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Triple negative breast cancer (TNBC) is a malignant breast cancer subtype that is prone to
progression, with high associated metastasis and five-year mortality rates and an overall
poor prognosis. Chemotherapy is usually administered to treat TNBC without additional
targeted therapies. Novel nanomaterials have a variety of excellent physical and chemical
properties and biological functions (including targeting specificity), and contrast agents
and drug delivery vectors based on nanotechnology are progressing towards a more
accurate and targeted direction. This review discusses the mechanisms of action and
prospects for the use of nanotechnology in the treatment of TNBC, thus providing
potential new strategies for the diagnosis and treatment of TNBC.
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INTRODUCTION

Cancer is a major public health problem worldwide and the second leading cause of death in the
United States. Cancer mortality rates have been rising throughout most of the 20™ and 21%
centuries, with 1,898,160 new cancer cases and 608,570 cancer deaths expected in the United States
as of 2021 (1). From 2010 to 2016, the five-year overall survival rate for all diagnosed cancers in the
United States was 67% (68% for Caucasians and 63% for African Americans) (1, 2). Prostate cancer
(98%), melanoma (93%) and female breast cancer (90%) had the highest associated survival rates,
while pancreatic cancer (10%), liver cancer (20%), esophageal cancer (20%) and lung cancer (21%)
had the lowest survival rates (3, 4).

Improved cancer survival rates seen in recent decades are mainly due to advances in diagnosis
and treatment, specifically reflecting advances in screening, diagnosis, and surgery (e.g., pathological
staging, thoracoscopic surgery). Therapies for metastatic disease include targeted therapy (e.g.,
precision medicine), chemotherapy, radiotherapy, immunotherapy (e.g., programmed cell death
protein-1 and programmed death ligand-1 inhibitors), and novel material-based therapies (1, 5-9).

Abbreviations: COVID-19, coronavirus disease 2019; HER2, human epidermal growth factor receptor 2; ER, estrogen
receptors; PR, progesterone receptors; TNBC, triple negative breast cancer; BL1, basal like 1; BL2, basal like 2; ML,
mesenchymal like; MSL, mesenchymal stemlike; LAR, intracavitary androgen receptor; IM, immune regulation; ROS,
reactive oxygen species; TME, tumor microenvironment; DOX, doxorubicin.
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The disruptive effects of the coronavirus disease 2019 (COVID-
19) pandemic on healthcare delivery include disruptive effects
with respect to the diagnosis and treatment of cancer patients
due to delays in diagnosis and treatment, reduced access to care,
and delays or closures of healthcare facilities and systems. These
factors are likely to result in short-term, spurious declines in
cancer rates followed by an increase in advanced disease and
associated cancer mortality rates (1, 10, 11).

BREAST CANCER

Women comprise 49.5 percent of the global population, and are
disproportionately represented among elderly people over age
60. In fact, due to population growth and aging, the global cancer
burden for women has been increasing in all countries regardless
of income level. Breast cancer is the most common malignancy
among women worldwide, with one study estimating that
approximately 160,000 patients with advanced breast cancer
were diagnosed in the United States as of 2017 (12).

Due to the influence of multi-modal factors, such as genetic
susceptibility, lifestyle, and other environmental factors, breast
cancer incidence and mortality show extreme variance across
countries and demographics (13). For example, breast cancer
incidence is higher in high-income regions (e.g., 92 per 100,000
in North America) as compared with low-income regions (e.g.,
27 per 100,000 in Central Africa and East Asia) (14). However,
many low-income and middle-income countries, including
countries in sub-Saharan Africa and developing countries in
Asia, have low breast cancer incidence rates due to delays in
healthcare delivery, late diagnoses, and limited access to
treatment due to low mammography coverage and limited
overall treatment options (15).

At the molecular level, breast cancer molecular signatures
include the activation of human epidermal growth factor receptor
2 (HER2, encoded by ERBB2), the activation of hormone receptors
(estrogen receptors and progesterone receptors), and BRCA
mutations (16, 17). Intrinsic classifications delineated in 2000
distinguish four breast cancer subtypes: Luminal A and Luminal
B, HER2-enriched, and triple negative breast cancer (TNBC). This
classification system shifts the clinical management of breast cancer
from a cancer burden-based approach to a biologically-centered
approach. Currently, clinical practice classifies five breast cancer
subtypes (luminal A, luminal B, HER2-enriched (HER2+), basal-
like and normal-like) based on histological and molecular
characteristics, including TNBC. TNBC is defined according to
the following criteria: estrogen receptor-negative (ER-),
progesterone receptor-negative (PR-), HER2-, high grade, and
high Ki67 index tumors, either NST (no special type) histology or
special type histology (metaplastic, adenoid cystic, medullary-like,
secretory), and a generally poor prognosis (18).

There are differences in prognosis among breast cancer
subtypes. Approximately 10-15% of TNBC cases present with
poor prognoses due to the lack of targeted therapy for TNBC,
aside from chemotherapy (19, 20). Morphologically,
approximately 90% of TNBC cases present as infiltrating

ductal carcinoma, while the remaining cases are classified as
apocrine carcinoma, lobular carcinoma, adenoid cystic
carcinoma, and metaplastic carcinoma (21-23). There are six
different TNBC subtypes, including basal like 1, basal like 2,
mesenchymal like, mesenchymal stemlike, intracavitary
androgen receptor, and immune regulation subtypes. TNBC
heterogeneity clinically refers to different breast cancer
subtypes presenting with a triple negative phenotype. Gene
expression profiles and genetic outcomes for each class show
differences, thus illustrating the inherent complexity of
TNBC (21).

Triple-negative breast cancer is more likely to recur as
compared with other breast cancer subtypes, with five-year
specific survival rates of 85% for stage 3 triple-negative cancer,
as compared with survival rates ranging from 94-99% for
hormone receptor-positive and ERBB2-positive cancers (24).
The distribution of breast cancer molecular subtypes varies by
race, with African and African American women having the
highest rates of TNBC. TNBC presents with a higher rate of
metastasis and the highest proportion of poorly differentiated or
undifferentiated grades among all subtypes. These factors result
in reduced survival rates (25).

BREAST CANCER DIAGNOSIS
AND TREATMENT

Therapeutic strategies for treating breast cancer include local
therapies (e.g., surgery, radiotherapy) as well as systemic therapies.
Molecular subtypes have a profound influence on the therapeutic
strategies selected for breast cancer. Specifically, systemic therapies
have been developed primarily on the basis of molecular
characteristics, including targeted chemotherapy, endocrine
therapy for hormone receptor-positive diseases, anti-HER2 therapy
for HER2-positive diseases, polymerase inhibitors for BRCA
mutation carriers, and novel immunotherapy modalities (18).

In addition to surgical topical treatment, patients with hormone-
receptor-positive cancer need endocrine therapy. A few of these
patients also receive chemotherapy. Patients with ERBB2-positive
cancer are treated with ERBB2-targeted antibodies or small molecule
inhibitors combined with chemotherapy. Patients with triple-
negative cancer typically receive only chemotherapy or radiation.
Whether breast cancer patients receive radiotherapy is determined
according to their specific indications. More and more patients are
choosing to undergo systemic treatments, including targeted
preoperative chemotherapy (i.e., neoadjuvant chemotherapy)
following preoperative puncture examination (24). Breast cancer
treatments based on nanotechnology are the focus of the
current review.

NANOTECHNOLOGY AND CANCER

Advances in nanotechnology over the past two decades offer
potential new strategies for treating various diseases (26-32).
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Nanotechnology-based contrast agents and drug delivery vectors
for disease diagnosis and treatment are progressing towards a
more accurate and targeted direction. Currently, nanocarriers are
mainly comprised of polymers, metals, lipids, nucleic acids, and
proteins, including nanoparticles/tubes, micelles, dendrimers
and liposomes (33). These smart nanoparticles can encapsulate
drugs or probes and are coated with specially modified ligands
that bind to receptors expressed at cell sites and ultimately affect
cell function for the accurate and effective diagnosis and
treatment of disease (34, 35).

Nanooncology is a branch of nanomedicine. Cancer diagnosis
and treatment based on nanotechnology has received wide
attention on a worldwide scale in the past decades (36-40). For
example, in diagnostics, some nanoparticles have been developed
into biomolecular vectors that can detect cancer biomarkers and
play an important role in assisting cancer detection and monitoring
cancer biomarkers, including proteins, antibody fragments, DNA
fragments, and RNA fragments (37). For example, nanobiosensors
are very sensitive and can detect multiple protein biomarkers within
seconds (41, 42). Additionally, nanotechnology assisted molecular
diagnostic technology has been increasingly implemented in
imaging applications, which is conducive to the identification of
cancer at an earlier and more accurate stage (43, 44).

In terms of treatment, nanotechnology has unique
physicochemical properties, including a high surface volume
ratio. In recent years, drug delivery systems based on
nanomaterials, including micelles, nanoemulsions and liposomes,
have been widely used. Nanomaterials can bind and load bioactive
molecules, including DNA, RNA, drugs, and proteins. These
bioactive molecules can easily cross many biological barriers and
can easily be transported to the target. Therefore, nanomaterials are
widely used in the loading and delivery of drugs for treating various
cancers so as to improve the efficacy of chemotherapy combined
with radiotherapy and photodynamic cancer therapy (7, 25, 45-47).
To achieve complete tumor eradication, therapeutic agents need to
be infused at extremely high levels. Moreover, within cancer
immunotherapy using nanotechnology, nanoparticles carry T
cells or natural killer cells and higher concentrations of anti-
cancer drugs, achieving a strong and lasting anticancer immune
response due to low concentrations of immune regulators (48, 49).
Advances in nanotechnology, including virus-like sizes and high
surface-volume ratios and surfaces that can be modified to precisely
target specific cell types can be widely used in designing cancer
vaccines (50).

Additionally, the cancer microenvironment plays a critical role
in determining cancer survival and reducing mortality.
Microenvironmental factors, such as cancer hypoxia or
hyperglycemia and inflammation, are also directly associated with
the survival and expansion of cancer cells. Interventions aimed at
changing the microenvironment of cancer cells can induce cancer
cell death and form the basis for new anticancer therapies (51).

NANOTECHNOLOGY AND TNBC

TNBC is an important and recalcitrant breast cancer subtype. The
treatment of patients with TNBC remains an immense clinical

challenge, characterized by aggressive progression, high metastasis
rates, and poor overall prognoses (52). Because standard endocrine
therapy (i.e., HER2 targeting therapy) does not affect TNBC,
anthracycline-based drugs and taxane chemotherapy are major
means to achieving TNBC systemic treatment. These treatment
modalities are highly effective. However, many cycles of
chemotherapy and high doses of cytotoxic drugs employed to
destroy cancer cells are likewise toxic to nearby healthy cells,
causing adverse systemic effects such as hair loss, gastrointestinal
symptoms, and thrombocytopenia (53, 54).

Moreover, chemotherapy resistance caused by P-glycoprotein
overexpression, DNA damage repair, topoisomerase II
mutations, low solubility and bioavailability of chemotherapy
drugs, and the immune escape of cancer cells limits the
therapeutic effects of drugs on TNBC. Chemotherapy
resistance results in a recurrence rate of 50% and a mortality
rate of 37% for TNBC (55, 56). Invasive proliferation,
heterogeneity, and cancer resistance to therapeutic drugs are
extreme challenges in the treatment metastatic breast cancer,
which mainly metastasizes to local lymph nodes, bones, and the
lungs (57).

Therefore, in order to avoid non-specific targeting and
chemotherapy side effects among TNBC patients, the need to
open up new molecular targets and treatments is much more
urgent than for other types of breast cancer. Nanotechnology-
based drug delivery systems are auspicious tools that can
selectively target tumors and eliminate the cytotoxicity of
drugs to other organs (58).

Drug Delivery Systems for Nanotechnology
Nanodrug delivery systems mostly rely on enhanced permeation
and retention effects for targeting drug delivery (59). In general,
nanoparticles that can be applied to cancer treatment within
nanoscience have the following physiochemical properties:
tailored size and conformation, appropriate encapsulation
capacity, high adhesion to the cancer environment, selective
localization, enhanced cancer internalization through
endocytosis, sustained and controllable drug release, a long
cyclic half-life, minimal systemic toxicity, and safe biological
elimination (60, 61). Research on the high expression of cancer
targets and ligands via nanomaterials combined with other
therapies (such as photodynamic therapy, chemotherapy, and
radiotherapy) to produce therapeutic synergistic effects will be
the key to the application of nanomaterials within TNBC.
Photothermal therapy (PTT) is ineffective in the treatment of
TNBC due to the lack of effective therapeutic targets. In order to
solve this problem, Cheng et al., used gold nanocage (AuNC) as a
photothermal conversion agent combined with anti-heat shock
protein monoclonal antibody (cmHSP) as a target ligand in order
to prepare a microwave triggered heat shock protein (HSP)-tar
gold nanosystem (CMHSP-AUNC). Microwave irradiation can
effectively activate HSP70 overexpression in TNBC, thus
meaningfully improving the targeting ability, accumulation in
cancer area, and anti-cancer efficacy of CMHSP-AUNC (62). Xu
et al. developed a nanoemulsion formulation with high stability
for the systematic delivery of puerarin nanoPue. This modality
reshapes the stromal microenvironment through nanoparticle
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treatment, down-regulates intracanceral reactive oxygen species
(ROS) and oxidative stress, meaningfully reduces the connective
tissue formation response within different types of solid tumors
and enables nanoparticles to infiltrate more effectively into
cancer parenchyma. Simultaneously, nanoPue, a powerful
tumor microenvironment (TME) modulator, meaningfully
improves the cancer immune microenvironment as well as the
therapeutic efficiency of o-PD-L1 in TNBC models (63).
Bhattacharya et al. have also developed thyquinone (TQ)-
loaded hyaluronic acid (HA) coupled with Pluronic ® p123
and F127 copolymer nanoparticles (HA-TQ-NPS) as selective
drug carriers to deliver anticancer phytochemical TQ to TNBC
cells. HA-TQ-NPS meaningfully promotes apoptosis, anti-
metastasis, and anti-angiogenesis in TNBC cells via
upregulation of microRNA-361 with no associated toxicity to
normal cells (64).

Nanomaterials as Adjuvant
Immunotherapy for TNBC

The immune microenvironment affects the occurrence and
development of breast cancer according to the principles of
immune monitoring and immune editing. In the early stages of
tumorigenesis, the immune microenvironment plays an anti-
cancer role mainly through the cytokine environment (i.e.,
activated CD8+ and CD4+ T cells). In contrast, once the
cancer becomes aggressive, the cellular composition of the
microenvironment, including fibroblasts and the cytokine
content associated with cancer, facilitates cancer promotion
and is invaded by breast cancer cells (63).

Using immune cells within targeted cancer therapy is in line with
the concept of using internal mechanisms within the host immune
system to fight cancer. In this study, Prof. James Allison and Prof.
Tasuku Honjo, the winners of the 2018 Nobel Prize in Medicine,
investigated the use of immune checkpoint blockades in cancer
treatment via inhibiting negative immune regulation.
Immunotherapy has achieved some success thus far, thereby
providing a new therapeutic strategy for TNBC treatment. Current
immunotherapies include immune checkpoint blockers, cytotoxic T
lymphocyte (CTL) exchange activation, adaptive cell transfer therapy
(ACT), and TME regulation. Nanotechnology presents a novel
immunomodulatory strategy that can be implemented as a
personalized immunotherapy modality for TNBC (65).

Nanotechnology provides efficient and intelligent nanodelivery
systems that facilitate the delivery of immune-stimulating adjuvants
and cancer antigens to enhance antigen presentation and immunity
and aid in the treatment of metastases. Nanoparticle carriers improve
the solubility and bioavailability of immunotherapy modalities,
including protection from degradation, thereby increasing
therapeutic efficacy. Currently, nanoparticles (NPs) are already
implemented to help improve antigen expression pathways by
delivering epigenetic regulators and immune-stimulating cytokines
(66). For example, Tran et al. evaluated different polyethylene-
oxidation-polylactic acid (PEO-PLA) copolymer micelles, with
vorinostat (HDACi) demonstrating better biosolubility, an
increased half-life, and improved pharmacokinetics as compared
with other modalities (67). NP-carrying bevacizumab and CRLX101

likewise showed good efficacy in TNBC treatment (68). Sulforaphane
(SFN) downregulates histone deacetylase (HDAC6) mediated
phosphatase and inhibits MDA-MB-231 and MDA-MB-468 cells.
The expression of tensin homolog (PTEN) induces autophagy,
meaningfully increasing the sensitivity of TNBC to doxorubicin
(DOX). Thus, inhibition of cancer growth via autophagy induction
due to SEN combined with therapeutic DOX may provide an effective
approach for TNBC treatment (69). Although targeted nanodrugs
have good potential, due to the biological distributions,
pharmacokinetics, targeted population biodegradability,
immunogenicity, and the complexity of dosing system design for
nanodrugs, only a portion of nanodrug systems (e.g., polymer
micelles, liposomes, nanoparticle couplings) progress to the clinical
administration stage. More research is needed with respect to
TNBC nanodrugs.

Vaccines Based on Nanotechnology

Cancer vaccines are comprised of cancer cells and/or cancer
antigens and lead to an effective anti-cancer host immune
response. Cancer vaccines include DNA vaccines, Ab vaccines
against idiotypic types and cancer-associated pathogens, and
dendritic cell vaccines (70, 71). In Liu’s study, the researchers
(including the authors of the current review) constructed
nanoparticles to deliver an mRNA vaccine encoding the
cancer-associated antigen MUCI to dendritic cells (DCs) in
lymph nodes, thus activating cancer-specific T cells. In this
study, combining a simple mRNA vaccine with an anti-CTLA-
4 monoclonal antibody meaningfully enhanced the anti-cancer
host immune response and anti-cancer effects. These data
support the use NP as messenger RNA vaccine vectors as well
as the combined implementation of TNBC immunotherapies,
NP-based messenger RNA vaccines, and CTLA-4 inhibitors (52).

CONCLUSIONS

Triple negative breast cancer is a difficult and often intractable
disease because of its high heterogeneity and low associated survival
rates. Currently, the available treatment methods for patients
diagnosed with TNBC are limited, especially with respect to
refractory TNBC. Novel nanotechnology modalities represent
auspicious strategies for efficient and accurate diagnoses and
targeted therapies for TNBC due to their tailored physical and
chemical properties and biological functions. Our work guides and
informs future research directions and will ultimately contribute to
informing medical guidelines.
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