been identified that suppress TLS and
enhance the cytotoxicity of chemotherapeutic agents. Among
these are small molecule inhibitors of the interaction between the
C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting
region (RIR) of other Y-family TLS polymerases. Two such
compounds, 4 and 5, have been reported (199) that bind to the
Rev1-CT, preventing the recruitment of Pol z to Rev1, and
sensitising fibrosarcoma cell lines to cisplatin and to UV
radiation. Both compounds decreased the level of cisplatin-
induced HPRT gene mutations, indicating the molecules can
attenuate the mutagenicity associated with error-prone
replication of platinum-induced DNA lesions (199). Additional
derivatives have been developed that also compete with TLS
polymerases for binding to the Rev1-CT domain, and increase
the cytotoxicity of cisplatin (200, 201). Of note, inhibition of the
Rev1-CT/RIR interaction was synergistic with the ATM and
ATR inhibitor VE-821 and the Wee1 inhibitor MK-1775, leading
to the formation of daughter strand gaps (DSGs) in replicating
DNA, and sensitising bone osteosarcoma and colon cancer cells
to these agents (201). Consistent with this, Pol h-deficient cells
are significantly more sensitive to ATR inhibitors than normal
cells (129, 202, 203). Since daughter strand gaps can also result
from replication stress in oncogene-mutated cancer cells, it is
proposed that in addition to direct lesion bypass, TLS
polymerases contribute to cancer cell survival by carrying out
DNA synthesis at DSGs. This limits the accumulation of single-
stranded DNA in the genome (201), a process termed gap
suppression (201). TLS inhibitors could therefore be used to
achieve synthetic lethality in combination with cell cycle
checkpoint inhibitors that induce DSGs, such as inhibitors of
ATR and Wee1 (201).

Aside from inhibitors that interrupt Rev1-CT-RIR interactions,
a small molecule inhibitor that disrupts the interaction between
Rev1 and the Rev7 subunit of Pol z has also been identified. In both
human andmouse cell lines, JH-RE-06, a small molecule that binds
to the C-terminal domain of Rev1 and blocks interaction with the
Rev7 subunit of Pol z, sensitised melanoma cells to cisplatin, and
reduced drug-induced mutagenesis (204). Combination treatment
with JH-RE-06 and cisplatin reduced tumor volume and improved
survival in a mouse xenograft model of A375 melanoma cells,
demonstrating the potential of targeting key PPIs as a therapeutic
strategy (204, 205). Treatment offibrosarcoma andmelanoma cells
with JH-RE-06 leads to senescence following cisplatin-induced
DNA damage (204, 205). The impact of chemical inhibition of
Pol z activity on overall genome stability should also be considered,
since genetic ablation of REV3L encoding the catalytic subunit of
Pol z increased genome instability in REV3L-null mouse embryo
fibroblasts (206), and contributed to development of lymphomas
and mammary tumors in mice where REV3L was conditionally
deleted (207).

Recent evidence indicates that the interaction between Rev7
and Rev3 proteins required to form active Pol z is actively
regulated in cells (208). The ATPase thyroid receptor-
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interacting protein 13, (TRIP13), modulates the conformation of
Rev7, preventing both its’ interaction with Rev3 to form of active
Pol z which is required for TLS, and interaction with the Shieldin
complex which activates NHEJ (208). TRIP13 therefore mediates
pathway choice, promoting error-free HDR over mutagenic TLS
or NHEJ (208). TRIP13 overexpression correlates with BRCA1-
deficiency in breast cancer cells and contributes to
chemoresistance towards PARP inhibitors (208). The
interaction of Rev7 with the Shieldin complex and with Rev3 is
also inhibited by expression of the p31comet HORMA-like protein
(209, 210), identifying Rev7 as a key modulator of pathway
choice after DNA damage. Overall, inhibition of key interactions
between TLS polymerases and partner proteins represents a
promising approach to sensitising cancer cells to chemotherapy.

Inhibitors of TLS Regulators
While targeting the catalytic activity and protein-protein
interactions of TLS polymerases has been shown to be effective
in overcoming chemoresistance in cancer cells, there may also be
potential in targeting upstream regulators of TLS to inhibit the
action of multiple TLS polymerases for therapeutic effect. For
example, targeting the TLS pathway regulator RAD6 and PCNA
monoubiquitination could be a more potent method to inhibit
TLS than targeting individual TLS polymerases. However, the
effects of inhibiting RAD6 on cytotoxicity and genome stability
after DNA damage should be directly compared with the effects of
targeting individual TLS polymerases using specific inhibitors.
Inhibition of RAD6 by a small-molecule inhibitor, SMI#9,
attenuated cisplatin resistance in triple-negative breast cancer
cells, and enhanced the cytotoxicity of oxaliplatin towards the
oxaliplatin-resistant colorectal carcinoma cell line HCT116-OxR
(211, 212). Co-administration of SMI#9 with cisplatin decreased
the growth of tumors arising from triple-negative breast cancer
cells and lymph node metastasis (211). Molecules that modulate
the extent of PCNA monoubiquitination and therefore the
recruitment of TLS polymerases to DNA damage sites have also
been described. C11 and G8, two inhibitors of the protein kinase
AKT, inhibit damage-induced PCNA monoubiquitination and
show synthetic lethality with UV-irradiation in BRCA1-deficient
triple-negative breast cancer and colon cancer cell lines (213). The
specific targets of AKT that modulate PCNA monoubiquitination
are of interest (213).

Additional potential targets for inhibition of TLS include the
USP1/UAF1 deubiquitinase complex. Two small molecule USP1/
UAF1 inhibitors,pimozide andGW7647, enhanced the cytotoxicity
of cisplatin anddecreased cell division innon-small cell lung cancer
cell lines (214).A thirdUSP1/UAF1 inhibitor,ML323,was found to
increase the cytotoxic effect of cisplatin on osteosarcoma and non-
small cell lung cancer cells (215). As well as affecting TLS, USP1/
UAF1 inhibitors increase cisplatin sensitivity by disrupting
deubiquitination of the FANCD2/FANCI complex, preventing
repair of drug-induced interstrand adducts by the FA crosslink
repair pathway (215–217). The level of the chaperone protein
Hsp90 is also important in the stability of TLS polymerases,
including Rev1 (218) and Pol h (219). Tanespimycin (17-AAG),
which promotes proteasomal degradation of Hsp90, decreased the
amount of Rev1 in human prostate and bone osteosarcoma cancer
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cells (218), and downregulated the recruitment of Rev 1 to sites of
UV-induced DNA damage in the nucleus (218). The proteasome
inhibitors, lactacystin and MG-132, prevented the reduction in
Rev1 levels induced by 17-AAG (218), indicating that Hsp90
normally protects Rev1 from proteasomal degradation. Following
UV-induced DNA damage, Pol h undergoes direct PIAS1-
mediated poly-SUMOylation upon recruitment to PCNA. The
protein is then modified by SUMO-targeted ubiquitin ligases
(STUbLs), which is crucial for clearance of the polymerase from
damage sites following lesion bypass. Targeting the humanSTUbLs
RNF4 and RNF11 could potentially enhance the turnover rate of
mutagenic TLS polymerases and decrease lesion bypass in cancer
cells (127). Given the extensive ubiquitination of proteins involved
in DNAdamage tolerance, the response to general inhibitors of the
proteasome is complex. Of interest, it has been reported that the
proteasome inhibitors MG-132, lactacystin, andMG-262 inhibited
TLS in human cancer cell lines, but not in normal cells (220),
indicating that targeting the degradation of specific proteins could
represent another approach to modulation of the DNA damage
tolerance pathway in cancer cells.

Other Approaches to TLS Inhibition
Alternative approaches of TLS inhibition include the use of novel
non-natural nucleotides to inhibit bypass synthesis, and down-
regulation of DDT protein expression using miRNAs. Two
synthetic nucleotide analogues, 5-nitro-indolyl-2′deoxyriboside
triphosphate (5-NITP) and 5-phenyl-indolyl-2′deoxyriboside
triphosphate (5-PhITP), are preferentially incorporated opposite
abasic sitesduringDNAreplication,while resisting both excisionby
proofreading exonuclease activity and subsequent elongation,
preventing further DNA replication past the damage sites (221).
TLS polymerases, specifically Polh andPol i, preferentially inserted
5-NITP over dATP opposite temozolomide-induced abasic sites,
preventing lesion bypass at the damage sites (222). The synthetic
nucleoside potentiated the cytotoxic effects of temozolomide in
glioblastoma cancer cell lines, and led to tumor regression inmouse
models of tumor growth (222).

Identification of miRNAs that regulate expression of key genes
represents another potential mechanism of DDT inhibition. For
example, miR-96 regulates expression of RAD51 and REV1 (223).
Knockdown of REV1 expression using miR-96 contributed to
cisplatin sensitization in bone osteosarcoma cells with intact HR
repair, as well as in BRCA1-deficient breast cancer and BRCA2-
deficient ovarian cancer cell lines with compromised HR pathways
(223). Direct inhibition of RAD51 and REV1 expression by
overexpression of miR-96 ultimately slowed growth of tumors
from triple-negative breast cancer cells in mice (223).
FUTURE PERSPECTIVES

There is increasing evidence that inhibition of DNA damage
tolerance pathways can sensitize cancer cells to conventional
chemotherapeutic agents. Ongoing research into the molecular
basis of DNA damage tolerance will provide opportunities for
further advances. The factors that influence pathway choice in
specific circumstances require further investigation. For the TLS
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pathway, understanding the contribution of individual DNA
polymerases to lesion bypass in cancer and normal cells will be
important, and will further inform the design of specific inhibitors
that target polymerases or accessory proteins. In addition to
polymerases, other DDT proteins could also represent therapeutic
targets, using agents that directly blockprotein function, or interfere
with specific PPIs that are essential for DNAdamage tolerance. The
major focus to date has been on inhibition of TLS, but given the
recent advances in elucidating the genetics and biochemistry offork
reversal and template switching, there is potential to identify new
inhibitors targeting these pathways. The risk ofdirecting replication
intermediates into other more error-prone pathways, increasing
genetic instability and further contributing to the development of
resistant cancer cells, also has to be considered in this context.
Further challenges include the development of specific inhibitors,
proving that cellular phenotypes are due to inhibition of the
proposed target, and demonstrating clinical utility for small
molecule inhibitors. Ongoing research will advance the potential
to target DNA tolerance pathways as a therapeutic approach
for cancer.
CONCLUSION

DDT pathways are critical to allow cells to tolerate DNA lesions
and facilitate the completion of DNA replication. However,
Frontiers in Oncology | www.frontiersin.org 11
imbalances in these pathways in cancer cells can lead to
significant mutagenesis, contributing to chemoresistance and
increased cancer cell survival. Considering the evidence that
inhibiting DDT pathways can sensitize cancer cells to
chemotherapy, more research into novel therapeutics in this
area could eventually lead to the development of a new class of
cancer therapeutic agents that enhance the response to treatment
with conventional chemotherapy.
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