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Neutrophilia and post-radiation
thrombocytopenia predict for
poor prognosis in radiation-
treated glioma patients
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Introduction: Poor outcomes in glioma patients indicate a need to determine

prognostic indicators of survival to better guide patient specific treatment

options. While preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-

lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) have been

suggested as prognostic systemic inflammation markers, the impact of post-

radiation changes in these cell types is unclear. We sought to identify which

hematologic cell measurements before, during, or after radiation predicted for

patient survival.

Methods: A cohort of 182 patients with pathologically confirmed gliomas

treated at our institution was retrospectively reviewed. Patient blood samples

were collected within one month before, during, or within 3 months after

radiation for quantification of hematologic cell counts, for which failure

patterns were evaluated. Multivariable cox proportional hazards analysis for

overall survival (OS) and progression-free survival (PFS) was performed to

control for patient variables.

Results:Multivariable analysis identified pre-radiation NLR > 4.0 (Hazard ratio =

1.847, p = 0.0039) and neutrophilia prior to (Hazard ratio = 1.706, p = 0.0185),

during (Hazard ratio = 1.641, p = 0.0277), or after (Hazard ratio = 1.517, p =

0.0879) radiation as significant predictors of worse OS, with similar results for

PFS. Post-radiation PLR > 200 (Hazard ratio = 0.587, p = 0.0062) and a percent

increase in platelets after radiation (Hazard ratio = 0.387, p = 0.0077) were also

associated with improved OS. Patients receiving more than 15 fractions of

radiation exhibited greater post-radiation decreases in neutrophil and platelet

counts than those receiving fewer. Patients receiving dexamethasone during

radiation exhibited greater increases in neutrophil counts than those not

receiving steroids. Lymphopenia, changes in lymphocyte counts,
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monocytosis, MLR, and changes in monocyte counts did not impact

patient survival.

Conclusion: Neutrophilia at any time interval surrounding radiotherapy, pre-

radiation NLR, and post-radiation thrombocytopenia, but not lymphocytes or

monocytes, are predictors of poor patient survival in glioma patients.
KEYWORDS

radiation therapy, glioma, lymphopenia, neutrophilia, thrombocytopenia, neutrophil-
to-lymphocyte ratio, platelet-to-lymphocyte ratio, OS/PFS
Introduction

Gliomas are the most common primary intracranial tumor,

accounting for more than 80% of all malignant brain tumors (1).

Glioblastoma, the most common type of glioma, affects 3.23

persons per 100,000 in the United States every year (2).

Management of glioblastoma entails maximally safe surgical

resection followed by adjuvant radiation therapy with

concomitant and adjuvant temozolomide, whereas management

of lower grade gliomas includes surgical resection followed by risk-

adjusted adjuvant radiation therapy and adjuvant chemotherapy,

with the treatment paradigm constantly evolving (3). In recent

years, the addition of tumor-treating fields has improved

glioblastoma survival to up to a median time of 20.9 months (4,

5). For patients with gliomas, there are varying outcomes based on

histology and molecular status with patients with glioblastoma still

exhibit a 5 year survival of ~5% after initial diagnosis, whereas

patients with grade 2 oligodendroglioma have a median survival of

13 years (6, 7). These outcomes in glioma patients indicate a need

to determine prognostic indicators of survival to better guide

patient specific treatment options.

Numerous studies have evaluated the prognostic significance

of hematologic cell counts in patients with gliomas, often in the

form of preoperative systemic cellular inflammatory markers.

Observed markers include neutrophil-to-lymphocyte ratio

(NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-

lymphocyte ratio (MLR) or lymphocyte-to-monocyte ratio

(LMR) (8). However, despite multiple retrospective studies and

systematic reviews, no consensus has been reached for which

markers, especially those related to platelets and monocytes,

consistently predict for poor prognosis (8–11). Furthermore, the

prognostic role of absolute hematologic cell counts, especially

those in the intra- or post-treatment time intervals, is not well

understood in glioma patients. Treatments and medications

involved in the care of patients with gliomas can significantly

alter hematologic cell counts. Patients who have received

radiotherapy may exhibit significant radiation induced decreases

in systemic immune cell profiles after treatment (12). In
02
particular, radiation induces a decrease in lymphocytes,

neutrophils and platelets but has not been observed to affect

monocyte counts (13, 14). Similarly, cytotoxic chemotherapy on

the bone marrow has also been observed to reduce lymphocyte,

neutrophil, and platelet but not monocyte counts (15–17). Lastly,

steroid induced immunosuppression can cause a decrease in

lymphocytes and increase in neutrophils (18, 19). Therefore,

this study investigates which systemic inflammation marker

ratios, absolute lymphocyte, neutrophil, platelet, and monocyte

counts, and percent changes in cell counts at pre-, intra-, and post-

radiation time intervals can predict for survival in patients

with gliomas.
Materials and methods

A database of 182 patients with primary brain gliomas

treated with radiation therapy at our institution between

October 2010 and December 2021 was retrospectively

reviewed. Patients underwent pathological typing according to

the 2021 WHO Classification of Tumors of the Central Nervous

System (20). The study was approved by the UT Southwestern

institutional review board (IRB number STU 062014-027).

All patients received radiation therapy targeted to either the

primary tumor or the post-tumor resection cavity, with patients

receiving doses ranging from 20 to 75 Gy in 5 to 33 fractions.

Patients underwent CT simulation with a tailored head-

thermoplastic mask in the supine position. A gross tumor

volume (GTV) is delineated using a fused postoperative MRI

on the T1 and T2 FLAIR sequences, followed by a creation of a

clinical target volume (CTV) to cover the potential areas of

microscopic disease. Then, a planning target volume (PTV)

expansion was created to account for daily uncertainty in daily

set-up and treatment delivery, per our institutional protocol

and standards.

We then assessed the patterns of failure, including in-field

failures (within the 95% isodose volume), out-of-field failures, or

marginal failures (within the 50-95% isodose volume) as
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observed radiographically on MRI. Time to recurrence was

defined as the time from the end of the radiation treatment

period to the first radiographic evidence of recurrence.
Cell quantification and measurement

The pre-radiation time interval was defined as 1 month prior

to the start of radiation therapy. The intra-radiation time

interval was defined as between the first and final sessions of

radiation therapy. The post-radiation time interval was defined

as 3 months after the end of radiation therapy. Lymphopenia

was defined as any recorded lymphocyte count less than 1,060

lymphocytes per mL in a specific time interval. Neutrophilia was

defined as any recorded neutrophil count greater than 8,500

neutrophils per mL in a specific time interval. Thrombocytopenia

was defined as any recorded platelet count less than 150,000

platelets per mL in a specific time interval. Monocytosis was

defined as any recorded monocyte count greater than 900

monocytes per mL in a specific time interval. Absolute cell

counts during each time interval were calculated as the

average of all recorded cell counts during that time interval.

Intra-radiation percent changes in cell counts were calculated by

taking the difference between absolute cell counts during the

radiation time interval and pre-radiation time interval and then

dividing by the absolute cell counts during the pre-radiation

time interval. Post-radiation percent changes were calculated

similarly but during the post-radiation time interval instead.
Statistics

Overall survival (OS) and progression-free survival (PFS)

were estimated using Kaplan-Meier method. Patients who were

alive without evidence of recurrence were censored at the date of

last follow up. P values were calculated from incidence of

recurrence or death and survival curves were created with Cox

proportional hazards tests. P values were considered significant

at < 0.05.

Cox proportional hazards regression was used to determine

the impact of patient covariates on PFS and OS. Hazard ratios

and confidence intervals were calculated for each variable.

Multivariable Cox proportional hazards regression models

were used to adjust for patient characteristics (number of

radiation fractions, age, body mass index (BMI), gender, p53

mutation status, MGMT methylation status, presence of edema,

and presence of seizures) for each multivariable analysis.
Results

Of the 182 patients included in the analysis, the median age

of all patients at the time of initiation of radiation therapy was
Frontiers in Oncology 03
57.0 years. Gender, histology, mutation status, presence of

edema at initiation of radiation, and presence of seizures are

detailed in Table 1. Patients were treated with radiation therapy

in 5 to 33 fractions, with increasing fractions corresponding to

increased total radiation dose prescribed. Patients who received

temozolomide or dexamethasone during radiation therapy were

numbered at 46.2% and 27.5%, respectively. Median follow-up

for all patients was 16.8 months (range = 0.3 to 109.9 months).

For the entire cohort, median OS and PFS were 18.2 and 11.0

months (Figure 1), respectively. Univariate analysis of patient

characteristics was performed to determine predictors of OS and

PFS (Supplementary Table 1). Number of radiation fractions,

age, and BMI were analyzed as continuous variables. Increased

number of fractions was associated with improved OS (Hazard

Ratio 0.924, 95% CI 0.902 to 0.947) and PFS (Hazard Ratio

0.931, 95% CI 0.909 to 0.953). Increased age was associated with

worse OS (Hazard Ratio 1.038, 95% CI 1.024 to 1.052) and PFS

(Hazard Ratio 1.030, 95% CI 1.017 to 1.043). Gender, IDH

mutation status, p53 mutation status, MGMT methylation

status, presence of edema, presence of seizures, concurrent

temozolomide treatment, and concurrent dexamethasone use

were analyzed as categorical variables. Mutant IDH status was

strongly associated with improved OS (Hazard Ratio 0.166, 95%

CI 0.089 to 0.310) and PFS (Hazard Ratio 0.166, 95% CI 0.093 to

0.296). Dexamethasone use during radiation was associated with

worse OS (Hazard Ratio 1.669, 95% CI 1.148 to 2.484) and PFS

(Hazard Ratio 1.652, 95% CI 1.147 to 2.379). Wild type p53

status and presence of edema were either statistically

significantly associated or trended towards worse OS and PFS.

Lymphopenia has been correlated with recurrence and poor

outcomes in multiple types of cancer. We performed univariate

and multivariable analysis to determine how lymphopenia

affects patient outcomes. While lymphopenia before and after

radiation appeared to have statistically significant effects on OS

as a standalone variable, multivariable analysis suggests that

lymphopenia does not statistically significantly affect OS or PFS

(Supplementary Figure 1; Supplementary Tables 2, 3).

While the hematologic states of patients during specific time

points may be predictive prognostic factors, they do not account

for potential changes in cell counts from before treatment to during

or after treatment. In this context, we evaluated how changes in

lymphocyte counts could potentially impact survival. A percent

increase in lymphocyte count from before to after radiation

treatment was associated with improved OS on univariate

analysis but not multivariable analysis (Supplementary Tables 2,

3). As a higher number of fractions of radiation are associated with

improved outcomes (Supplementary Table 1) and radiotherapy

has cytotoxic effects on immune cells, we also assessed whether

number of fractions impacted lymphocyte counts in our patient

population (12). We observe that patients who received more than

15 fractions of radiation exhibited a larger percent decrease and

lower absolute count of lymphocytes after radiation treatment

(Supplementary Figure 2). Similarly, chemotherapy or steroid use
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can also affect lymphocyte counts. We observed temozolomide use

during radiation treatment did not affect lymphocyte counts, but

dexamethasone use was significantly associated with a greater

percent decrease in lymphocytes (Supplementary Figures 3A, B,

4A, B).

Neutrophils have been associated with increased resistance

to radiation and poor cancer patient outcomes. Furthermore,
Frontiers in Oncology 04
elevated neutrophil-to-lymphocyte ratios (NLR > 4.0) have

also been observed to be a poor prognostic indicator in glioma

patients (8–10). Thus, we evaluated the effects of neutrophils

and neutrophilia on survival. Neutrophilia in the time intervals

before (Adj. Hazard Ratio 1.706, 95% CI 1.094 to 2.662), during

(Adj. Hazard Ratio 1.641, 95% CI 1.056 to 2.550), and after

(Adj. Hazard Ratio 1.517, 95% CI 0.940 to 2.449) radiation
TABLE 1 Patient characteristics.

Characteristics Number of patients (%)

Total Patients 182

Age (years)

Median 57.0

Range 18.8 – 79.5

BMI

Median 27.8

Range 14.9 – 48.8

Gender

Male 112 (61.5%)

Female 70 (38.5%)

Histology

Glioblastoma Multiforme 126 (69.2%)

Other Astrocytoma 33 (18.1%)

Oligodendroglioma 23 (12.6%)

IDH Status

Wild Type 139 (76.4%)

Mutant 43 (23.6%)

P53 Status

Wild Type 163 (89.6%)

Mutant 19 (10.4%)

MGMT Status

Wild Type 162 (89.0%)

Methylated 20 (11.0%)

Edema

Present 101 (55.5%)

Absent 81 (44.5%)

Seizures

Present 115 (63.2%)

Absent 67 (36.8%)

Concurrent Temozolomide

Present 84 (46.2%)

Absent 98 (53.8%)

Concurrent Dexamethasone

Present 50 (27.5%)

Absent 132 (72.5%)

Treatment Duration (fractions)

Median 25

Range 5 – 33

Follow Up Duration (months)

Median 16.8

Range 0.3 – 109.9
BMI, Body Mass Index; IDH, Isocitrate Dehydrogenase; MGMT, 06-Methylguanine-DNA Methyltransferase; CI, Confidence Interval.
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therapy were all associated with poorer OS. Similarly,

neutrophilia during radiation (Adj. Hazard Ratio 1.617, 95%

CI 1.057 to 2.474) was associated with poorer PFS (Table 2;

Figure 2 and Supplementary Table 4). Pre-radiation NLR > 4.0

was associated with worse OS (Adj. Hazard Ratio 1.847, 95% CI

1.218 to 2.803) and trended towards worse PFS (Adj. Hazard

Ratio 1.430, 95% CI 0.968 to 2.112) (Table 2; Figure 3). Lastly,

as with the case with lymphocytes, patients who received

higher fractions of radiation also exhibited a percent decrease

and lower absolute count of neutrophils, but both during and

after radiation treatment (Figure 4). Patients who used

dexamethasone during radiation therapy exhibited elevated

neutrophil levels during and after radiation treatment

(Figure 5). Concurrent temozolomide use was not associated

with significant changes in neutrophil counts (Supplementary

Figures 3C, D). Overall, our results observe worse survival

outcomes with higher neutrophil counts.
Frontiers in Oncology 05
Previous studies have observed that high pretreatment

platelet-to-lymphocyte ratios (PLR > 200) have been correlated

with poor prognosis in gliomas. However, the relationship

between overall platelet counts and survival in solid tumor

patients is unclear. We did not observe any significant impact

of pre-radiation thrombocytopenia or elevated PLR on survival.

However, we observed that thrombocytopenia in the intra-

radiation time interval was associated with worse OS (Adj.

Hazard Ratio 1.531, 95% CI 1.009 to 2.323) (Figure 6; Table 3,

and Supplementary Table 5). Post-radiation PLR > 200 was

significantly associated with improved OS (Adj. Hazard Ratio

0.587, 95% CI 0.401 to 0.860) and PFS (Adj. Hazard Ratio 0.681,

95% CI 0.477 to 0.974) (Table 3; Figure 7). Consistently, a

percent increase in platelet counts after radiation was also

significantly associated with improved OS (Adj. Hazard Ratio

0.387, 95% CI 0.192 to 0.778) and PFS (Adj. Hazard Ratio 0.491,

95% CI 0.252 to 0.956) (Table 3; Supplementary Table 5). Lastly,
BA

FIGURE 1

OS and PFS outcomes for whole patient cohort. Kaplan-Meyer plot of (A) overall survival (OS) and (B) progression free survival (PFS).
TABLE 2 Multivariable cox proportional hazards regression: Impact of neutrophils on OS and PFS.

OS PFS

Variable Hazard ratio (Adj.) 95% CI p value Hazard ratio (Adj.) 95% CI p value

Pre-RT Neutrophilia 1.706 1.094 - 2.662 0.0185 1.471 0.967 - 2.238 0.0712

Intra-RT Neutrophilia 1.641 1.056 - 2.550 0.0277 1.617 1.057 - 2.474 0.0267

Post-RT Neutrophilia 1.517 0.940 - 2.449 0.0879 1.382 0.864 - 2.210 0.1765

Pre-RT NLR > 4 1.847 1.218 - 2.803 0.0039 1.430 0.968 - 2.112 0.0724

Intra-RT NLR > 4 1.549 1.036 - 2.316 0.0331 1.311 0.888 - 1.935 0.1736

Post-RT NLR > 4 1.462 0.964 - 2.217 0.0740 1.167 0.792 - 1.718 0.4354

Intra-RT %D Neutrophils 1.254 0.717 - 2.193 0.4273 1.372 0.820 - 2.297 0.2281

Post-RT %D Neutrophils 0.909 0.562 - 1.471 0.6984 0.930 0.593 - 1.460 0.7537
fronti
OS, Overall Survival; PFS, Progression Free Survival; RT, Radiation therapy; NLR, Neutrophil to lymphocyte ratio; CI, Confidence Interval.
Hazard ratios for neutrophilia and NLR were calculated as categorical variables, while percent changes were calculated as continuous variables. Variables were adjusted for number of
radiation fractions, age, BMI, gender, p53 mutation status, MGMT methylation status, presence of edema, presence of seizures, concurrent temozolomide treatment, and concurrent
dexamethasone treatment.
ersin.org

https://doi.org/10.3389/fonc.2022.1000280
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hsu et al. 10.3389/fonc.2022.1000280
B

C D

E F

A

FIGURE 2

Effects of Neutrophilia on OS and PFS. Kaplan-Meyer plots of OS and PFS comparing patients with neutrophilia (A, B) before, (C, D) during,
(E, F) or after radiation treatment. Statistical analysis was performed using Cox Proportional Hazards tests. OS, Overall Survival; PFS, Progression
Free Survival; RT, Radiation therapy.
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FIGURE 3

Effects of Neutrophil to Lymphocyte Ratio (NLR) on OS and PFS. Kaplan-Meyer plots of OS and PFS comparing patients with NLR > 4 (A, B)
before, (C, D) during, (E, F) or after radiation treatment. Statistical analysis was performed using Cox Proportional Hazards tests. OS, Overall
Survival; PFS, Progression Free Survival; NLR, Neutrophil to Lymphocyte Ratio; RT, Radiation therapy.
Frontiers in Oncology frontiersin.org07
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patients who received more than 15 fractions of radiation

exhibited significant a percent decrease in platelet counts after

radiation treatment (Figure 8). Temozolomide nor

dexamethasone use was not associated with changes in platelet

counts (Supplementary Figures 3E, F, 4C, D). Overall, these

results correlate a post-radiation thrombocytopenic state with

worse survival outcomes.

Monocytes have also been observed to correlate with poor

prognosis in the form of elevated monocyte to lymphocyte ratio

(MLR) or decreased lymphocyte to monocyte (LMR) ratios.

Thus, we evaluated whether monocytosis, MLR > 0.5, or changes

in monocytes had significant impacts on survival. We did not

observe any significant correlations between monocytosis, MLR,

or percent change in monocyte counts at any time interval with

survival (Supplementary Tables 6, 7). Furthermore, number of

radiation fractions, temozolomide use, and dexamethasone use

did not appear to be related to changes in absolute monocyte

counts (Supplementary Figures 3G, H, 4E, F, 5).
Frontiers in Oncology 08
Discussion

Gliomas are the most prevalent adult brain tumor, and

despite advances in therapy, glioblastomas are nearly

universally fatal. Therefore, it is vital to determine which

factors, including hematologic state, accurately contribute to

poor survival. It is unclear how treatment induced changes in

cell counts, especially those due to radiation, chemotherapy, and

steroid use, contribute to survival. Therefore, we assessed how

lymphocyte, neutrophil, platelet, and monocyte levels before,

during, and after radiation therapy correlated with patient

survival. To our knowledge, this is the first study that has

evaluated the impact of not only pre-treatment hematologic

state, but also intra- and post-radiation hematologic states in

glioma patients.

Our cohort of 182 patients exhibited a median OS and PFS

of 18.2 and 11.0 months, respectively, which is consistent with

other studies (Figure 1) (21, 22). From the noted patient
B

C

A

FIGURE 4

Associations between Number of Radiation Fractions and Neutrophil Counts. (A, B) Percent difference in neutrophil counts for patients receiving
≤ 15 or > 15 fractions from before radiation treatment (RT) to during RT or after RT. (C) Absolute neutrophil counts before, during, and after RT
for patients receiving ≤ 15 or > 15 fractions. Statistical analysis was performed using two sample t-tests. ns, not significant.
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characteristics, a higher number of radiation fractions, lower age,

positive IDH mutant status, and lack of dexamethasone use

during radiation were significantly associated with improved

survival (Supplementary Table 1) (23–25). For patients with

high-grade gliomas, we typically prescribe a dose of 59.4 Gy in

33 fractions or 60 Gy in 30 fractions, while low-grade gliomas are

typically treated to a total dose of 45 to 54 Gy in 1.8-2.0 Gy

fractions (7, 26–31). However, in some patients with poor

performance status, especially those with glioblastomas, we

typically prescribe a short-course radiation schedule of 40 Gy

in 15 fractions or 25 Gy in 5 fractions (32–34). In many patients

receiving short-course radiation therapy, we also include

temozolomide, which has been previously demonstrated to

confer a survival benefit (35). Dexamethasone can also be used

in patients who may exhibit cerebral edema. With the strong

correlation between radiation fractions and patient outcome, our

primary question investigated whether various hematologic
Frontiers in Oncology 09
states could predict for survival independently from radiation

fraction number.

Lymphopenia has been observed to correlate with poor

patient outcomes (9, 36). In our study, contrary to previous

studies, we initially observed a significant univariate correlation

between post-radiation lymphopenia and improved survival

(Supplementary Figure 1, Supplementary Table 2). However,

after adjusting for patient characteristics, including number of

radiat ion fractions, this associat ion was abolished

(Supplementary Table 3). This adjustment suggests that

number of radiation fractions may be a confounding factor

when considering post-radiation lymphopenic changes as a

prognostic marker, which is consistent with our observation of

decreased lymphocyte counts for patients receiving higher

radiation fractions (Supplementary Figure 2).

Neutrophils have been observed to promote cancers in

numerous ways, for example through host inflammation,
B

C

A

FIGURE 5

Associations between Dexamethasone use and Neutrophil Counts. (A, B) Percent difference in neutrophil counts for patients not receiving or
receiving dexamethasone concurrently with radiation. (C) Absolute neutrophil counts before, during, and after RT for patients not receiving or
receiving dexamethasone concurrently with radiation. Statistical analysis was performed using two sample t-tests. ns, not significant.
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FIGURE 6

Effects of Thrombocytopenia on OS and PFS. Kaplan-Meyer plots of OS and PFS comparing patients with thrombocytopenia (A, B) before,
(C, D) during, (E, F) or after radiation treatment. Statistical analysis was performed using Cox Proportional Hazards tests. OS, Overall Survival;
PFS, Progression Free Survival; RT, Radiation therapy. “ns” for all figures stands for not significant.
Frontiers in Oncology frontiersin.org10

https://doi.org/10.3389/fonc.2022.1000280
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hsu et al. 10.3389/fonc.2022.1000280
which is a major hallmark of cancer (37). They can also induce

tumor initiation, growth, proliferation, and metastasis (38, 39).

Therefore, multiple studies have turned to studying neutrophil

levels and systemic inflammation marker NLR as prognostic

predictors of outcome (40). In glioma patients, preoperative

NLR > 4.0 has previously been correlated with worse survival (8,

10, 41). Consistently with these studies, our data also identifies

pre-radiation NLR > 4.0 as an independent predictor of worse

OS and PFS (Table 2; Figure 3). However, as neutrophils have

been observed to promote resistance to radiation, we also

evaluated neutrophil levels during and after radiation

treatment (42). We observed that neutrophilia both during

and after radiation were associated with worse survival

(Figure 2, Table 3). This was significant even after adjusting

for radiation fraction number, which is correlated with a

decrease in neutrophil levels, and dexamethasone use, which is

associated with an increase in neutrophil levels (Figures 4, 5). As

such, worse outcomes in patients with post-radiation

neutrophilia cannot be attributed to insufficient radiation or

steroid use during radiation. Thus, our results suggest that

neutrophilia at any time interval surrounding radiation

treatment serves as an independent predictor of poor survival,

even after factoring in the significant impact of treatments on

neutrophil counts. Determining which patients have high

neutrophil counts can guide further intensification of

treatment with additional systemic therapy, which may

improve prognosis. For example, multiple clinical trials

(NCT01220271, NCT01582269) are evaluating the efficacy of

adjuvant TGF-beta inhibitor Galunisertib in malignant gliomas

in combination with chemotherapy or chemoradiation. One

potential mechanism of action of Galunisertib is to inhibit

TGF-beta induced polarization of neutrophils into a protumor

phenotype (43, 44). Such adjuvant treatments may thus be

especially effective in patients observed to exhibit neutrophilia.

The role of platelets as a prognostic factor in solid cancer

patients is unclear. Some studies have observed that high platelet
Frontiers in Oncology 11
counts correlate with poor outcome – attributing this observation to

platelet secreted cytokines that facilitate tumor growth and

angiogenesis or an inflammatory state in the form of elevated

preoperative PLR (8, 10, 45–47). On the contrary, other groups have

argued that thrombocytopenia contributes to poor survival.

Numerous factors that contribute to thrombocytopenia, such as

genetic abnormalities in the tumor, treatment side effects, or

immune cell imbalance leading to platelet destruction, can all

portend poor prognosis (48). In our patient cohort, after

adjusting for patient characteristics including radiation fraction

number, we observe that patients with post-radiation increases in

platelet counts or PLR > 200 exhibited improved survival (Table 3,

Figure 7). This is independent of increased radiation dose, as

increased radiation fractions are associated with decreased platelet

counts (Figure 8). To our knowledge, no previous studies have

evaluated or observed an association between post-treatment

thrombocytopenia with worse survival in glioma patients.

Therefore, the mechanisms of how low platelet counts impact

patient survival must be further elucidated.

One other inflammatory marker that has been suggested to

be correlated with poor survival in multiple different

malignancies is MLR or its inverse LMR (49). Monocytes can

influence tumor progression by stimulating angiogenesis and

metastasis, influencing antitumor immunity, and differentiating

into tumor-associate macrophages (50). Low preoperative LMR

has been observed to be an independent prognostic factor in

gastric cancer patients, and a small retrospective study indicates

that glioblastoma patients with elevated MLR exhibit shorter

postoperative survival (51, 52). However, our results ultimately

did not find any correlation between monocytosis, MLR, or

changes in monocyte counts with survival (Supplementary

Table 7). Further larger scale and mechanistic studies may be

required to further delineate the role of monocytes in

patient prognosis.

Our study had the traditional limitations that are relevant to

all retrospective evaluations. These weaknesses include non-
TABLE 3 Multivariable cox proportional hazards regression: Impact of platelets on OS and PFS.

OS PFS

Variable Hazard ratio (Adj.) 95% CI p value Hazard ratio (Adj.) 95% CI p value

Pre-RT Thrombocytopenia 1.059 0.654 - 1.714 0.8165 0.956 0.598 - 1.528 0.8496

Intra-RT Thrombocytopenia 1.531 1.009 - 2.323 0.0455 1.403 0.943 - 2.087 0.0949

Post-RT Thrombocytopenia 1.377 0.939 - 2.019 0.1019 1.158 0.810 - 1.655 0.4215

Pre-RT PLR > 200 1.000 0.662 - 1.512 0.9991 1.000 0.674 - 1.484 0.9997

Intra-RT PLR > 200 1.025 0.698 - 1.505 0.8988 1.151 0.795 - 1.666 0.4562

Post-RT PLR > 200 0.587 0.401 - 0.860 0.0062 0.681 0.477 - 0.974 0.0352

Intra-RT %D Platelets 0.500 0.227 - 1.101 0.0854 0.598 0.280 - 1.278 0.1846

Post-RT %D Platelets 0.387 0.192 - 0.778 0.0077 0.491 0.252 - 0.956 0.0365
fronti
OS. Overall Survival; PFS, Progression Free Survival; RTm Radiation therapy; PLR, Platelet to lymphocyte ratio; CI, Confidence Interval.
Hazard ratios for thrombocytopenia and PLR were calculated as categorical variables, while percent changes were calculated as continuous variables. Variables were adjusted for number of
radiation fractions, age, BMI, gender, p53 mutation status, MGMT methylation status, presence of edema, presence of seizures, concurrent temozolomide treatment, and concurrent
dexamethasone treatment.
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FIGURE 7

Effects of Platelet to Lymphocyte Ratio (PLR) on OS and PFS. Kaplan-Meyer plots of OS and PFS comparing patients with PLR > 200 (A, B)
before, (C, D) during, (E, F) or after radiation treatment. Statistical analysis was performed using Cox Proportional Hazards tests. OS, Overall
Survival; PFS, Progression Free Survival; PLR, Platelet to Lymphocyte Ratio; RT, Radiation therapy. ns, not significant.
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random treatment group allocation, selection bias, and

non-random loss to follow up intrinsic to any non-randomized

non-prospective study (53). Despite this, our study still accounts

for loss to follow up during statistical analysis. Furthermore, the

number and time of collection of patient blood samples for

hematologic counts were not equivalent throughout our patient

population. Lastly, alternative confounders that may affect

hematologic cell counts, such as genetic alterations to the

tumor, were not incorporated into our analysis.

Taken together, our study provides insight into hematologic

predictors of survival in glioma patients. Consistent with previous

studies, we observe that elevated pre-radiation NLR predicts for poor

prognosis. In addition to this, we have identified that neutrophilia at

any time interval surrounding radiotherapy and post-radiation

thrombocytopenia are also correlated with worse patient prognosis.

We found no significant correlation between lymphocyte counts or

monocyte counts and patient survival. These results can inform

clinicians on when potential adjuvant therapies involving neutrophils

or platelets may provide further benefit to patient survival.
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FIGURE 8

Associations between Number of Radiation Fractions and Platelet Counts. (A, B) Percent difference in platelet counts for patients receiving ≤ 15
or > 15 fractions from before radiation treatment (RT) to during RT or after RT. (C) Absolute platelet counts before, during, and after RT for
patients receiving ≤ 15 or > 15 fractions. Statistical analysis was performed using two sample t-tests. ns, not significant.
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