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Background: Gastric cancer is still one of the most lethal tumor diseases in the

world. Despite some improvements, the prognosis of patients with gastric

cancer is still not accurately predicted.

Methods: Based on single cell sequencing data, we conducted a detailed

analysis of gastric cancer patients and normal tissues to determine the role of

monocytes in the progression of gastric cancer. WCGA facilitated our search

for Grade-related genes in TCGA. Then, according to themarker genes and cell

differentiation genes of monocytes, we determined the cancer-promoting

genes of monocytes. Based on LASSO regression, we established a

prognostic model using TCGA database. The accuracy of the model was

verified by PCA, ROC curve, survival analysis and prognostic analysis. Finally,

we evaluated the significance of the model in clinical diagnosis and treatment

by observing drug sensitivity, immune microenvironment and immune

checkpoint expression in patients with different risk groups.

Results: Monocytes were poorly differentiated in tumor microenvironment. It

mainly played a role in promoting cancer in two ways. One was to promote

tumor progression indirectly by interacting with other tumor stromal cells. The

other was to directly connect with tumor cells through the MIF and TNF

pathway to play a tumor-promoting role. The former was more important in

these two ways. A total of 292 monocyte tumor-promoting genes were

obtained, and 12 genes were finally included in the construction of the

prognosis model. A variety of validation methods showed that our model had

an accurate prediction ability. Drug sensitivity analysis could provide guidance

for clinical medication of patients. The results of immune microenvironment

and immune checkpoint also indicated the reasons for poor prognosis of high-

risk patients.
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Conclusion: In conclusion, we provided a 12-gene risk score formula and

nomogram for gastric cancer patients to assist clinical drug therapy and

prognosis prediction. This model had good accuracy and clinical significance.
KEYWORDS

gastric cancer, monocytes, single cell sequencing, tumor immune microenvironment,
prognosis, tumor therapy.
Introduction

Gastric cancer is one of the most common types of cancer

worldwide. As of 2021, stomach cancer was ranked fifth overall

and fourth in terms of death (1–3). Most gastric cancer (about

90%) is adenocarcinoma, which originates from the most

superficial or mucosal glands of the stomach. The histological

subtypes of gastric cancer are generally separated into intestinal

and diffuse subtypes (4). According to the location of stomach

cancer, some researchers classify it into cardia gastric cancer and

non-cardia gastric cancer (5, 6). Helicobacter pylori infection,

alcohol intake, smoking, and low fruit intake are considered to

be important pathogenic factors for gastric cancer (7–9).

Helicobacter pylori infection is verified to be the most

important one of these (10). Correa et al. pointed out that the

process from normal gastric epithelium to gastric cancer was a

multi-stage and multi-factor process. Strong acidic stimulation

environment, direct damage of Helicobacter pylori to gastric

epithelium, and the decomposition of nitrate in food by HP into

nitrite or n-nitroso compounds played a crucial role in this

process (11, 12). There are considerable gender and regional

disparities in the incidence of stomach cancer. Gastric cancer is

twice as common in men as it is in women, according to reports,

and the incidence in North America and Europe is significantly

lower than that in Asia (13). The prevalence of cancer screening

and the improvement of food hygiene have made the incidence

and mortality of gastric cancer gradually decline in the past half

century. But in recent years, due to improper use of antibiotics

and acid inhibitors, the gastric microbial environment has been

destroyed, and the incidence of gastric cancer has rebounded in

some countries (14, 15). The prognosis of gastric cancer patients

sometimes varies substantially due to the significant variability

across gastric cancer tissues (16). While the TNM staging system

and Borrmann classification are frequently used to assess the

prognosis of gastric cancer patients, their predictive accuracy is

not sufficient (17). Therefore, exploring the sources of gastric

cancer heterogeneity and finding an effective prediction method

to guide the clinical diagnosis and treatment of gastric cancer

patients are still important goals in gastric cancer research.

Tumor immune microenvironment is a unique barrier

formed of tumor cells, surrounding immune cells, fibroblasts,
02
and immunological factors released by these cells. Its purpose is

to block tumor immunity and encourage tumor proliferation

and spread (18). Interaction between tumor cells and

microenvironment is one of the reasons for tumor

heterogeneity (19). Monocytes are one of the important

components of tumor microenvironment. Under normal

circumstances, monocytes can flow with blood or stay in

tissues, play a role in phagocytosis and killing microorganisms

and tumors, and are the intermediary connecting innate

immuni ty and adapt ive immuni ty . In the tumor

microenvironment, monocytes are recruited by tumor tissues

and become their accomplices. A large part of monocytes will be

further differentiated into M2 macrophages (tumor-associated

macrophages), which inhibit the function of peripheral immune

cells and promote tumor immune escape. The other portion

enhances Treg cell aggregation directly, inhibits CD4+/CD8+ T

cell antitumor activity, and promotes vascular survival and

extracellular matrix transformation (20–24). Therefore, the

infiltration of monocytes in tumor microenvironment

promotes tumor progression, causes tumor heterogeneity,

which is one of the important reasons for the failure of

tumor treatment.

Traditional high-throughput sequencing requires a large

number of cells to obtain enough DNA for sequencing due to

technical restrictions. As a result, the sequencing data represent

the ‘ensemble’ gene expression of these cells, disregarding the

specific characteristics and roles of individual cells. We have

been able to perform high-throughput sequencing analysis of

genomes, transcriptomes, and epigenetics at the single cell level,

revealing the gene structure and gene expression status of a

single cell and reflecting heterogeneity between cells, thanks to

the development of next-generation sequencing (NGS) and

third-generation sequencing (TGS) technologies (25–27).

Several previous studies have carried out single-cell sequencing

analysis on human gastric cancer tissues (28–30). As a result, we

conducted in-depth studies on the significance of monocyte

infiltration in gastric cancer tissues, searched for potential

monocyte oncogenes in gastric cancer tissues, and explored

the functional status of monocytes at different stages and

pathways of action with other cells, all based on published

single-cell sequencing data.
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Materials and methods

Download and collation of single
cell data

Single cell data used in this study came from GEO database,

registration number was GSE163558. The original data included

3 cases of primary gastric cancer, 1 case of peritumoral normal

tissue and 6 incidences of metastatic stomach cancer. We chose

three examples of primary gastric cancer tissue for analysis and 1

case of normal tissue for subsequent data analysis. Single cell

data has been preprocessed by CellRanger (10X Genomics)

(version 3.0.2). Cells whose genes were less than 200 or more

than 5000 were filtered out. Cells with more than 20%

mitochondrial DNA were also excluded.

The remaining cells’ gene expression matrix was normalized

using a global-scaling approach with a default scale factor and a

natural-log transformation followed by a log1p transformation.

Finally, the normalized expression was scaled using the

ScaleData method to eliminate unneeded mutation sources.

In order to prevent low-quality cell residues after previous

data preprocessing, thereby affecting the accuracy of

downstream analysis. Therefore, on the basis of previous

preliminary data filtering, we integrated and further controlled

the single cell data based on the “Seurat” package of R (version

4.12) (version 4.1.0): (1) We excluded cells with less than 500 or

more than 6000 gene expression. (2) The UMI count value of

each cell sequencing must be greater than 1000, and the top 3%

cells with the largest UMI count value were excluded. (3) The

proportion of mitochondrial gene expression in each cell in the

total gene should be less than 35%, and the first 2% cells with the

highest mitochondrial gene expression should be removed. (4)

Calculate the proportion of rRNA expression in the total gene

and remove the smallest and largest proportion of the first

1% cells.

After acquiring high-quality cells, we utilized the

‘NormalizeData’ function to divide each gene’s expression in

each cell by the total expression and multiply by the scale factor

10000. Then we normalized it by log to eliminate possible

technical errors. Finally, we used the ‘FindVariableFeatures’

function to search for highly variable genes (HVGs), which

expressed differently in different cells. We chose the first 2000

genes for downstream analysis.
Annotation of cell types and screening of
key subgroups

PCA is a technique for linear dimension reduction. The

high-dimensional data are projected to a low-dimensional space

using a linear transformation, and the data variance is predicted

to be greatest in the projected dimension. This way, we can use

fewer data dimensions while retaining the properties of a greater
Frontiers in Oncology 03
number of original data points. TSNE is a nonlinear dimension

reduction technique. TSNE transforms the distance between two

points in a high-dimensional space to their likelihood of

resemblance in a low-dimensional space, while preserving the

minimal sum of the conditional probability difference between

the two points in high-dimensional and low-dimensional space.

In addition, the long tail of the t-distribution is used to solve the

overlap problem when high-dimensional data is mapped to low-

dimensional data, which leads to a better chance of selecting

related objects. We used both dimensionality reduction methods

simultaneously to make the results of cluster analysis

more reliable.

After clustering analysis, the ‘FindAllMarkers’ function was

used to identify the marker genes for each subgroup (the filtering

standard was logFC > 1, P< 0.05). After getting the marker genes

for each subgroup, we annotated the cell type using the

HumanPrimaryCellAtlasData database in the ‘SingleR’ package

(version 1.8.1), and then validated the annotation results on the

CellMarker website (31) to ensure the accuracy of the

annotation. Finally, we used the FindAllMarkers function

again to find the marker genes of annotated cells.

By using a two-sided test, Fisher’s exact test was utilized to

determine whether there was a significant difference in the

cluster of cells between tumor and normal samples. The

screening criteria were P<0.05 and FC>4 or FC<0.25. The

analyse_sc_clusters function in the ReactomeGSA ‘package

(version 1.8.0) was used for enrichment analysis of the

function of cell clusters. Subsequently, the difference between

the highest and minimum values of each pathway score was

determined. Then we sorted the expression of each pathway

according to the difference. In the end, the first 10 pathways with

the largest difference in pathway score were extracted through

the pathways function as the results of pathway enrichment.
Pseudotime analysis and cell
communication analysis

We used the ‘monocle’ package (version 2.22.0) to perform

pseudotime analysis on single cell data. Pseudotime analysis is

one of the methods of trajectory analysis. According to the

temporal gene expression of each cell, each cell could be

arranged in the corresponding trajectory according to the

quasi-time. The samples were classified into cell groups based

on the expression of genes in multiple differentiation states. The

intuitive pedigree tree diagram could be generated to predict cell

differentiation and development trajectory. In the first place, we

extracted the key cell subgroups and selected their marker genes

for the next analysis. Subsequently, we used the DDRTree

method of reduceDimension function to reduce the dimension

of the data, calculated the development time, inferred the

trajectory, and sorted the cells according to the quasi-time

sequence to visualize the results. The emergence of branch
frontiersin.org
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points represented the programmed changes of cells, such as cell

fate differentiation. The statistical method of beam was used to

analyze the cell data and designated nodes after quasi-time

sorting. The contribution value of genes in the process of cell

development was calculated, and then the differential genes that

played a critical role in the development and differentiation of

cells were screened.

Cell communication referred to the information sent by one

cell through the medium to another cell to produce

corresponding reactions. Intercellular communication through

chemical signaling molecules is the most commonly used

communication mode in animals and plants. Cell-cell

communication mediated by ligand-receptor complexes was

critical in coordinating many biological processes such as

development, differentiation, and inflammation. The package

‘CellChat’ (version 1.1.3) was used to infer and evaluate the cell-

cell interaction network. We began by identifying overexpressed

ligands or receptors within a cell group and then projected the

gene expression data onto the protein-protein interaction (PPI)

network. If either the ligand or the receptor is overexpressed, the

interaction between the overexpressed ligand and receptor is

recognized. Following that, we calculated the probability of

communication at the signaling route level by computing the

probability of communication for all ligand-receptor

interactions associated with each signaling pathway, and

calculated the aggregated communication network between

cells by calculating the number of links or summarizing the

communication probability. Finally, we established a cell

communication network at the cell ligand-receptor and

signaling pathway level. In additionally, we analyzed and

visualized the communication network in which monocytes

participate and contribute greatly.
Download and collation of
transcriptome data

The data of training set were from the TGCA database. We

downloaded the transcriptomes of patients with and without

stomach cancer, retrieved the raw data for integration, and

annotated the genes. For repeated expression genes, we take

the average of their expression. Finally, we got the gene

expression matrix of TCGA cohort. We sorted out the clinical

data, extracted TCGA number, survival time (day), survival

status (survival or death), gender, age, tumor stage, T, N, M

and grade. The test set came from the GEO database with the

registration number GSM2235556, including sequencing data

for 76 primary gastric cancer tissues. The transcriptome data

were collated and annotated. In clinical data, we only focused on

the survival time and survival status of patients. Gene mutation

data came from TCGA database, and the data type was ‘Masked

Somatic Mutation’. Finally, the study collected data on

434 mutations.
Frontiers in Oncology 04
Weighted gene co-expression
network analysis

In the TCGA cohort, weighted gene co-expression network

analysis (WGCNA) was utilized to uncover genes associated

with tumor grade. WGCNA is a method for assessing gene

expression patterns in numerous samples that may cluster genes

with similar expression patterns and analyze the association

between modules and specific phenotypes. The ‘WGCNA’

package served as the foundation for WGCNA (version

1.70.3). To make the connection between genes in the network

obey the scale-free network distribution, we calculated the

correlation coefficient between any two genes and took the

weighted value of the correlation coefficient (i.e., the Nth

power of the gene correlation coefficient). This could

transform the adjacency matrix into the Tom matrix. Then,

using weighted correlation and a specified standard, we did

hierarchical clustering analysis and segmented the clustering

findings to obtain various gene modules, which were represented

by the branches of the clustering tree and different colors.

Finally, we assessed the association between gene modules and

clinical case features, selected the modules associated with

Grade, and retrieved the genes associated with those modules

for further investigation.
Acquisition of potential oncogenes
from monocytes

We obtained the marker genes and cell cycle-related genes of

monocytes through the analysis of single cell data, and obtained

the grade-related genes in the TCGA cohort through WGCNA.

Cell cycle-related genes and grade-related genes were among

those found to be closely linked to cell development and

differentiation, which might be an important potential

oncogene for gastric cancer. We discovered monocyte-specific

differentiation-related genes by intersecting the three. These

genes regulated monocyte growth and differentiation, which

could be crucial in the advancement of gastric cancer. As a

result, we created a prognostic model based on these genes to test

their capacity to predict outcomes.
Construction and validation of
prognostic model

The gene expression of monocyte potential oncogenes in

TCGA cohort was extracted, and the difference was analyzed

based on ‘limma’ package (version 3.50.1) (P< 0.05, logFC = 1,

that is, the difference multiple was 2 times). Following that,

clinical data was integrated with the expression levels of

differential genes in the TCGA and GEO cohorts (survival

time, survival status). Univariate COX regression analysis was
frontiersin.org
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used to evaluate prognostic genes in differentially expressed

genes (DGEs) using the ‘survival’ package (version 3.2.13). A

prognostic prediction model was built using the Least absolute

shrinkage and selection operator (LASSO) from the glmnet

package (version 4.1.3). LASSO is a linear regression method

that uses L1-regularization to make portion of the learned

feature weights 0 in order to achieve the goal of sparse and

feature selection. It could not only keep the model from being

too good in the training samples, resulting in poor performance

in the validation and test data sets (i.e., overfitting), but it could

also keep the model from having too many variables (better than

Ridge regression).

We used a range of test methodologies to determine the

prognosis model’s prediction performance. Principal component

analysis (PCA) is a dimension reduction method that converts

highly correlated attributes/variables in the data into independent

or irrelevant new attributes/variables, which uses fewer new

attributes/variables (principal components) to explain most of the

attributes/variables in the original data. The receiver operating

characteristic curve (ROC) is a graphical representation of the

continuous variable sensitivity and specificity. It calculates a series

of sensitivity and specificity for continuous variables by setting

many distinct thresholds, and then draws a curve with sensitivity as

the ordinate and (1specificity) as the abscissa. The greater the area

under the curve, the more precise the diagnosis. Independent

prognosis analysis was performed to determine whether the

prognostic model could be employed independently of other

clinical characteristics as prognostic factors. The evaluation

methodologies used were COX regression analysis on a single

component and COX regression analysis on multiple factors.

Additionally, we performed survival analyses on the overall

survival (OS) and progression-free survival (PFS) of patients

classified into distinct risk groups based on their risk score. The

data were visualized using the Kaplan-Meier curve. Finally, we

assessed the expression of prognostic model genes in normal and

gastric cancer tissues from the human protein atlas (HPA) database.
Clinical relevance, immune
microenvironment, gene mutation and
drug treatment sensitivity

We examined the clinical pathological features, immune

microenvironment status, and response to pharmacological

treatment of patients in various risk groups using the risk

score algorithm. We first determined if there were statistically

significant variations in the age, gender, Stage, T, N, M, and

Grade of patients in various risk categories, and then visualized

the data using a box plot. The CIBERSORT algorithm was used

to analyze immune infiltration in patients belonging to various

risk groups. CIBERSORT is a linear support vector regression-

based technique for deconvolution of the expression matrix of

human immune cell subtypes. By default, this approach
Frontiers in Oncology 05
produced the gene expression feature set for 22 immune cell

subtypes (LM22) based on the known reference data set. The

sensitivity analysis of drugs was performed using the R package

‘pRRophetic’ (version 0.5) developed by Paul Geeleher in 2014

(32). The pRRophetic technique developed a ridge regression

model based on the expression profiles of the GDSC cell line and

the TCGA gene to forecast drug half inhibitory concentrations

(IC50, the corresponding drug concentration when the ratio of

apoptotic cells to total cells was equal to 50%). The results of

drug sensitivity analysis were shown by box plot and correlation.

The box plot was the distribution of IC50 between different

samples, and the correlation was the relationship between model

score and IC50. Finally, we did gene mutation analysis on the

genes associated with the prognosis model, assessed gene graph

mutation and co-mutation relationships, and identified genes

with the highest mutation frequency in various risk groups.
Variation analysis of gene sets,
enrichment analysis, and protein
interaction analysis

Gene set variation analysis (GSVA) is a non-parametric and

unsupervised algorithm. We used the ‘GSVA’ package (version

1.42.0) to estimate the kernel density of the expression data

(used to estimate the unknown density function in the

probability theory, which is one of the nonparametric test

methods). Subsequently we ranked the expression levels of the

samples based on the results of the kernel density estimation.

Each gene set was calculated for the rank statistics similar to the

K-S test, and finally obtained the enrichment score. The genes of

patients in different risk groups were analyzed again for GO and

KEGG analysis. Both GO and KEGG analyses were performed

using the package ‘org.Hs.eg.db’ (version 3.14.0). GO analysis

was used to classify genes according to their molecular function,

cellular component, and biological process. KEGG is the most

extensively used publicly accessible database of metabolic

pathways. Finally, we utilized the STRING database to analyze

the protein interaction networks (PPI) of differentially expressed

genes and the ‘Cytoscape’ software (version 3.9.1) to show the

analysis results, seeking for core genes in a large number of

differentially expressed genes (minimum required interaction

score = 0.7).
The website of database

GEO: https://www.ncbi.nlm.nih.gov/geo/

TCGA: https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga

CellMarker: http://bio-bigdata.hrbmu.edu.cn/CellMarker/

STRING: https://cn.string-db.org/

HPA: https://www.proteinatlas.org/
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Results

The immune infiltration analysis of TCGA
and single cell sequencing analysis
showed that monocytes were crucial
infiltrating cells in gastric cancer tissues

The results of the TCGA clinical data analysis are summarized

in Table 1. The study’s flow chart is depicted in Figure 1. The

immune infiltration analysis of TCGA cohort showed that the

number of monocytes in gastric cancer tissues was significantly

different from that in normal tissues (Figures 2A, B). Subsequently,

we aimed to verify it in single cell sequencing data. After strict

quality control, 13588 cells and 24159 non-repeated genes were

finally identified (Figures 2C, D). After PCA dimensionality

reduction and TSNE clustering, 18 clusters (Figures 2E, F) were

obtained. Supplementary Table 1 as a supplement to Figure 2F

showed in detail the proportion of each cell cluster in different

samples. We annotated these 18 clusters through marker genes,

and finally obtained 12 cell subgroups. According to the difference
Frontiers in Oncology 06
of cell-derived tissues, all cells were divided into tumor tissue origin

and normal tissue origin (Figure 2G). Themarker genes of each cell

subgroup were displayed in the form of heatmap and distribution

map (Figures 2H, I). Supplementary Table 2 showed the marker

genes of all cells as a supplement to Figures 2H–I. After differential

analysis, we found nine distinct cell subgroups that were

differentially expressed in tumor and normal tissues: Neutrophils,

B cell, Cancer cell, Monocyte, Macrophage, Fibroblasts,

Endothelial cells, Epithelial cells, and HSC-G-CSF. Thus, we

established that monocytes infiltrated tumor and normal tissues

differently and are critical infiltrating cells in gastric cancer tissues.
Monocyte growth and differentiation in
gastric cancer tissues, as well as the level
of signaling pathway expression

To advance research on the involvement of monocytes in

stomach cancer, we performed ReactomeGSA functional

enrichment analysis of key subgroups. The results showed that
TABLE 1 Clinical data of TCGA patients.

Number Percent

Age <=65 197 0.44

>65 241 0.54

unknow 5 0.01

Gender MALE 285 0.64

FEMALE 158 0.36

unknow 0 0.00

Grade G1 12 0.03

G2 159 0.36

G3 263 0.59

unknow 9 0.02

Stage Stage I 59 0.13

Stage II 130 0.29

Stage III 183 0.41

Stage IV 44 0.10

unknow 27 0.06

T T1 23 0.05

T2 93 0.21

T3 198 0.45

T4 119 0.27

unknow 10 0.02

N N0 132 0.30

N1 119 0.27

N2 85 0.19

N3 88 0.20

unknow 19 0.04

M M0 391 0.88

M1 30 0.07

unknow 22 0.05
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Histamine receptors, Hydroxycarboxylic acid-binding receptors,

NEIL3-mediated resolution of ICLs, Metabolism of serotonin

and other signaling pathways were significantly up-regulated in

monocytes. ATP-sensitive potassium channels, Regulation of

thyroid hormone activity, Sterols are 12-hydroxyated by

CYP8B1, Intracellular oxygen transport and other signaling

pathways were significantly down-regulated (Figure 3A),

suggesting that a variety of functions of tumor-infiltrating

monocytes were significantly altered.

By screening 10722 marker genes, 1801 genes were included

in the pseudotime (Figure 3B). pseudotime analysis revealed the

differentiation trajectory of monocytes (Figure 3C). Most

monocytes were in cluster1 stage, with a high degree of

differentiation, and a small part was in cluster3, with a low

degree of differentiation (Figures 3D, E). In addition, we also

found that tumor cells mainly originated from gastric epithelial

cells and were in a high differentiation stage (Figure 3C). Then
Frontiers in Oncology 07
we found 1798 genes that gradually increased or decreased with

the differentiation time by Beam analysis, these genes were

related to cell state differentiation (Figure 3F).

Through cell communication analysis, we found that

monocytes interact closely with other cells (Figure 4A) and

played a vital role in multiple signaling pathways, including

COLLAGEN, GALECTIN, LAMININ, MIF, MK, ADGRE5,

CD46, SEMA4, TNF, ALCAM, CD6 and other signaling

pathways (Supplementary Table 3). Further in-depth study of

each signaling pathway verified that monocytes were directly

associated with tumor cells only in the MIF and TNF pathways

(Figures 4B, C), in which the most important ligand-receptors

were CD74/CD44 and TNF/TNFRSF1B (Figures 4D, E).

Monocytes in other pathways did not interact directly with

tumor cells. They were inclined to indirectly associated with

tumor cells through other cells (such as macrophages, T cells,

fibroblasts, etc.). This suggests that the changes in the number
FIGURE 1

Flow chart of this study.
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and function of monocytes mainly promote the progression of

tumors indirectly by affecting other cells closely related to

tumors, and the direct interaction with tumor cells is a

secondary means for monocytes to affect the progression

of tumors.

In order to further explore the type of monocytes infiltrating

in the gastric cancer microenvironment. We extracted monocyte
Frontiers in Oncology 08
subsets for subgroup reclassification. Finally, 568 cells and 24159

genes were extracted. After normalizing monocyte subsets again,

searching for hypervariable genes, dimensionality reduction and

clustering, we identified 4 cell subsets (Figures 5A, B).

Monocytes were usually divided into classical monocytes

(CD14 + + CD16-), non-classical monocytes (CD14-CD16 +

+) and intermediate monocytes (CD14 + + CD16 +) according
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FIGURE 2

Processing of single cell sequencing data from GEO and annotation of cell types. (A, B) Results of immune cell infiltration analysis of gastric
cancer patients and normal patients based on CIBERSORT algorithm in TCGA database. (A) Immunocyte infiltration heatmap. The longitudinal
axis was the ID of the patient, the tumor patient above the dashed line, and the non-tumor patient below the dashed line. (B) Box plot. The
horizontal axis was immune cells, red represented tumor patients, and blue represented non-tumor patients. *P< 0.05, **P< 0.01, ***P< 0.001.
(C). Bar plot of cell number changes in 3 tumor samples and 1 non-tumor sample after quality control. Red was the quantity before quality
control, blue is the quantity after quality control. (D) High-variable genes in single-cell transcriptome genes. The black dots indicated that there
was no significant difference in the expression of genes among cells, and the red dots indicated that the expression of genes was significantly
changed among cells. The right figure showed the names of the top 20 hypervariable genes. (E) The results of TSNE cluster analysis.
(F) Proportion of each cluster in tumor tissues and non-tumor tissues. (G) The results of cell type annotation for each cluster. The left and right
parts represented the cell type annotation results of non-tumor and tumor tissues respectively. (H, I) Visualization results of marker genes.
(H) The heatmap of the first five marker genes of each cell subgroup. The horizontal axis was the cell name, and the vertical axis was the gene
name. Yellow indicated high gene expression, and purple indicated low gene expression. (I) Expression of single marker gene in cells. Purple
indicated high expression, and gray indicates\d low expression.
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to the expression of CD14 and CD16 genes (33). Figures 5C, D

showed the normalized expression levels of CD14 and CD16 in

monocyte subsets. The results showed that the infiltrating cells

in gastric cancer microenvironment were mainly intermediate
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monocytes (cluster1, clusters0). In addition, we also found that

two monocyte subsets hardly expressed CD14 and CD16

(cluster2, clusters3). Further quasi-timing analysis of monocyte

subsets showed that there were two decisive branching points in
B
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FIGURE 3

Identification of the significance of monocytes in gastric cancer by screening key clusters and pseudotime analysis. (A) Enrichment analysis of
key cell clusters and cell function in gastric cancer. Red means function up, blue means function down. (B) Using pseudotime analysis to
determine the genes related to cell differentiation (black representation). (C–F) The visualization of the pseudotime analysis. The line was the
evolutionary trajectory. Each point represents a cell, and the occurrence of branch nodes represented a procedural change in the cell.
(C) Differentiation trajectory of key cell clusters in pseudotime analysis. (D) Pseudotime analysis divided all cells into three branches, different
colors represented different cell clusters. (E) All cells were sorted by color from deep to shallow within the pseudotime. (F) Heatmap of
differentiation-related genes determined by beam algorithm. It mainly represented the distribution of differentiation-related genes of each cell
subgroup in different branches, and the longitudinal axis represented the differential genes of the three branches. The longitudinal axis mainly
represented the name of each cell subgroup. Red indicated high gene expression.
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the development trajectory of monocyte subsets. After

determining the starting point of the trajectory by biological

significance and statistical methods, we found that most of the

cells in cluster0, cluster02 and cluster3 were more mature, while

the differentiation degree of cluster1 was relatively naive

compared with other subgroups (Figures 5E–G).
Frontiers in Oncology 10
Acquisition of potential carcinogenic
genes from monocytes and
establishment of LASSO model

We performed WCGNA on the TCGA cohort (Figure 6A).

The results showed that MEbrown and MEturquoise modules
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FIGURE 4

Cell communication analysis to determine the action network of monocytes in tumor microenvironment. (A) Network diagram of interaction of all
cells in gastric cancer tissue. Each connection represented a connection, and the line’ s thickness represents the strength of the connection. Each
point represented a cell subgroup, and the size of the point represented the weight of this cell subgroup in the network. (B, C) Signaling pathway
that monocytes directly interacted with tumor cells. (D, E) The two pairs of ligand-receptors that contributed most to the MIF and TNF pathways.
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FIGURE 5

Reclassification of monocyte subsets. (A) TSNE dimensionality reduction visualization map of monocyte subsets. (B) Heatmap of differential
genes in each subgroup. (C) A violin plot of normalized expression levels of CD14 and CD16 genes in monocyte subsets. (D) Normalized
expression level distribution of CD14 and CD16 genes in monocyte subsets. (E, F) Distribution of individual cells on the trajectory. (G) Maturity of
trajectory development in quasi-sequential analysis.
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were associated with the patient ‘s Grade (Figure 6B). We

extracted genes from the corresponding modules and

intersected them with monocyte marker genes and cell

differentiation-related genes obtained by pseudotime analysis.

Finally, 292 genes were obtained (Figure 6C). These 272 genes

are not only uniquely expressed in monocytes, but also closely

related to cell development and differentiation. They control the

function, morphology and transformation of monocytes to

tumor-associated macrophages, and may be potential

oncogenes. Therefore, we speculate that it may have a good
Frontiers in Oncology 11
effect in predicting the prognosis of gastric cancer patients.

Following differential analysis, it was shown that 135 genes

were differentially expressed between tumor and normal

patients (Figures 6D–E). Single-factor COX regression analysis

eventually selected 25 prognostic-related genes (Figure 6F),

which were included in the LASSO regression, and finally

constructed a risk score formula composed of 12 genes

(Figures 6G, H). The HPA database immunohistochemistry

results revealed that 12 genes were overexpressed in human

gastric cancer tissues when compared to normal gastric tissues
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FIGURE 6

Obtaining monocytic oncogenes and building prognostic models. (A-B) Using WGCNA to search for grade-related genes in TCGA. (A) Genes
were clustered using dissimilarity between genes in the topology matrix. The trees were cut into four modules (the minimum number of genes
in each module is 30) by dynamic cutting method. (B) Correlation maps of four modules with clinicopathological features. P< 0.05 was
statistically significant. (C) Venn diagram, three circle distribution represented state related genes, grade related genes and monocyte marker
genes. (D-E) 135 DEGs between tumor patients and non-tumor patients. Red represented up-regulated gene expression, while green and blue
represented down-regulated gene expression. (F) The forest map of 25 prognostic related genes was screened by single factor COX analysis.
The risk ratio was the correlation between gene expression and prognosis of patients. The greater the risk ratio, the stronger the correlation.
When the risk ratio was greater than 1, gene expression was negatively correlated with prognosis, and vice versa. (G-H) LASSO regression was
used to establish prognostic risk score formula. LASSON regression punished all variables. The coordinates at the lowest point of the red line in
panel G were the number of independent variables that had great influence on the dependent variable. Each curve in panel H represented the
change trajectory of each independent variable coefficient.
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(Figures 7A–L). The risk scoring formula was as follows:

Risk score ¼ KYNU*0:251 + ABCA1*0:015 + ANXA5*0:171

+ DUSP1*0:050 + S100A12*0:049 + RGS2*0:021

+ VCAN*0:014 + CPVL*0:035 + TPP1*0:002

+ SOAT1*0:107 + NRP1*0:187 − TNFAIP2*0:183
Validation of risk scoring formula

Patients’ prognoses were predicted by their risk score.

Patients with a high score had a considerably worse prognosis

than those with a low score. We classified patients from the

TCGA cohort into high- and low-risk groups using the risk score

method. The risk heatmap depicted the expression of 12 genes in

patients classified as high or low risk (Figure 8A). PCA indicated

that the difference between the two groups was obvious, and the

prognosis model had a large degree of differentiation

(Figures 8B, C). Patients’ overall survival and progression-free

survival were studied. Patients in the high-risk group had a

significantly worse prognosis than those in the low-risk group

(P<0.001). (Figures 8D, E). Then we looked at how well

clinicopathological characteristics (such as gender, age, TNM

stage, Stage, Grade, and risk score) might predict patient

prognosis. Age, Stage, T, and N were all found to be adversely

connected with patient prognosis in univariate analysis, however

their connection intensity was much lower than that of risk score

(HR 3.48; p<0.001). (Figure 8F). Only risk score (HR 3.36;

p<0.001) and age were found to be negatively linked with

patient outcome in multivariate analysis. The risk score’s

correlation intensity was much higher than that of age. There
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was no discernible link between clinicopathological

characteristics and outcome (Figure 8G). Finally, the ROC

curve indicated the capacity of the risk score and

clinicopathological parameters to predict the prognosis of

patients with gastric cancer (Figure 8H). The risk score

exhibits greater accuracy and stability (AUC = 0.743) when

compared to using clinicopathological parameters to predict

patient prognosis.
Drawing and verification of nomogram

We believed that clinicopathological parameters still had

some significance for patient prognosis based on the results of

prior independent prognostic analyses. Therefore, we

established a nomogram through combining clinical

pathological indicators with great prognostic significance and

risk score, aiming to obtain better prediction methods. We

transformed the variables of clinical pathological features, and

then analyzed the relationship between them and prognosis.

After variable transformation, multivariate COX regression

analysis revealed that N, Stage, Age, and Risk were

substantially linked with patient prognosis (Figure 9A). Based

on these three indicators, we build a nomogram (Figure 9B). The

1 year, 3 year, and 5 year calibration curves were all quite close to

the ideal curve, suggesting that the line chart has a good

prediction effect (Figure 9C). The nomogram exhibited a

better prediction capacity and was more dependable than the

risk score (AUC = 0.751), according to the ROC curve

(Figure 9D). The nomogram was strongly negatively

connected with the prognosis in single-factor and multi-factor

prognostic analyses, implying that the nomogram had good

prognostic prediction capacity (Figures 9E, F). Since GEO
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FIGURE 7

Immunohistochemical results and single cell expression of prognostic model genes. A–J. Immunohistochemical results of normal tissues and
gastric cancer tissues on HPA website. (A) ABCA1. (B) ANXA5. (C) CPVL. (D) KYNU. (E) NRP1. (F) S100A12. (G) SOAT1. (H) TNFAIP2. (I) TPP1.
(J) VCAN. (K, L) The expression of 12 genes in the primary cluster and subclusters.
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FIGURE 8

Validation of prognostic models through multiple ways. (A) The expression of 12 genes in two groups of patients. Light green represented low-
risk group, dark green represented high-risk group. (B, C) PCA was performed on two groups of patients. Blue dots represented low risk group
and red dots represented high risk group. (D, E) Survival analysis of OS and PFS in the two risk groups was conducted based on K-M method.
The line represented the survival curve, the area around the curve was the confidence interval, the blue curve was the low-risk group, the red
curve was the high-risk group, and the lower axis of the image is the number of surviving patients in the year. (F, G) Single-factor and multi-
factor COX regression analysis of risk score and clinical pathological characteristics showed the outcome in the form of risk ratio and its 95%
confidence interval. (F) Forest map of univariate COX regression analysis. (G) Forest map of multivariate COX analysis. (H) ROC curve of risk
score and clinicopathological features, AUC was the area under the curve.
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samples as external validation set only contained survival time

and survival status, no TNM and age. Therefore, we divided the

TCGA queue according to 7:3 and extract the latter as the test set

of the nomogram. ROC analysis showed that the nomogram still

had a good predictive effect in the test set (AUC = 0.777), and the

predictive ability was significantly better than other clinical

indicators (Supplementary Figure 1).
Clinicopathological characteristics and
immunological infiltration differ amongst
patients with different risk scores

The association between clinicopathological characteristics

and risk score was investigated. The results indicated that age,

gender, and the occurrence of hematogenous metastasis (M) did

not affect the risk score of patients (Figures 10A–C), while the

primary tumor (T), lymph node metastasis (N), tumor

differentiation grade), and tumor stage may lead to different

risk scores. Specifically, patients with T1 had lower risk ratings

than patients with T2 - T4, patients with N0 had lower risk

scores than patients with N1 and N3, patients with G1 had lower

risk scores than patients with G3, and patients with Stage I had

lower r isk scores than pat ients with Stage III-IV

(Figures 10D–G).

After that, we focused on the immune infiltration in patients

from various risk groups. The high-risk group had much more

M2 macrophages, dendritic cells resting cells, and monocytes
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than the low-risk group, whereas the infiltration of T cells,

follicular helper cells, and M0 macrophages was significantly

lower (Figure 10H). Furthermore, patients in the high-risk group

had a distinct immune function than those in the low-risk group.

Many complex immune function changes were observed,

including antigen presenting ability and T cell function

activation and inhibition, MHC class I function reduction, and

type I and type II interferon response enhancement (Figure 10I),

indicating the tumor immune microenvironment’s complex

mechanism. Finally, we looked at the expression of

immunological checkpoints in high-risk patients and

discovered that a range of immune checkpoints, including as

PDCD1LG2, ICOS, CD28, CD40, and others, were strongly

expressed in these patients (Figure 10J).
Mutation of 12 genes and response of
patients with different risk groups to
drug treatment

All the 12 genes except S100A12 were mutated to varying

degrees. VCAN has the highest mutation frequency of the 11

genes, reaching 8%. ABCA1 was next, with a mutation frequency

of 4%. The most prevalent form of mutation was a missense

mutation, followed by a multi-hit mutation (Figure 11A). In

addition, there was a significant co-mutation relationship

between genes. Mutations in VCAN could promote mutations

in SOAT1, CPVL, KYNU and ABCA1 (Figure 11B).
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FIGURE 9

Nomogram of clinical factors and risk scores. (A) Forest map of multivariate COX regression of clinicopathological factors after variable
transformation. (B) The nomogram in which lymph node status (N0-N2 vs N3), staging (Stage I-III vs Stage IV), age and risk score was included
to predict 1,3,5-year survival in patients with gastric cancer. The upper part of the line chart was the score of a single factor, and the lower part
was the calculation of the total score and the corresponding expected survival rate. (C) The calibration diagram of nomogram. The closer the
calibration curve in 1,3,5 years was to the diagonal, the more accurate the line diagram was. (D) ROC curve of the nomogram. (E, F) The
univariate and multivariate COX regression analysis of nomogram and clinicopathological features. The outcome in the form of risk ratio and
95% confidence interval. (E) Forest map of univariate COX regression analysis. (F) Forest map of multivariate COX regression analysis.
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Given that pharmacological therapy remains a critical

component of gastric cancer treatment, we assessed the

efficacy of commonly used therapeutic agents in patients with

gastric cancer who were assigned to different risk groups. 5-

Fluorouracil, Cetuximab, and Methotrexate all had a high

sensitivity to Lapatinib in patients at high risk (Figures 11C–

E), but individuals at low risk had a higher sensitivity to

Lapatinib (Figure 11F). There was no statistically significant

difference in the sensitivity of cisplatin, docetaxel, paclitaxel,

MK-2206, and other medications used to treat patients in

various risk groups (Figures 11G–J). Additionally, we

examined the immunotherapy sensitivity of patients in various

risk groups. The violin chart indicated that patients in high-risk

categories faced a higher risk of immunotherapy, implying that

these patients faced a greater likelihood of immunological

escape, resulting in immunotherapy failure (Figure 11K).
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Enrichment analysis and PPI of patients’
DEGs in different risk groups

We were able to clearly see differences in pathways between

patients in different risk groups using GSVA analysis. Pathway

heatmap showed that the functions of RNA degradation,

nucleotide excision repair, non-homologous end joining and cell

cycle regulation in patients with high-risk group were significantly

down-regulated, while the functions of Jak-Stat signal

transduction, cell adhesion, ECM receptor interaction and

calcium signaling pathway were up-regulated (Figure 12A).

To gain a better understanding of the disparities between

patients in various risk groups, we selected the 423 DEGs

between the two groups of patients, which would be analyzed

through GO and KEGG enrichment. The results of the GO

enrichment analysis indicated that the functional differences
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FIGURE 10

Risk score and clinicopathological features, immune microenvironment. A–G. According to the risk score, the patients were divided into high-
risk group and low-risk group. Whether the clinicopathological features of the two groups were different was analyzed. (A) Age. (B) Gender. (C)
Bloodline transfer(M). (D) Primary tumor (T). (E) Lymph node metastasis (N). (F) Tumor differentiation (Grade). (G) Stage. (H) The immune cell
infiltration of patients in two groups. (I) The immune cell function of patients in two groups. (J) The immune checkpoint expression of patients
in two groups. *P<0.05, **P<0.01, ***P<0.001.
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between high and low risk groups were primarily represented in

the extracellular matrix, immunological medium formation, and

the Wnt signaling pathway (Figure 12B). KEGG enrichment

analysis revealed substantial differences in the cGMP PKG

signaling pathway, focal adhesion, and ECM receptor impact

between the two groups (Figure 12C).
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PPI analysis was convenient for us to find the core genes in

numerous DEGs of the patients in two groups. Through the

functions of analysis and visualization in STRING and Cytoscape,

we found that LUM, DCN, THBS1, MMP2, ELN, FBLN1, ALB,

CXCL12, IL6, HGF and other genes were at the heart of the DEGs

network. A complicated network existed between core genes and
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FIGURE 11

Gene mutation and drug sensitivity analysis. (A) The mutation frequency and type of 12 genes. The longitudinal axis was 12 genes, and the
transverse axis was the sample with 12 gene mutations. Green was missense mutation, black was multi-site mutation, blue was frameshift
deletion mutation, red was nonsense mutation, purple was frameshift insertion mutation, yellow was splice site mutation. (B) Co-mutations or
co-inhibitions of 11 mutated genes. Light green represented co-mutation; brown represented co-inhibition. P< 0.05, *P< 0.01.
(C-J) Differences in therapeutic sensitivity of various common gastric cancer drugs to the two risk groups. (C) 5-Fluorouracil. (D) Cetuximab.
(E) Methotrexate. (F) Lapatinib. (G) Cisplatin. (H) Docetaxel. (I) Taxol. (J) MK-2206.
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other DEGs, which may have a significant effect in the progression

of gastric cancer (Figures 12D, E).
Discussion

As early as 1979, L K Trejdosiewicz et al. pointed out that

peripheral blood mononuclear cells can promote the survival of

gastric cancer cells (34). In recent years, with the in-depth study of

immune microenvironment, people have a more profound

understanding of the role of monocytes in the process of gastric

cancer. As an important immune cell in the human immune

system, monocytes are released from bone marrow into
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peripheral blood and transported to the whole body with blood,

serving as a circulating sensor to respond to environmental changes

and diseases (35). Once abnormal changes in the body are

monitored, monocytes can directly play an innate immune role,

directly kill foreign pathogens and abnormal cells using their

phagocytosis, but also further differentiate into macrophages and

dendritic cells, and participate in higher adaptive immunity (36).

However, monocytes in immune microenvironment play a

completely opposite role. Under hypoxic conditions, tumor cells

recruit monocytes to infiltrate tumor tissues and modify their

functions by releasing tumor-derived factor (TDF). Monocyte

chemoattractant protein 1 (MCP-1, also known as CCL2) is one

of the most important chemokines (37). Under the action of various
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FIGURE 12

Enrichment analysis and PPI of DEGs between the two groups of patients. (A) GSVA of the two groups. (B) GO enrichment analysis of DEGs in
two groups of patients. (C) KEGG enrichment analysis of DEGs in two groups of patients. On the horizontal axis, red represented the high-risk
group and blue represented the low-risk group. (D) PPI of DEGs on STRING online website. (E) Cytoscape software was used to analyze PPI
results and visualize core genes. Non-blue represented the core gene in the network.
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TDFs, monocytes gradually lost their anti-tumor ability and had a

direct inhibitory effect on other anti-tumor cells. In addition, tumor

cells promote the transformation of monocytes to M2 macrophages

and inhibit the transformation to M1 macrophages through CSF1

signaling pathway. Therefore, a large number of evidences have

proved the important role of monocytes in tumor progression,

providing theoretical support for our research.

The results of single cell sequencing data revealed the

mechanism of monocyte in the process of gastric cancer. The

results of cell subgroups difference analysis showed that the

infiltration of monocytes in tumor tissues and normal tissues

was significantly different, and monocytes were the key cell

subgroups in the immune microenvironment of gastric cancer.

Pseudotime analysis suggested that the infiltrated monocytes in

tumor tissues were at a low differentiation level, which was

consistent with our cognition. Cell communication revealed the

cell interaction network in the immune microenvironment of

gastric cancer. Monocytes were more likely to indirectly interact

with tumor cells through T cells, NK cells, and tumor-related

fibroblasts. Direct association with tumor cells was a secondary

form of monocyte-mediated tumor promotion. This also suggested

that monocytes in the immunemicroenvironment could be used as

targets for immunotherapy. Targeted therapy against monocytes

not only inhibited the tumor-promoting effect of monocytes, but

also inhibits the ‘umbrella’ of tumor cells by disrupting cellular

communication networks in the immune microenvironment.

Our prognostic model included 12 genes that were involved in

monocyte differentiation. The product of KYNU is a hydrolytic

enzyme involved in tryptophan metabolism that contributes to the

synthesis of NAD + cofactors through the canine uridine pathway

and is associated with a variety of cardiovascular diseases,

inflammation and tumors (38–40). ABCA1 encodes a lipid

transporter that facilitates the transfer of phospholipids (PL) and

free (unesterified) cholesterol (FC) to extracellular apoA-I and

related proteins (41, 42). The ANXA5-encoded protein is a single-

chain non-glycosylated protein. Extracellular Anxa5 can bind to the

outer membrane of plasma membranes externalized with PS, dying

cells, and live leukocytes, where it plays a critical role in hemostasis,

apoptosis, and phagocytosis (43–45). TNFAIP2 is highly expressed

in monocytes and bladder cells, and participates in NF-kB, Wnt/b-
catenin and other signaling pathways in a variety of tumors to

regulate inflammation, vascular proliferation, cell proliferation,

adhesion and migration (46–48). However, our study discovered

that TNFAIP2 expression was positively linked with prognosis,

implying that it performs an opposing effect in individuals with

gastric cancer. DUSP1 is highly expressed in human paracancerous

tissues and overexpression of MAPK pathway induces apatinib

resistance in gastric cancer (49). S100A12 belongs to the S100

family, and its protein products are of great significance in anti-

infection, tumor cell proliferation, migration and other processes

(50–52). RGS2 is a multifunctional RGS protein that effectively

interferes with signal transduction by coupling with Gqa receptors,

thereby regulating multiple G protein-linked signaling pathways
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(53). VCAN is a chondroitin sulfate proteoglycan that affects cell

adhesion, proliferation, migration and angiogenesis, and also

participates in multiple pathological processes such as nervous

system and circulatory system (54). CPVL may promote human

tumor progression by inhibiting STAT1 pathway through

interacting with BTK/p300 axis (55). TPP1 is a component of

telomere shelterin and plays a key role in telomere protein

complex assembly and telomerase recruitment and regulation (56).

SOAT1 is involved in the metabolism of cholesterol in human body.

Excess cholesterol can be transformed to inert cholesterol esters via

sterol-O acyltransferase 1 (SOAT1, also called ACAT1) and SOAT2

(also called ACAT2) (57). NRP1 is a cell surface receptor that is

involved in a variety of biological activities, including angiogenesis,

immunological response, and regulation of vascular permeability. It

has been linked to enhanced cancer progression (58). The

fundamental roles of these gene coding products are largely

compatible with our findings, indicating that they play a critical

role in the progression of gastric cancer.

In this study, patients were classified as high or low risk using

the risk score formula, and a range of analyses were performed to

demonstrate that the risk score formula has significant guiding

importance in clinical practice. The risk score was associated with

the patient’s age, primary tumor (T), lymph node metastasis (N),

tumor differentiation (Grade), and tumor stage (Stage), but not with

the patient’s gender or differentiation (Grade). Therefore, the risk

score and prognosis of patients could be preliminarily estimated

according to the patient ‘ s age and T, N, M, Stage. Since drug

therapy is still the mainstay of gastric cancer treatment, we

compared the therapeutic sensitivity of common drugs for gastric

cancer to two risk groups to guide the clinical treatment of patients.

Our study’s medications had been found to be beneficial in the

treatment of stomach cancer, including traditional chemotherapy

drugs and targeted drugs (3, 59). According to the results of the

study, we believed that 5-Fluorouracil (60), Cetuximab (61),

Methotrexate (62) were a better choice in the treatment of

patients with high risk score. In the treatment of patients with

low-risk score, Lapatinib (63) might achieve better efficacy.

Cisplatin (64), Docetaxel (65), Paclitaxel (66) and other agents

had no discernible difference in treatment sensitivity between

patients with high/low risk scores, and hence risk scores should

not be used in selection. This analysis was based on the GDSC

website and the ‘pRRophetic’ package. However, the authors of the

‘pRRophetic’ package did not update this package since 2016, which

leaded to the new therapies and drugs emerged since 2016, could

not be included in the drug susceptibility analysis. It also made our

research incomplete. Further studies were needed to confirm the

sensitivity evaluation of other common new gastric cancer drugs.

Tumor microenvironment is the accelerator of tumor

progression and the barrier of tumor treatment. A variety of

immune cells, stromal cells and their secreted cytokines support

and interact with each other, leading to the failure of tumor

treatment. M2 macrophages, dendritic cells, resting cells, and

monocytes increased in the high-risk group, but T cells, follicular
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helper cells, andM0macrophages declined. M2macrophages do not

have proinflammatory ability, but inhibit tumor immunity by

producing a variety of immunosuppressive factors such as

interleukin 10. Dendritic cells also have no antigen presenting

capacity, usually involved in the maintenance of immune tolerance

(67, 68). Monocytes, as mentioned earlier, are important immune

cells that maintain the tumor microenvironment. T cell follicular

helper cells are important anti-tumor cells, which can develop or

support the recruitment site ELS of CD8 + T cells, NK cells and

macrophages to mediate anti-tumor immunity. In addition, Tfh can

support B cell anti-tumor antibody response (69). M0 macrophages

are unpolarized macrophages, which can be polarized into M1

macrophages with pro-inflammatory effect and M2 macrophages

with tumor-promoting effect. M0 macrophages are largely

transformed into M2 macrophages in the immune

microenvironment, so the number might decrease accordingly (70,

71). In summary, the alteration of immune cell infiltration in the

tumormicroenvironment in patients classified as high-risk promotes

the development of tumor immune tolerance.

Immune checkpoint proteins regulate the immune response in

order to preserve self-tolerance and avoid an inflammatory response

that is excessive. The high expression of immune checkpoints often

leads to the inhibition of normal immune response, which is

conducive to tumor progression and metastasis (72). Immune

checkpoints such as PDCD1LG2, ICOS, CD28, and CD40 were

found to be substantially expressed in the high-risk group, indicating

that the tumor microenvironment of the high-risk group had a

strong immunosuppressive effect. Patients in high-risk groups are

more likely to fail immunotherapy, according to the results of the

immunotherapy risk prediction. Without exception, these findings

show that patients in the high-risk group had a bad prognosis.

This study still has limitations. Despite a lot of analysis, our

findings still need a lot of research to prove its correctness. Since the

genes obtained in our study are mainly expressed on the surface of

monocytes, our research provides a new research direction and

strong theoretical support for the future research on the co-culture

of monocytes with gastric cancer cells and organoids for these 12

genes. In addition, due to the limitation of follow-up, the GEO

database contains too little chip data on survival time. Even the

larger sample GSM2235556 has only 76 samples. Although

previous studies have also included it in the test set to detect the

accuracy of the model, the sample size is still insufficient compared

to the training set. Therefore, large sample sequencing results are

again used to verify the predictive ability of the prognostic model is

also necessary.
Conclusion

In summary, we researched the significance of monocyte

infiltration in GC patients, and developed and verified the 12
Frontiers in Oncology 19
gene signatures used to predict GC patients. In addition, our

prediction model has good accuracy and stability, and can well

guide clinical diagnosis and treatment.
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