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Purpose: To develop and validate a radiomics nomogram for the prediction of clinically
significant prostate cancer (CsPCa) in Prostate Imaging-Reporting and Data System (PI-
RADS) category 3 lesions.

Methods:We retrospectively enrolled 306 patients within PI-RADS 3 lesion from January
2015 to July 2020 in institution 1; the enrolled patients were randomly divided into the
training group (n = 199) and test group (n = 107). Radiomics features were extracted from
T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC) imaging, and dynamic
contrast-enhanced (DCE) imaging. Synthetic minority oversampling technique (SMOTE)
was used to address the class imbalance. The ANOVA and least absolute shrinkage and
selection operator (LASSO) regression model were used for feature selection and
radiomics signature building. Then, a radiomics score (Rad-score) was acquired.
Combined with serum prostate-specific antigen density (PSAD) level, a multivariate
logistic regression analysis was used to construct a radiomics nomogram. Receiver
operating characteristic (ROC) curve analysis was used to evaluate radiomics signature
and nomogram. The radiomics nomogram calibration and clinical usefulness were
estimated through calibration curve and decision curve analysis (DCA). External
validation was assessed, and the independent validation cohort contained 65 patients
within PI-RADS 3 lesion from January 2020 to July 2021 in institution 2.

Results: A total of 75 (24.5%) and 16 (24.6%) patients had CsPCa in institution 1 and 2,
respectively. The radiomics signature with SMOTE augmentation method had a higher
area under the ROC curve (AUC) [0.840 (95% CI, 0.776–0.904)] than that without SMOTE
method [0.730 (95% CI, 0.624–0.836), p = 0.08] in the test group and significantly
increased in the external validation group [0.834 (95% CI, 0.709–0.959) vs. 0.718 (95%
CI, 0.562–0.874), p = 0.017]. The radiomics nomogram showed good discrimination and
calibration, with an AUC of 0.939 (95% CI, 0.913–0.965), 0.884 (95% CI, 0.831–0.937),
and 0.907 (95% CI, 0.814–1) in the training, test, and external validation groups,
respectively. The DCA demonstrated the clinical usefulness of radiomics nomogram.
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Conclusion: The radiomics nomogram that incorporates the MRI-based radiomics
signature and PSAD can be conveniently used to individually predict CsPCa in patients
within PI-RADS 3 lesion.
Keywords: radiomics, clinically significant prostate cancer, PI-RADS, machine learning, prostate-specific antigen
INTRODUCTION

Prostate cancer (PCa) is the most common malignancy cancer in
newly diagnosed cancers and cause of the second cancer
mortality in men (1). Multiparametric MRI (mpMRI) has
become the preferred non-invasive method for the detection
and assessment of PCa (2). Prostate Imaging Reporting and Data
System has updated to version 2.1 (PI-RADS v2.1) in 2019 (3).
The PI-RADS represents a standardized method for prostate
mpMRI acquisition, interpretation, and reporting. It utilizes a 5-
point scale to represent the likelihood of clinically significant PCa
(CsPCa) based on the mpMRI findings on axial T2-weighted
imaging (T2WI), diffusion-weighted imaging (DWI), and
dynamic contrast-enhanced (DCE) maps.

The PI-RADS category 3 is the most ambiguous group in PI-
RADS v2.1, which represents an equivocal suspicion of CsPCa. For
PI-RADS 3 lesions, whether or not a prostate biopsy is
recommended has been a matter of discussion, which depends on
factors other than mpMRI alone (4), while the European
Association of Urology (EAU) guidelines 2021 recommended that
biopsy should be performed when MRI is positive (PI-RADS ≥ 3).
Histologic biopsy examination can provide an accurate diagnosis of
CsPCa, while the detection rate of CsPCa in biopsied PI-RADS 3
lesions has shown significantly high variability (range from 10.1% to
46.5%) (5, 6). It is difficult to qualitatively characterize PI-RADS 3
lesions, and how to improve CsPCa detection rate while avoiding
unnecessary biopsies has always been a clinical problem that needed
to be solved. Meanwhile, one of the main limitations of PI-RADS is
the high inter-reader variability impacting cancer detection (7); for
this reason, a radiomics model is especially useful in PI-RADS
3 lesions.

Radiomics offers a non-invasive and low-cost automated
technique for the analysis of tumor properties based on MR
images. It could capture large amounts of quantitative features
from medical images, which could reflect underlying
pathophysiology, especially tumor heterogeneity (8, 9).
Radiomics could provide some guidance for clinical
therapeutic decision-making by analyzing these quantitative
features, resulting in improved personalization and precision
medicine (10, 11). Radiomics has made great progress in the
discrimination of colorectal tumors, thoracic imaging diagnosis,
and some other diseases (12–14). Some radiomics studies have
differentiated malignant from benign lesions and assessed the
aggressiveness, survival, and treatment response in prostate
lesions (15–17). However, there is limited research (18–21)
applying radiomics analysis to detect CsPCa in equivocal PI-
RADS 3 lesions and no validation data to verify their findings.

The purpose of this study was to develop and validate a
radiomics nomogram that combined radiomics signature with
2

clinical risk factors for individual prediction of CsPCa in PI-
RADS 3 lesions.

MATERIALS AND METHODS

Patients
This retrospective analysis was approved by the Institutional
Review Board of our hospital; patient informed consent
requirement was waived. In the primary cohort, 306 patients
were consecutively enrolled from January 2015 to July 2020 in
institution 1. The inclusion criteria were as follows: 1) patients
who underwent prostatectomy or prostate biopsy and pathological
results were acquired; 2) prostate 3.0-T mpMRI examination was
performed before prostatectomy or biopsy within 4 weeks; 3)
serum total prostate-specific antigen (tPSA) and free PSA (fPSA)
levels were measured within 4 weeks before MRI examination. The
exclusion criteria were as follows: 1) with PI-RADS 1–2 or 4–5
index lesion on mpMRI; 2) prior therapy history for PCa patients
including chemotherapy, radiotherapy, or prostatectomy; 3) with
incomplete mpMRI information or severe imaging artifacts; and
4) lesion volume <5 mm3 or lesion boundary could not be
delineated. The enrolled patients of the primary cohort were
randomly separated into the training group (n = 199) and test
group (n = 107) at a ratio of 7:3. An external independent
validation group of 65 patients was enrolled in institution 2
from January 2020 to July 2021, using the same criteria as those
for the primary cohort. All patients’ images were re-read by two
experienced radiologists (readers 1 and 2 with 5 and 10 years of
experience in MRI prostate diagnosis, respectively) following the
PI-RADS v2.1 guidelines. The flowchart of patient selection is
shown in Figure 1. Baseline clinical risk factors were derived from
medical records, including age, serum tPSA level, fPSA level, PSA
density (PSAD) level, and pathological results.

MRI Examination
All patients were scanned using a 3.0-T MRI scanner (institution
1: GE Discovery MR750W, General Healthcare; institution 2:
Siemens MAGNETOM Spectra, Germany) with a dedicated 8-
channel pelvic phased-array coil imaging and without the use of
an endorectal coil. Scan sequences included axial T2WI, DWI,
and DCE images, which were compliant with the European
Society of Urogenital Radiology guidelines (22). ADC maps
were calculated based on DWI with b-values of 1,000 s/mm2

on a designated workstation. Full MRI acquisition parameters
are given in Supplementary Table S1.

Pathological Evaluation
All patients underwent prostate biopsy or prostatectomy. A 12-
core systematic transrectal ultrasound-guided prostate biopsy
January 2022 | Volume 11 | Article 825429
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was performed in our study. At least two cores were obtained
from each target. The histopathological information, such as
pathological type (e.g., benign prostatic hyperplasia, prostatitis,
and PCa) and Gleason score (GS) were recorded. An index lesion
was diagnosed as CsPCa if the pathological report GS ≥ 7 (3 + 4).

Lesion Segmentation and Feature Extraction
Readers 1 and 2 using a free and open-source software package (3D
Slicer v.4.10.0; http://slicer.org/) manually segmented PI-RADS 3
lesions. The three-dimensional region of interest (ROI) was
delineated layer by layer along the lesion boundaries on the axial
T2WI, ADC, andDCE images. The first enhancement phase of DCE
images was chosen for segmentation. ROI was designed to not
contain necrosis, cystic tissue, calcification, urethra, and seminal
vesicle.AnextensionofPyRadiomicswithin3DSlicerwasperformed
for feature extraction (23). The following standard classes of features
were extracted: shape-based, first-order statistical, gray-level
dependence matrix, gray-level co-occurrence matrix, gray-level
run-length matrix, gray-level size zone matrix, neighborhood gray-
tone difference matrix, and wavelet transformed features.

Intra- and Inter-Observer Agreement
The intra- and inter-observer reproducibility of radiomics
feature extraction was assessed by the inter-class correlation
coefficient (ICC). Initially, 30 patients’ imaging data were
randomly selected for ROI segmentation and feature extraction
by reader 1 and reader 2. Reader 1 then repeated the same
procedure 2 weeks later. The ICCs were calculated between the
features extracted from ROI by reader 1 and reader 2 and twice
by reader 1. The radiomics features with poor reproducibility
(ICC ≤ 0.75) were discarded before statistical assessment.

Sample Augmentation
The model was trained and tested in the primary cohort, while
the ratio of CsPCa (n = 75) and no-CsPCa patients (n = 231) was
imbalanced, which would impact the performance of the model.
Frontiers in Oncology | www.frontiersin.org 3
A sample augmentation method of synthetic minority
oversampling technique (SMOTE) (15, 24, 25) from the joint
weighting of multiparametric features was used to address this
problem in this study. The k-nearest neighbor algorithm was
used in SMOTE to oversample the minority sample, until an
equal number of cases in each class. The SMOTE method was
not used in the external independent validation group.

Feature Selection and Radiomics
Signature Building
All radiomics features were separately normalized using the Z-
scores standardization to get rid of the unit limits of each feature
(26). Univariate analysis (one-way ANOVA or Mann–Whitney U
test) was used to select the features that significantly associate with
CsPCa. Then, the least absolute shrinkage and selection operator
(LASSO) combined with 10-fold cross-validations was conducted
to choose the most useful predictive features. Radiomics signature
was constructed using a linear combination of selected features
that were weighted by their respective LASSO coefficients, and
then a radiomics score (Rad-score) was calculated for each patient.
The potential association of the radiomics signature with CsPCa
was first assessed in the training group and then validated in the
test and external validation groups using a Mann–Whitney U test.

Radiomics Nomogram Construction
Multivariable logistic regression analysis was applied to select
independent predictors of CsPCa from Rad-score, age, tPSA,
fPSA, and PSAD level, using a backward stepwise regression
method based on minimal Akaike’s information criterion. Then,
a radiomics nomogram was constructed based on the
multivariate logistic regression model.

Radiomics Nomogram Evaluation
Independent validation of the radiomics nomogram was
performed with the internal and external validation data. The
calibration curve and the Hosmer–Lemeshow test were
FIGURE 1 | The flowchart of patient selection.
January 2022 | Volume 11 | Article 825429
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performed to assess the calibration of the radiomics nomogram.
Decision curve analysis (DCA) was performed to estimate the
clinical utility of the radiomics nomogram by quantifying the net
benefits at different threshold probabilities.

Statistical Analysis
Statistical analysis was conducted with SPSS (v26.0) and R
software (v4.1.1). Demographic data were compared using the
independent t-test or Kruskal–Wallis H test for continuous
variables, and the chi-squared test for categorical variables.
Quantitative data were presented as mean ± SD or median
(interquartile range) if normally or non-normally distributed.
The performance of the classifier was evaluated using receiver
operating characteristic (ROC) curve analysis, accuracy,
sensitivity, and specificity. Delong’s test was used to compare
areas under the ROC curve (AUCs). p < 0.05 was considered
statistically significant.
RESULTS

Clinical Characteristics
Patient characteristics in the two institutions are given in Table 1.
There was no significant difference in the ratio of CsPCa between
the two institutions (p = 0.989). The proportions of CsPCa in the
two institutions were 24.5% and 24.6%, respectively. In institution
1, 70% of patients were divided into the training group (n = 199),
and the rest were divided into the test group (n = 107). The patient
characteristics and distribution of the training and test groups are
listed in Supplementary Table S2.

Feature Selection and Radiomics
Signature Building
A total of 2,553 radiomics features was extracted in each patient;
2,350 features were identified as high-reproducibility (ICC >
0.75) radiomics features. Without sample augmentation, 10
features (3 from T2WI, 5 from ADC, and 2 from DCE) were
finally selected from the univariate analysis and LASSO analysis
(Figures 2A, B). The selected features are shown in
Supplementary Figure S1A. The Rad-score was acquired and
showed a significant difference between CsPCa and non-CsPCa
in the training group (p < 0.001), which was then confirmed in
the test group (p < 0.001) and external validation group (p =
0.008). The radiomics signatures yielded an AUC of 0.881 (95%
CI, 0.824–0.938) in the training group, 0.730 (95% CI, 0.624–
0.836) in the test group, and 0.718 (95% CI, 0.562–0.874) in the
external validation group, as shown in Figure 3A and Table 2.

When using the SMOTE augmentation method, 19 features
(3 from T2WI, 11 from ADC, and 5 from DCE) were lastly
selected (Figures 2C, D). The selected features are shown in
Supplementary Figure S1B. The Rad-score also showed a
significant difference between CsPCa and non-CsPCa (p <
0.001 for all the training, test, and external validation groups).
Compared with that of the method without SMOTE, the
performance of radiomics signature was improved with an
Frontiers in Oncology | www.frontiersin.org 4
AUC of 0.840 (95% CI, 0.776–0.904, p = 0.083) in the test
group and significantly improved in the external validation
group with an AUC of 0.834 (95% CI, 0.709–0.959, p = 0.016),
as shown in Figure 3B and Table 2.

Radiomics Nomogram Construction
The multivariable logistic analysis of Rad-score and clinical
characteristics revealed that Rad-score and PSAD level were
clinical independent predictors. Then a radiomics nomogram
incorporating these two predictors was developed as shown
in Figure 4.

Radiomics Nomogram Evaluation
The calibration curve of the nomogram demonstrated good
agreement between prediction and observation in the training,
test, and external validation groups; and the Hosmer–Lemeshow
test showed a non-significant p-value of 0.248, 0.220, and 0.801,
respectively (shown in Figures 5A–C). The AUC for the
radiomics nomogram was 0.939 (95% CI, 0.913–0.965) for the
training group, 0.884 (95% CI, 0.831–0.937) for the test group,
and 0.907 (95% CI, 0.814–1) for the external validation group
(shown in Figure 6 and Table 3).

The DCA showed that if the threshold probability is higher
than 0.05, the patients would obtain the greatest benefit using the
radiomics nomogram than either the “treat all” strategy or the
“treat none” strategy (Figure 7).
DISCUSSION

In the present study, we developed and validated a radiomics
nomogram to diagnose CsPCa from non-CsPCa in PI-RADS 3
lesions. The radiomics nomogram was constructed by containing
the Rad-score and PSAD. Compared with the radiomics
signature, the radiomics nomogram acquired higher
performance (AUC = 0.884 vs. 0.840 in the test group; AUC =
0.907 vs. 0.834 in the external validation group) in diagnosing
CsPCa. Furthermore, the radiomics nomogram provided
clinicians with an easy-to-use, quantifiable, and individualized
tool to predict the risk rate of CsPCa in PI-RADS 3
lesions (Figure 4).

The class imbalance would adversely impact the performance
of a classifier, leading to an unfair classification wherein all of the
samples are classified as the majority class. To reduce the effect of
imbalance, the SMOTE method has been used in the
construction of radiomics signatures (27, 28). Feher et al. (24)
have compared the performance of recursive feature elimination
support vector machine (RFE-SVM) with or without
oversampling, their study showed that RFE-SVM with SMOTE
method has better performance for separating GS 6 versus GS ≥
7, and GS 7 (3 + 4) versus GS 7 (4 + 3) cancers. Certainly, our
results indicate that the performance of the radiomics signature
with SMOTE method was improved in the test group (AUC =
0.840 vs. 0.730, p = 0.083) and external validation group (AUC =
0.834 vs. 0.718, p = 0.016).
January 2022 | Volume 11 | Article 825429
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A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of the radiomics signature. (A) Without synthetic minority oversampling technique (SMOTE) method.
(B) With SMOTE method.
A B

DC

FIGURE 2 | Feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (A, B) Feature selection in LASSO without
synthetic minority oversampling technique (SMOTE) method. (C, D) Feature selection in LASSO with SMOTE method. (A, C) Tuning parameters (l) in the LASSO
model used 10-fold cross-validation via minimum criteria. The partial likelihood deviance was plotted versus log (l). Dotted vertical lines were drawn at the optimal
values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1 − SE criteria). (B, D) Feature coefficients corresponding to different l
values in the LASSO model. Vertical line (optimal l) was drawn at the value selected using 10-fold cross-validation.
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Many studies have explored the radiomics analysis in oncology
and extended to PCa identification and evaluation. Woznicki et al.
(29) found that the radiomics model combined with clinical
characters achieved high predictive performance (AUC = 0.844)
for differentiation of CsPCa from clinically insignificant PCa
(CiPCa) and superior to PI-RADS for CsPCa prediction. Our
study has developed a nomogram to different CsPCa from no-
CsPCa (includingCiPCa and benign lesions), which showed higher
performance (AUC = 0.907) than Woznicki et al. Zhang et al. (30)
investigated an MRI-based radiomics nomogram for identifying
Frontiers in Oncology | www.frontiersin.org 6
CsPCa with an AUC of 0.95 (training group), 0.93 (internal
validation group), and 0.84 (external validation group). In the
present study, the AUC of the radiomics nomogram for
predicting CsPCa was 0.939, 0.884, and 0.907 in the training
group, test group, and validation group, respectively. The
different results between Zhang et al. and our study may be
illustrated by the differences in patient selection criteria and the
different clinical risk factors included in the radiomics nomogram.

Although radiomics analysis has been proven to detect PCa
and assess the aggressiveness of PCa, there is limited research
TABLE 1 | Characteristics of patients in the primary and external validation cohorts.

Institution 1 (n = 306) Institution 2 (n = 65) p

Age (years) 70.16 ± 7.91 71.37 ± 7.27 0.257
tPSA (ng/ml) 13.53 (7.43–26.40) 17.23 (10.17–27.97) 0.072
fPSA (ng/ml) 1.63 (1.01–2.88) 2.17 (1.26–4.40) 0.013
PSAD (ng/ml/cm3) 0.22 (0.10–0.58) 0.23 (0.14–0.52) 0.459
Gleason score (GS): 0.012
Benign 190 47
GS ≤ 6 41 2
GS = 7 48 5
GS = 8 21 10
GS = 9 6 1
January 2022 | Volume 11 | Article 8
tPSA, total prostate-specific antigen; fPSA, free prostate-specific antigen; PSAD, prostate-specific antigen density.
TABLE 2 | Evaluation of radiomics signature without and with SMOTE.

Without SMOTE With SMOTE p

AUC SEN SPE ACC AUC SEN SPE ACC

Training group 0.881 (0.824–0.938) 0.829 0.791 0.799 0.881 (0.844–0.917) 0.780 0.822 0.801 0.982
Test group 0.730 (0.624–0.836) 0.794 0.603 0.664 0.840 (0.776–0.904) 0.851 0.734 0.788 0.083
External validation group 0.718 (0.562–0.874) 0.813 0.612 0.662 0.834 (0.709–0.959) 0.750 0.857 0.831 0.017
SMOTE, synthetic minority oversampling technique; AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.
FIGURE 4 | Developed radiomics nomogram for predicting clinically significant prostate cancer.
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evaluating radiomics in predicting CsPCa in PI-RADS 3 lesions.
Hectors et al. (19) recently constructed a random forest classifier
based on T2WI radiomics features to predict CsPCa within PI-
RADS 3 lesion, and the AUC was 0.76 in the test set. Giambelluca
et al. (18) evaluated the performance (AUC = 0.82) of texture
analysis based on T2WI radiomics in diagnosing CsPCa in PI-
RADS 3 lesions. Christopher et al. (20) showed a low ability
(AUC = 0.68) of machine learning based on ADC radiomics
features to diagnose CsPCa. Hou et al. (21) developed T2WI,
DWI, and ADC radiomics machine learning models to predict
CsPCa in PI-RADS 3 lesions with AUC of 0.89. The results of the
above studies are quite different, maybe because the MRI
sequence used in their studies is different. In the above studies,
there were no validation data performed and even only Hectors
et al. have conducted internal validation in their study. The main
strengths of our study were that the inter- and extra-validation
A B

C

FIGURE 5 | Calibration curves of the radiomics nomogram. (A) The training group. (B) The test group. (C) The external validation group.
FIGURE 6 | Receiver operating characteristic (ROC) curves of the radiomics
nomogram.
TABLE 3 | Evaluation of radiomics nomogram.

AUC SEN SPE ACC

Training group 0.939 (0.878–0.941) 0.945 0.816 0.883
Test group 0.884 (0.831–0.937) 0.791 0.823 0.808
External validation group 0.907 (0.814–1) 0.75 0.959 0.908
January 2022 | V
olume 11
 | Article 8
AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.
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cohorts were included, and the radiomics nomogram achieved
good prediction performance in both the test group (AUC =
0.884) and the external validation group (AUC = 0.907).

This study has several limitations. First, this is a retrospective
study with a small study population. Falagario et al. (31) found that
the accuracy of mpMRI in staging PCa was similar in different
populations, indicating that our model may be valid also in other
populations. Therefore, a larger sample size from multiple centers
anddifferentpopulationswill beneeded to validate theperformance
of the model in future studies. Second, ROIs were manually
segmented by the radiologist. Although we have evaluated the
repeatability of segmentation with resulting high ICC values,
there might still exist subjective bias in the segmentation results,
which could influence the stability and repeatability of the study
findings. In future work, automatic segmentation should be used to
address this problem. In addition, the peripheral zone and
transition zone lesions were not separately analyzed given the
small number of CsPCa in the study; evaluating radiomics
features classified for each zone is warranted in future studies.

In conclusion, this study presented an mpMRI-based
radiomics nomogram that incorporates both radiomics
signature and PSAD for discriminating CsPCa from non-
CiPCa among PI-RADS 3 lesions. The nomogram has great
clinical application and provided a visual and individualized tool
for the diagnosis of CsPCa in PI-RADS 3 lesions.
Frontiers in Oncology | www.frontiersin.org 8
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