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Multi-task learning-based
feature selection and
classification models for
glioblastoma and solitary
brain metastases
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1Key Laboratory of Computing and Stochastic Mathematics, School of Mathematics and Statistics,
Hunan Normal University, Changsha, China, 2Department of Intensive Care, Xiangya Hospital,
Central South University, Changsha, China, 3National Clinical Research Center for Geriatric
Disorders, Xiangya Hospital, Central South University, Changsha, China
Purpose: To investigate the diagnostic performance of feature selection via a

multi-task learning model in distinguishing primary glioblastoma from solitary

brain metastases.

Method: The study involved 187 patients diagnosed at Xiangya Hospital,

Yunnan Provincial Cancer Hospital, and Southern Cancer Hospital between

January 2010 and December 2018. Radiomic features were extracted from

conventional magnetic resonance imaging including T1-weighted, T2-

weighted, and contrast-enhanced T1-weighted sequences. We proposed a

new multi-task learning model using these three sequences as three tasks.

Multi-series fusion was performed to complement the information from

different dimensions in order to enhance model robustness. Logical loss was

used in the model as the data-fitting item, and the feature weights were

expressed in the logical loss space as the sum of shared weights and private

weights to select the common features of each task and the characteristics

having an essential impact on a single task. A diagnostic model was constructed

as a feature selection method as well as a classification method. We calculated

accuracy, recall, precision, and area under the curve (AUC) and compared

the performance of our new multi-task model with traditional diagnostic

model performance.

Results: A diagnostic model combining the support vector machine algorithm

as a classification algorithm and our model as a feature selection method had

an average AUC of 0.993 in the training set, with AUC, accuracy, precision, and

recall rates respectively of 0.992, 0.920, 0.969, and 0.871 in the test set. The

diagnostic model built on our multi-task model alone, in the training set, had an

average AUC of 0.987, and in the test set, the AUC, accuracy, precision, and

recall rates were 0.984, 0.895, 0.954, and 0.838.
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Conclusion: It is feasible to implement the multi-task learning model

developed in our study using logistic regression to differentiate between

glioblastoma and solitary brain metastases.
KEYWORDS

solitary brain metastases, glioblastoma, multi-task learning, feature selection,
classification, logistic regression
1 Introduction

Brain tumors, also known as intracranial tumors, are a

growth or mass of abnormal cells or tissue in the brain (1).

Brain tumors are generally subdivided into two main types:

primary or secondary (metastatic) (2). Glioblastoma (GBM) is a

typical malignant primary brain tumor that affects an average of

3 out of 100,000 people (3). Solitary brain metastases (SBM) are

secondary malignant brain tumors, which are more common

than GBM. The incidence rate of SBM is approximately 7 to 14

per 100,000 people (3, 4). As the standard treatment course for

GBM is aggressive trimodality therapy compared to surgery or

radiosurgery for SBM, it is of great clinical importance to

accurately and rapidly distinguish between these two types of

brain malignancies as rapidly as possible. As the main diagnostic

tool for brain tumors (5), magnetic resonance imaging (MRI)

methods create clear and detailed three-dimensional images of

brain and tumor anatomy. However, for patients with SBM and

GBM, their MR images both show ring enhancement, intra-

tumor necrosis, and per femoral T2 high signal (6, 7), which

poses a challenge for the accurate differentiation between GBM

and SBM.

Radiomics (8–12), the application of advanced image feature

analysis algorithms, can be used to capture intra-tumoral

heterogeneity in a non-invasive manner. Numerous studies

have applied radiomics to tumor classification. Austin et al.

used a filtered histogram texture analysis-based imaging historic

approach to identify high-grade and low-grade gliomas (13),

where the AUC on the test set reached 0.90. However, the data of

their study were highly unbalance in the number of high-grade

and low-grade gliomas. Among the three feature selection

methods, packing, filtering, and embedding, the embedding

method can obtain a higher computational efficiency and

classification performance than the filtering (14, 15) and

packing (16) methods (17). Therefore, the embedding method

has received increasing attention recently. Qian et al. used the

feature selection method of least absolute shrinkage and

selection operator (Lasso) combined with a support vector

machine(SVM) classifier, to obtain an AUC of 0.90 in their

test set (18). Cho et al. used a machine learning approach to

classify gliomas based on radiomics (19), which ultimately
02
selected five significant features with an average AUC of 0.903

on their test set. Artzi et al. found that the SVM approach had

the best results for classifying between GBM and SBM subtypes

(20), with an AUC of 0.96.

Liu et al. combined handcrafted radiomics and deep

learning-based radiomics and used a random forest algorithm

for feature selection and classification (21), the AUC reached

0.97 for single contrast-enhanced T1-weighted(T1C) MRI

sequence. Because tumor sites behave differently under

different sequences of MRI, patients usually have multiple

series of imaging data acquired to accurately determine the

tumor location, size, and additional information during the

treatment. Different sequences provide different information,

and multiple sequence fusion can complement information from

different dimensions, thus enhancing the robustness of a model.

As such, we introduced a multi-task learning model (22, 23) to

fuse T1, T1C, and T2 sequence information to develop a robust

prediction model to aid in clinical diagnosis.

Nowadays, most studies on multi-task-based feature

selection focus on different canonical terms. The features are

selected by constraints of different paradigms, such as the

commonly used ℓ1,1 (24), ℓ2,1 (25) paradigms, etc. (17, 26). In

the present report, we have improved the data-fitting term in the

multi-task learning model so that the model can be used not only

for feature selection but also for classification functions to

ultimately achieve a higher accuracy than traditional

diagnostic models.

The present work proposes a new feature selection and

classification model based on the multi-task learning model,

which treats the 1106 features extracted from each sample in

each sequence (T1, T2, T1C) as a task. It uses the logical loss

function as a data-fitting term to ensure the feasibility of

classifying GBM and SBM. Taking ℓ1,1, ℓ1 as regular terms to

ensure the sparseness of feature selection. At the same time,

private weights are introduced based on a common weight to

make full use of the relevant similarities and differences

between each task. The result is a 3-task feature selection

classification model. In this study, we mainly utilized the

alternating iterative method and the fast-iterative shrinkage

threshold algorithm based on the backtracking method to

solve equations. The experimental results demonstrate that
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our model, whether as a feature selection model combined

with SVM classification methods to form a diagnostic model

or as a standalone diagnostic model, successfully integrated

multiple sequence information to provide a robust predictive

model for clinical diagnosis while also the diagnostic model

consisting of one model improves the efficiency of our

tumor classification.
2 Materials and methods

2.1 Data acquisition

The data used in this study were obtained from 120 patients

with SBM and 67 patients with GBM admitted to the Xiangya

Hospital, Yunnan Cancer Hospital and Southern Cancer

Hospital between January 1, 2010 and December 31, 2018. All

patients were histologically diagnosed according to the tumor

grading guidelines published by the World Health Organization

in 2021. This retrospective analysis of data from MR images was

approved by the institutional review board, and the requirement

of informed consent was waived.

MRI on all patients was performed by the hospital radiology

department using 3.0-T systems. Each patient had T1, T2, and

T1C MR image series performed. High-quality MR images were

obtained using the following protocols:
Fron
• Axial T1: layer thickness =5 mm, layer spacing =1.5 mm,

matrix =320×256, and field of view (FOV)=24×24 cm.

• Axial T2: layer thickness =5 mm, layer spacing =1.5 mm,

matrix =384×384, and FOV =24×24 cm.

• Axial T1C: layer thickness =5 mm, layer spacing =1.5

mm, matrix =320×256, and FOV =24×24 cm.
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MR image data of the patient for the present study can be

found in the reference (21).
2.2 Data preprocessing

The overall workflow of the current study is shown in

Figure 1 with a description of each involved step.

2.2.1 Delineation of the region of interest (ROI)
We preprocessed each image by noise reduction, offset field

correction, and strict intra-target alignment using the public

software package FSL v6.0.4. All images were evaluated

independently by two neuroradiologists who have between 5-

10 years of experience. ROIs of the entire tumor on T1, T2, and

T1C images were created manually using the ITK-SNAP

software layer by layer around the enhanced tumor layer (27);

areas of macroscopic necrosis, cystic degeneration, and edema

were avoided. A third senior neuroradiologist with 15 years of

experience reexamined the images and made a final diagnosis

when there was a conflict between the two original

neuroradiologists (21).

2.2.2 Data normalization
Differences in instrumentation and imaging parameters,

tumor sites of patients, and other factors can lead to

significant differences in MR images. These differences will

result in significant issues for imaging histology analysis.

Therefore, we performed MIL(modality mismatch, intensity

distribution variance, and layer-spacing differences)

normalization for all MR images (28). First, we used B-sample

interpolation for body mode matching for all patient MR images

to obtain a total of 120 SBM samples and 67 GBM samples,
FIGURE 1

A generic framework for creating classification models using radiological features. Steps include ROI(region of interest) delineation, feature
extraction, feature selection, and modeling.
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Second, we set the interlayer gap of all MR images to 1 mm.

Third, we applied MIL data normalization to make the intensity

of MR image distribution consistent.

2.2.3 Feature extraction
We used the platform PyRadiomics (http://www.radiomics.

io/pyradiomics.html) to perform feature extraction on all MIL

normalized data. 1106 features were extracted from each MRI

series. With each patient undergoing three different sequences of

MRI, we extracted a total of 3318 features per patient. The

extracted features are shown in Table 1.

To account for the large difference in the number of samples

between the two tumor groups, we used the Synthetic Minority

Over-sampling Technique (SMOTE) (29) to oversample the

GBM group in order to generate the same number of samples

as the SBM group. In total, we obtained 120 SBM samples and

120 GBM samples. Finally, we randomly selected 24 SBM

samples and 24 GBM samples as the test set, and the

remaining 96 SBM samples and 96 GBM samples as the

training set.
2.3 Feature selection and classification

2.3.1 Proposed model
We introduce the logical loss function into the multi-task

learning model to obtain the data fitting term as

L(X, y,W) = o
M

m=1
o
N

j=1
( − ymi X

m
i w

m + ln  (1 + exp  (Xm
i w

m)) (1)

where the number of samples for each task is N and ymj ∈
f+1, −1g denotes the class of samples. When y = −1, the patient

has GBM.y = +1 means the patient has SBM.

To obtain the characteristics unique to a single task, we

introduced a personal value of b based on the expected weight of

s and finally derived our new model
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min
s,B

 o
M

m=1
o
N

i=1

1
N

−yiX
m
i s + bmð Þ + ln   1 + exp   Xm

i s + bmð Þð Þð Þð Þ

+ ls ║ s║1 +lb ║B║1,1

(2)

Where yi is the label of the i
th sample. M is the number of

tasks where M=3 as described in the text. We assume that the

number of samples for all tasks is N.Xm
i ∈ R1�(d+1) is the ith

sample of the  mth task, i.e., the ith row of the matrix Xm.

Depending on the nature of logistic regression, we populate the

last column of Xm with an N-dimensional 1 vector. B =

½b1, b2,⋯, bM� ∈ R(d+1)�M , then bmis the mth column of matrix

B,jjsjj 1 = od+1

i=1
jsij and jjBjj 1,1 = o(d+1)

i oM

m
jbmi j are the

regularization terms where s and bmare are the shared and

private weights, respectively.ls; lb are the two regularization

parameters, and let ls < Mlb.

2.3.2 Model solving
We rewrote (2) in the following form

min
s,B o

M

m=1
o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s + bm))))

+ lso
p+1

i
sij j + lbo

d+1

i
o
M

m
bmij j (3)

We considered the matrix B as a constant matrix, with a

minimization of the variable s

min
s
 o

M

m=1
o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s

+ bm)))) + lso
p+1

i
sij j (4)

Similarly, fixing the vector s and considering it as a constant

vector, then minimizing B is equivalent to minimizing the

following problem for any m

min
bm

 o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s + bm))))

+ lbo
d+1

i
bmij j (5)

It is further shown that the computation of bm is only

relevant for a single task.

To select the final feature, equation (4) and (5) must be

solved. Because of the non-differentiation of the ℓ1 norm, we

used a fast-iterative shrinkage threshold algorithm to solve the

above two subproblems in the course of our study (30). Both

equations were solved in a similar manner, but the calculation in

the model (5) involved only the mth task, independent of the

other tasks, while solving model (4) required the participation of

all tasks.
TABLE 1 Extract the specific content of radiomics features.

Original image Derived image

feature number name number

Shape-based 14 LoG 273

First Order 18 Wavelet 364

Gray Level Co-occurrence Matrix 22 Square 91

Gray Level Run Length Matrix 16 Square
Root

91

Gray Level Size Zone Matrix 16 Logarithmic 91

Gray Level Dependence Matrix 14 Exponential 91

Neighboring Gray Tone Difference
Matrix

5 – –
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2.3.3 Model analysis
We represent the weights solved by the model in the form of

a sum of shared weights s and private weights bm. For the

computation of s, all tasks need to be involved, and when si ≠ 0,

it is assumed that all tasks pick the ith feature. However, the

computation of bm requires data from only the mth task, and

bm ≠ 0 indicates the ith feature is important for the mth task but

may not be important for other tasks. Finally, we denoted the

features selected by the mth task by (s + bm). The ‘1and ‘1,1
regularization forced both weights to be sparse, thus satisfying

the “feature selection” requirement. The feature selection

methods with ‘1,1 norm as the regular term or ‘2,1 norm as the

regular term are two classical methods in the sparse embedding

method (31). The multi-task Lasso model based on ‘1,1
regularization had an entirely separable form. Each task can

separately compute its own weight without being influenced by

other tasks, so the sparse multi-task Lasso model is equivalent

to the single-task Lasso model. The single difference is that all

tasks of the sparse multi-task Lasso method use the same

regularization parameter. In contrast, the regularization

parameter of the single-task Lasso model can be determined

by each task individually. The multi-task Lasso model based on

the ‘2,1regularization makes the features selected by different

tasks almost the same, which reasonably exploits the
Frontiers in Oncology 05
correlation between different tasks but loses the specificity

between different tasks. In contrast, our model not only

makes full use of the correlation between different tasks but

also highlights the specificity between different tasks and fuses

the information of multiple sequences, thus providing a more

robust prediction model for clinical diagnosis. Their

differences are given visually in Figure 2.

Accurate preoperative diagnosis can be effective in

formulating accurate and personalized treatment for patients,

especially when MR images of SBM and GBM are extremely

similar. In the current study, the proposed multi-task learning

based on the logistic loss function can be used not only for

feature selection but also for tumor classification tasks.

In contrast, the Lasso model based on mean square loss can

only be used as a feature selection algorithm and cannot perform

the subsequent classification task independently. In contrast, our

model can use probabilities to account for the classification, for

example, for any sample Xm
i ∈ R1�(d+1), the probability that the

sample is classified as label 1 is

p(yi = 1jXm
i ) =

1

1 + e−X
m
i (s+b

m)
(6)

Next, the model can perform the tumor classification task

independently by simply picking the appropriate threshold
A

B C

FIGURE 2

The difference between LASSO1,1 Model, LASSO2,1 Model, and Our Proposed Model. The left panel represents the input datasets; the right panel
represents the learned weight matrix. (A) Schematic of our method for feature selection. (B) Schematic diagram of feature selection based on
multi-task Lasso model under ℓ1,1 regularization. (C) Schematic diagram of feature selection based on multi-task Lasso model under ℓ2,1
regularization.
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value. Its calculation process will be described in the section of

experimental procedure.

2.3.4 Experimental procedure
This experiment was performed using MATLAB 9.11. The

features of each sample and the labels are used as input, and the

optimal penalty parameters ls and lb are obtained on the

training set using 5-fold cross-validation. The ratio ls
lb

of the

two penalty parameters is always kept as the following six values:

1.25, 1.5, 1.75, 2, 2.25, 2.5. Moreover, the mean AUC values

under the optimal penalty parameters are recorded. Then, the

data were computed and trained using the alternating

miniaturization algorithm and the fast-iterative shrinkage

threshold algorithm. Note that during the fast-iterative

shrinkage threshold algorithm solution, our parameters L0 =

1,h = 1:1. To ensure the confidence of the results, we repeatedly

performed 5-fold cross-validation 10 times. Finally, the model"s

performance was evaluated by average accuracy, average recall,

average precision, and average AUC(The flow chart of our

model solution is given in Figure 3).
3 Results

Additional analyses were conducted to compare our model

with four diagnostic models based on single-task and multi-

task learning. The single-task-based models are the diagnostic

model with Lasso model for feature selection and SVM for
Frontiers in Oncology 06
classification (Lasso+SVM); the diagnostic model with Lasso

model for feature selection and logistic regression (LR)

algorithm for classification (Lasso+LR); the logistic regression

as loss function and ‘1 norm constraint of “LR1” model for

feature selection and SVM for classification (LR1+SVM); and a

diagnostic model with LR1 model for feature selection and

classification (LR1).

The models based on multi-task learning are the diagnostic

model with the Lasso multi-task model with ‘1,1norm as the

regular term for feature selection and the SVM method for

classification(Lasso1,1+SVM); the diagnostic model using the

Lasso1,1 multi-task model for feature selection and logistic

regression(LR) for classification(Lasso1,1+LR); diagnostic

model with feature selection using the Lasso multi-task model

with ‘2,1 norm as the regular term and classification by SVM

method(Lasso2,1+SVM); diagnostic model with feature selection

using Lasso2,1 multi-task model and classification by LR method

(Lasso2,1+LR); our model as a diagnostic model with feature

selection method and SVM method for classification

(Ours+SVM) and our model as a diagnostic model(Ours).

Table 2 shows the confusion matrices of 4 single-task models

based on T1, T1C, and T2 sequences and 6 diagnostic models

based on multi-task learning. The values in the table are taken as

an average of the results of the 5-fold cross-validation 10 times.

In the table, TP (True Positive) represents the number of GBM

predicted as GBM, FN (False Negative) means the number of

GBM predicted as SBM, FP (False Positive) means the number

of SBM predicted as GBM, and TN (True Negative) represents
FIGURE 3

Experimental flowchart.
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the number of SBM predicted as SBM. From the experimental

results, it can be seen that the value of TP or TN is significantly

higher than the value of FN or FP. This shows that our model is

meaningful and feasible.

To further verify the feasibility of our model, the ROC

(receiver operating characteristics) curves of our model are

compared with those of four other multi-task models, and the

values of the AUC and the standard deviation are also given.

Usually, the closer to a value of 1 the AUC is, the better the model

performance is; the smaller the standard deviation is, the more

stable the model is. For the test dataset, our model combined with

SVM classification, multi-task: Ours+SVM, had the most

significant AUC of 0.992, however, our multi-task model alone

had the second highest AUC of 0.984, with an AUC difference of

0.008 from the optimal model. The standard deviation (std) of the

multi-task: Ours+SVM model is also the smallest among the six

models, at 0.008, indicating that the model is the most stable. The

std of our multi-task model alone was second only to the multi-

task: Ours+SVM model. The results are shown in Figure 4.
Frontiers in Oncology 07
Feature selection can effectively reduce the dimensionality of

the data, thereby reducing the amount of computation and

improving the efficiency of problem-solving. Figure 5 shows

the distribution of features when selecting 20 features for six

multitasking models. Our method not only selected the same

features for the three sequences of T1, T1C, and T2, but also

selected the characteristics that are unique to each sequence,

which may have a large impact on only one of the sequences and

not very much on the other sequences.

In brain tumor classification experiments, we compared the

classification performance of the single-task-based and multi-

task learning-based diagnostic models. In the single-task model

experiments, we used four single-task feature selection models to

classify the data of T1, T1C, and T2 sequences. Finally, we used

5-fold cross-validation method 10 times to obtain the average

AUC on the training set and the average AUC, accuracy,

precision, and recall on the test set. In the classification

experiment based on multi-task learning, we treated the three

sequences of T1, T1C, and T2 as 3 tasks, trained and tested them
A B C

D E F

FIGURE 4

ROC curves of multi-task model in six. The horizontal coordinate indicates the false positive rate and the vertical coordinate indicates the true
positive rate. (A) ROC curves for the Lasso1,1+SVM model, the blue solid line indicates the average ROC curve and the black dashed line
indicates the mean ± std. (B) ROC curves for the Lasso1,1+LR model, the blue solid line indicates the average ROC curve and the black dashed
line indicates the mean ± std. (C) ROC curves for the Lasso2,1+SVM model, the blue solid line indicates the average ROC curve and the black
dashed line indicates the mean ± std. (D) ROC curves for the Lasso2,1+LR model, the blue solid line indicates the average ROC curve and the
black dashed line indicates the mean ± std. (E) ROC curves for the Ours+SVM model, the blue solid line indicates the average ROC curve and
the black dashed line indicates the mean ± std. (F) ROC curves for the Ours model, the blue solid line indicates the average ROC curve and the
black dashed line indicates the mean ± std.
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through 6 multi-task models, and obtained the above 4

evaluation indicators. The results were shown in Table 3.

In the single-task experiment, the LR1+ SVM model based

on the T2 sequence achieved the highest average AUC of 0.973

on the training set, and the average AUC also reached the

highest 0.969 on the test set, and accuracy and recall also

reached the highest in the single-task model, accuracy = 0.876,

recall = 0.886. In all single-task experiments, the maximum value

of precision is 0.922.

The multi-task learning model was introduced into the

classification of brain tumors, and the classification performance

of each model was significantly improved. As can be seen from the

data in the table, the values of the indicators of the multi-task

model are significantly better than those of the corresponding

single-task model. Using our model, the multi-task: Ours+SVM

model, its average AUC, accuracy, and precision are all at their

highest, and the AUC on the test set reaches 0.992. Our model is

not only used as a feature selection method, but also as a

classification method. Although its metrics are not optimal, it

outperforms the traditional diagnostic models (Lasso1,1+SVM,

Lasso1,1+LR, Lasso2,1+SVM, Lasso2,1+LR), and we use only one

model, thus improving the efficiency of diagnosis.
4 Discussion

Accurate classification of GBM and SBM is a challenging

clinical problem. Different sequences of MRI provide unique
Frontiers in Oncology 08
information, and the rational fusion of multiple sequences can

complement information from different dimensions (32). Thus,

we proposed a new multi-task learning model to enable an

accurate and fast diagnosis method for clinical usage.

This study introduced T1, T1C, and T2 sequences into the

multi-task learning model. The feature weights were represented

as the sum of shared and private weights. In turn, when filtering

radiomic features, we can fully use the correlation between MR

images of different sequences while still retaining the differences

between the sequences and selecting features that have an

essential impact on a specific task. Based on the above multi-

task model, we also replaced the data matching term with a

logistic regression function, which resulted in efficient model

feature selection and classification of brain tumors.

We used an alternating minimization algorithm and a fast-

iterative shrinkage threshold algorithm to train the data in

model solving. We used the 5-fold cross-validation method to

select optimal parameters for the selection of parameters. To

ensure the accuracy and credibility of the data results, we

conducted a 5-fold cross-validation 10 times in training and

testing, and the final metrics were selected as the average value.

The optimum model with an average AUC of 0.992 on the test

set was found when our model performed feature selection and

the SVM method performed classification. As a feature selection

and classification method, our method alone reached the second

highest average AUC of 0.984 on the test set. Multi-task learning

enhances the robustness of our model, thus providing a stable

predictive model for clinical diagnosis while ensuring accuracy
TABLE 2 The mean of the confusion matrix of each model after 5-fold cross-validation 10 times.

Test

Group Model T P F N FP TN

T1 Lasso+SVM 19.94 4.06 3.98 20.02

Lasso+LR 19.78 4.22 4.54 19.46

LR1+SVM 20.60 3.40 3.56 20.44

LR1 20.58 3.42 3.86 20.14

T1C Lasso+SVM 20.36 3.64 2.58 21.42

Lasso+LR 19.64 4.32 3.40 20.60

LR1+SVM 19.40 4.60 1.90 22.10

LR1 19.18 4.82 1.98 22.02

T2 Lasso+SVM 20.50 3.50 3.38 20.62

Lasso+LR 19.86 4.14 5.30 18.70

LR1+SVM 20.60 3.40 2.56 21.44

LR1 20.24 3.76 2.96 21.94

Multi-task Lasso1,1+SVM 21.44 2.56 2.22 21.78

Lasso1,1+LR 20.48 3.52 2.70 21.30

Lasso2,1+SVM 20.16 3.84 1.64 22.36

Lasso2,1+LR 20.32 3.68 2.64 21.36

Ours+SVM 20.90 3.10 0.76 23.24

Ours 20.12 3.88 1.16 22.84
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and making diagnoses possible with just one model, improving

the efficiency of diagnostics.

Our model still has a comparative advantage over a single

sequence classification task. For example, in a previous study (21),

we used the same dataset with the random forest method as the

feature selection method. Then six machine learning models were

used for classification. The final result is that the random forest did

the best classification job, obtaining an AUC of 0.97 on the test set
Frontiers in Oncology 09
but was limited to the T1C sequences. The single-task model, which

does not consider the relationship between different sequences, does

not take advantage of complementarity of information, which leads

to the final classification effect being relatively not very good. On the

other hand, the model proposed in this paper can make full use of

the complementary information between different sequences and

improve the accuracy and robustness of the prediction model. Our

model is comparable with the classical multi-task model based on
A B C

D E F

FIGURE 5

Learned weight matrix. The color bar in the right side indicates the values of matrix.The horizontal coordinates indicate the different tasks T1,
T1C, and T2. The vertical coordinates indicate the number of features screened.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1000471
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2022.1000471
‘2,1 regularization (24), but it can extract not only the same features

for each sequence but also features that are important for a specific

task. Moreover, compared with the general feature selection model,

our model also integrates feature selection and classification to

improve efficiency and convenience for diagnosis.

The present study does have some limitations. First, this study

used a manual method to segment ROI, which is time consuming.

Additionally, although two to three researchers have been involved

in the segmentation process, it is very challenging to eliminate all

bias in the results. Second, the data sample is small and cannot be

extrapolated from this particular population to the general

population. Third, the multitask learning model proposed in the

present study requires the same features among tasks and does not

apply to all multitask problems. Lastly, in the medical imaging part,

ROI segmentation requires two neurologists with 5 to 10 years of

experience. In our future study, we plan to use deep learning

algorithms or image segmentation methods to automatically

delineate the ROI to improve the efficiency of our work.
5 Conclusion

In this work, we proposed a feature selection model based on

the multi-task learning model for SBM and GBM classification.

The feature selection model uses a logistic regression function as

a loss function, which makes the classification function of the

model possible. Most of the current brain tumor classification
Frontiers in Oncology 10
studies have been performed using single-task models, which do

not take advantage of the correlation between different

sequences of MR images and therefore, the performance is not

optimized to utilize all available information. Furthermore, the

traditional multi-task Lasso model does not fully consider the

correlation between different tasks. In contrast, our model makes

full use of the correlation between MR images of different

sequences while selecting the features that have an essential

impact on a specific task. It is possible to select different

combinations of features for different tasks, thus improving the

classification performance of the model to some extent. In

conclusion, our model generally outperforms the traditional

multi-task Lasso model.

Our model as a feature selection method and paired with an

SVM classification method has a great advantage over other

methods of the same type. Our proposed model is also a good

choice as a classification method. Although it has inferior

performance to that of using our method with other

classification algorithms, it improves the convenience of tumor

classification. Thus, our model is advantageous in classifying

SBM and GBM using MR images with multiple sequences.
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TABLE 3 The values of various metrics for each method on the training and test sets.

Train Test

Group Model AUC AUC Accuracy Precision Recall

T1 Lasso+SVM 0.936 0.933 0.832 0.851 0.830

Lasso+LR 0.940 0.935 0.817 0.840 0.824

LR1+SVM 0.952 0.951 0.855 0.869 0.858

LR1 0.951 0.947 0.848 0.861 0.857

T1C Lasso+SVM 0.955 0.953 0.870 0.901 0.848

Lasso+LR 0.950 0.947 0.838 0.886 0.818

LR1+SVM 0.961 0.959 0.864 0.922 0.818

LR1 0.958 0.954 0.858 0.919 0.799

T2 Lasso+SVM 0.954 0.953 0.856 0.873 0.854

Lasso+LR 0.947 0.942 0.803 0.828 0.854

LR1+SVM 0.973 0.969 0.876 0.828 0.858

LR1 0.968 0.967 0.860 0.892 0.843

Multi-task Lasso1,1+SVM 0.984 0.981 0.900 0.918 0.893

Lasso1,1+LR 0.893 0.981 0.870 0.903 0.853

Lasso2,1+SVM 0.981 0.980 0.886 0.941 0.840

Lasso2,1+LR 0.975 0.973 0.868 0.913 0.847

Ours+SVM 0.993 0.992 0.920 0.969 0.847

Ours 0.987 0.984 0.895 0.954 0.838
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