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Screening potential biomarkers
of cholangiocarcinoma
based on gene chip meta-
analysis and small-sample
experimental research
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and Tao Zhang1*

1Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China,
2Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research
Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
Cholangiocarcinoma (CCA) is a rare malignant tumor associated with poor

prognosis. This study aimed to identify CCA biomarkers by investigating

differentially expressed genes (DEGs) between CCA patients and healthy

subjects obtained from the Gene Expression Omnibus database.

Bioinformatics tools, including the Illumina BaseSpace Correlation Engine

(BSCE) and Gene Expression Profiling Interactive Analysis (GEPIA), were used.

The initial DEGs from GSE26566, GSE31370, and GSE77984 were analyzed

using GEO2R and Venn, and protein–protein interaction networks were

constructed using STRING. The BSCE was applied to assess curated CCA

studies to select additional DEGs and them DEGs across the 10 biosets,

which was supported by findings in the literature. The final 18 DEGs with

clinical significance for CCA were further verified using GEPIA. These included

CEACAM6, EPCAM, LAMC2, MMP11, KRT7, KRT17, KRT19, SFN, and SOX9,

which were upregulated, and ADH1A, ALDOB, AOX1, CTH, FGA, FGB, FGG,

GSTA1, and OTC, which were downregulated in CCA patients. Among these 18

genes, 56 groups of genes (two in each group) were significantly related, and

none were independently and differentially expressed. The hub genes FGA,

OTC, CTH, and MMP11, which were most correlated with the 18 DEGs, were

screened using STRING. The significantly low expression of FGA,OTC, andCTH

and s ign ificant ly h igh express ion of MMP11 were ver ified by

immunohistochemical analysis. Overall, four CCA biomarkers were identified

that might regulate the occurrence and development of this disease and affect

the patient survival rate, and they have the potential to become diagnostic and

therapeutic targets for patients with CCA.
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Introduction

Cholangiocarcinoma (CCA) is a rare malignant tumor

associated with poor prognosis (1), accounting for 2% of all

malignant tumors. In recent decades, the incidence of this

disease in Asia and other countries has increased significantly

(2). CCA is divided into intrahepatic (iCCA), perihepatic, and

distal hepatic cholangiocarcinoma based on its anatomical

location (3). Surgical resection is the preferred treatment for

CCA in the early stage, whereas chemotherapy is the preferred

treatment in the late stage; however, the overall survival rate with

chemotherapy is low (4). Although great progress has been made

in the diagnosis and treatment of CCA, its prognosis is still poor

(5), and the 5-year survival rate of patients is less than 5%.

Therefore, improving the early diagnosis of CCA could improve

treatment efficacy and the patient survival rate (6). Primary

sclerosis cholangitis is one of the most common risk factors for

CCA; however, approximately 90% of patients have no identifiable

risk factors (7). The clinical diagnosis of CCA includes clinical/

biochemical features, imaging techniques, and serum nonspecific

tumor biomarkers, which can assist in diagnosis; however, tumor

biopsy is ultimately required to confirm the diagnosis (8).

Currently, the clinical diagnosis of CCA is limited. Therefore,

the application of biomarkers to stratify patients according to

anatomical subtypes and genetic abnormalities is crucial for the

development of targeted therapies (9). Gene chips can be used to

rapidly detect differentially expressed genes (DEGs) in CCA, and

this technology is reliable and has been used for more than a

decade over a wide range of applications (10). The use of gene chip

technology to explore potential genes closely related to the

occurrence and development of CCA could reveal novel

biomarkers for early diagnosis and potential targets for disease

treatment, which would provide a basis for the further

development of therapeutic drugs.

The Gene Expression Omnibus (GEO) is a database

repository of high-throughput gene expression data, including

gene chips, microarrays, and RNA-Seq data. It can be used in

combination with bioinformatics tools to build biomarkers of

interest (11). The Illumina BaseSpace Correlation Engine

(BSCE) extends this research by integrating data collected by

the GEO with the global genomics knowledge base. This

interactive data analysis environment helps to validate results
Abbreviations: ADH1A, alcohol dehydrogenase 1A; ALDH2, aldehyde

dehydrogenase 2; ALDOB, hepatic fructose-1, 6-diphosphate aldolase B;

AOX1, aldehyde oxidase; BSCE, Illumina Base Space Correlation Engine;

CCA, cholangiocarcinoma; CTH, cystathionin-g-lyase; DEG, differentially

expressed gene; EPCAM, epithelial cell adhesion molecule; GEO, gene

expression omnibus; GEPIA, gene expression profiling interactive analysis;

GST, glutathione S-transferase; HCC, hepatocellular carcinoma; iCCA,

intrahepatic cholangiocarcinoma; KRT, cytokeratin; LAMC2, laminin g2

chain; MMP11, matrix metalloproteinase-11; OTC, ornithine carbamyl

transferase; PPI, protein-protein interaction.
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and test new hypotheses. Experimental molecular maps have

been compared with the results of a large library of public/

encrypted datasets using the BSCE to identify disease

mechanisms, drug targets, and prognostic or predictive

biomarkers; access web-based tool libraries; mine data; and

create billions of new associations. Further, Gene Expression

Profiling Interactive Analysis (GEPIA) is a web-based tool for

the fast and customizable analyses of DNA and RNA sequencing

expression data based on The Cancer Genome Atlas (TCGA)

and Genotype-Tissue Expression (GTEx) databases.
Materials and methods

Microarray data

The NCBI-GEO is a free public database of microarray/gene-

chip/RNA data. The sequences and gene expression profiles of

GSE26566 (12), GSE31370 (13), and GSE77984 (14) based on

CCA and normal bile duct tissues were obtained from GPL6104

(Illumina HumanRef-8 v2.0 Expression BeadChip) and

GPL10558 (Illumina HumanGT-12 V4.0 Expression BeadChip).

These include 104 CCA tissues and six normal bile duct tissues,

five CCA tissues and five normal bile duct tissues, and four CCA

tissues and four normal bile duct tissues, respectively.
DEG data processing

Based on GEO2R online tools1, we used a |logFC| > 2 to

identify DEGs between the bile duct carcinoma and normal bile

duct tissue samples and adjusted the P-value to <0.05. Then, raw

data in.txt format were filtered online using the Venn Diagrams

database to detect DEGs among the three datasets. DEGs with a

logFC < -2 were considered downregulated genes, whereas DEGs

with a logFC > 2 were considered upregulated genes.
Protein–protein interaction network and
potential correlation analyses of DEGs

The arrangement and mapping of the PPI network provide

an opportunity to further extract information on the

evolutionary relationships among species through conservative

pathways and protein complexes. The previously screened DEGs

were inputted into the online STRING2 database to obtain the

potential DEGs in the PPI network. The score was set to 0.8, and

noninteracting protein molecules were hidden.
1//www.ncbi.nlm.nih.gov/geo/geo2r/

2//string-db.org/
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Acquisition of clinical bile duct
carcinoma DEGs

The Illumina BSCE3 is an RNA sequencing and microarray

database that manages more than 23,000 scientific studies to

provide data-driven gene, experimental, drug, and phenotypic

expression information for research. “Cholangiocarcinoma”,

“Homo sapiens”, and “RNA expression” were used as

keywords to search curated studies of CCA to obtain GSEs.

Ten biosets were selected for meta-analysis. In addition to the

DEGs identified in the PPI network from the initial screening,

nine other DEGs were selected based on their fold-change values

across the 10 biosets and clinical significance in the literature.
Correlation analysis and heat map
generation with the GEO database

The 18 selected DEGs were inputted into the BSCE database

for curative studies, one by one, using “cholangiocarcinoma”,

“Homo sapiens”, and “RNA expression” as the keywords to

build a template for correlation with CCA biosets using the

Running Fisher test (15). The top-log (p-values) were inputted

into Tree View version 1.6 to generate a heatmap to view

the correlation.
Verification of DEG expression

The GEPIA database was used to verify the differential

expression of DEGs in clinical CCA between patients and

normal controls with a large sample size.
DEG correlation analysis

DEGs were inputted into GEPIA to obtain the correlation

values between genes (18 DEGs). The results showed a

significant correlation for the 28 combinations. Using

intergenic R values, the correlation heatmap was drawn using

the ballon plot/bubble plot tool of the Bioinformatics website.

Finally, the correlation map of the 18 DEGs was established

using the online STRING4 database.
3//login.illumina.com/platform-services-manager/?rURL=//epa.ce.

4//string-db.org/
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Immunohistochemistry

Tumor tissues and normal tissues adjacent to carcinoma were

obtained from patients at the Affiliated Hospital of Zunyi Medical

University (No. KLL-2022-619). Eleven patients were enrolled in

this study. All procedures in this study were approved and

implemented in accordance with the standards of the ethics

committee of Zunyi Medical University Affiliated Hospital. The

routine dewaxing method was used to detect the expression of FGA

(1:100), OTC (1:100), CTH (1:100), and MMP11 (1:200) in all

samples using immunohistochemistry. The experimental

procedures were performed in strict accordance with the kit

instructions. Finally, pathological changes were observed under an

optical microscope (NI-U, Nikon, Japan), and images were captured

using a digital camera (DS-RI2, Nikon). Image-pro Plus Version 6.0

software (Media Cybernetics, Inc., Rockville, MD, USA) was used to

evaluate the area and density of the staining area, as well as the

integrated optical density values of the immunohistochemical slices.
Correlation analysis between CCA
clinical biomarkers and hub genes

A PubMed search was performed with “cholangiocarcinoma”

and “biomarkers” as keywords to search for a total of eight stage-

specific and/or metastatic markers clinically relevant to CCA. The

eight biomarkers were analyzed by correlation analysis with FGA,

MMP11, OTC and CTH in the GEPIA database to obtain R

values. Finally, using the R values between genes, we generated the

correlation heatmap using the ballon plot/bubble plot tool of the

Bioinformatics website.
Statistical analysis

For the immunohistochemical analysis, the H-score method

was used to conduct qualitative and quantitative analyses. All

statistical calculations were performed using GraphPad Prism

(version 6.01; GraphPad, San Diego, CA, USA). Statistical

analysis of mean optical density data was performed using

Student’s t-test to compare mean optical density differences

between groups. P<0.05 was considered to indicate significance.

All experiments were repeated more than three times.
Results

Identifications of DEGs in CCA

In this study, 113 cases of CCA and 15 normal bile ducts

tissues were included. Using the GEO2R online tool, 1468, 520,

and 580 DEGs were obtained from GSE26566, GSE31370, and
frontiersin.org
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GSE77984, respectively. The Venn Diagram online tool was then

used to find the intersection of the three datasets. In total, 19

DEGs were screened based on the intersection of the three

datasets, and they included 10 downregulated genes

(logFC < -2) and nine upregulated genes (logFC > 2) (Table 1

and Figure 1).
PPI and correlation analysis
of potential DEGs

Nineteen screened DEGs were imported into the STRING

database to obtain the PPI network, and the score was set at 0.8

to remove unrelated genes. Eight DEGs were then selected

(Table 2 and Figure 2).
Selection of clinical bile
duct carcinoma DEGs

Using BSCE, 21 GSEs were obtained. GSEs from animals

and cell culture studies were excluded, leaving six GSEs

[GSE26566 (12), GSE31370 (13), GSE77984 (14), GSE32225

(16), GSE34166 (17), and GSE15765 (18)] containing 10

biosets (GSE26566-1, GSE26566-2, GSE31370-1, GSE31370-

2, GSE77984, GSE32225-1, GSE32225-2, GSE15765-1,

GSE15765-2, and GSE34166), as shown in the heatmap in

Figure 3. These 10 biosets were subjected to a meta-analysis

across all comparisons. In addition to the nine DEGs from the

initial screen (including all eight in the PPI network), nine

other DEGs were also selected based on their fold-change

values and clinical significance from the literature, resulting

in a total of 18 DEGs (Table 3). The 18 selected DEGs with

clinical significance and the PMID numbers of related studies

(up to five), are shown in Table 4.
Correlation analysis and heat map
illustration of the GEO database

In total, 246 studies were extracted from the 18 DEGs to create a

template for the correlation analysis with the 10 selected biosets using
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“Homo sapiens,” “RNA expression,” and “cholangiocarcinoma” as

keywords in the BSCE database to generate −log(p-values). Higher

−log(p-values) were indicative of a higher positive correlation. When

the DEGs were correlated with the bioset derived from the −log(p-

values), a value of 0 indicated a high correlation. For example,

ADH1A was highly correlated with GSE26566-1 (0), GSE31370-1

(272), GSE26566-2 (220), GSE15765-1 (100), GSE15765-2 (48),

GSE32225-1 (25), GSE31370-2 (137), GSE32225-1 (45), GSE77984

(22), and GSE34166 (12). Further, −log(p-values) >4 were considered

significant (11). Thus, ADH1A was found to be a biomarker of CCA.

The −log(p-values) for all 18 DEGs with 10 biosets are provided in

Supplementary Table 1 and can be easily visualized in the heatmap

in Figure 3.
Verification of DEG expression

The 18 identified DEGs were inputted into GEPIA for the

verification of differential expression between the CCA patients

and normal controls based on a large sample size. The results

showed that expression levels of nine genes were upregulated

(P < 0.05, Figure 4), and those of nine genes were downregulated

in the CCA patients (P < 0.05, Figure 5).
Correlation analysis of DEGs

The correlations between DEGs (18 genes total, 153

combinations) were inputted into GEPIA for verification of

the differential expression in CCA patients, based on a large

sample size. The results showed that 28 combinations presented

significant correlations (P < 0.05, Supplementary Figure 1). The

R values between genes were inputted into the ballon plot/bubble

plot tool of the Bioinformatics website to obtain the correlation

heatmap. A more significant correlation between two genes was

indicated by a darker corresponding color, with red indicating a

positive correlation and green indicating a negative correlation

(Figure 6A). The relationship built with STRING is shown in

Figure 6B, where a connection between two genes indicates that

the differential expression of the genes was significantly

correlated in CCA patients, with a greater number of

significantly related genes corresponding to a darker color.
TABLE 1 9 up-regulated and 10 down-regulated genes by Venn intersection.

DEGs Genes name

Up-regulated C1orf106 C19orf33 EPCAM LAMC2 KRT19

PITX1 RAB25 SOX9 SPINT2

Down-regulated ADH1A AOX1 C7 FGA FGB

FGG HSD11B1 PRG4 SAA1 SLC7A2
frontie
rsin.org
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Identification of hub gene expression
using immunohistochemistry

Immunohistochemical results were either positive or

negative based on the H-score. The expression levels of FGA,

OTC, CTH, and MMP11 in each group are shown in Figure 7.

Compared with that in normal tissues, CCA tissues had

significantly lower FGA, OTC, and CTH expression but

significantly higher MMP11 expression.
Correlations between hub genes and
clinical biomarkers

The biomarkers specific for the clinical stage of CCA found

in the PubMed wereMUCI,HES1, and CFL1, among others, and

the biomarkers related to metastasis were PTP4A3, FOXC2,

CD151, FGFR2, and IDH1. R values obtained from the GEPIA

database were derived from correlation values between four core

genes and these eight genes. Inputted R values were plotted with

the ballon plot/bubble plot tool for correlation heatmaps as

shown in Figure 8. A more significant the correlation between

two genes was indicated by a darker corresponding color, with

red indicating a positive correlation and green indicating a

negative correlation.
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Discussion

This study applied multiple bioinformatics tools (GEO2R

and Venn) and available GEO databases to successfully screen

and identify DEGs with protein interactions in PPI networks

using STRING. We further utilized the Illumina BSCE to

search curated studies on CCA and performed a literature

search to identify an additional nine DEGs with clinical

significance for CCA. Ultimately, 18 DEGs were highly

correlated with the CCA gene expression database in the

BSCE, and they were further verified with GEPIA for clinical

significance. Four hub genes were screened and identified as

potential diagnostic and therapeutic targets for CCA through

comparisons between clinical CCA and normal tissues. This

study is novel in that it clearly identifies CCA biomarkers and

their clinical significance using available databases, and the

findings might have a significant impact on early CCA

diagnosis and treatment.

Most patients with CCA are diagnosed at an advanced stage

and have poor overall survival. However, potential diagnostic

and therapeutic targets of CCA remain unclear. In an attempt to

identify more useful potential diagnostic and therapeutic targets

and potential biomarkers for CCA, we initially utilized three

NCBI-GEO datasets [GSE26566 (12), GSE31370 (13), and

GSE77984 (14)] and collected the gene expression profiles of

113 CCA tissues and 15 normal bile duct tissues for

bioinformatics analysis. Using the GEO2R and Venn Diagram

tools, 18 DEGs were screened based on the criteria |logFC| > 2

and P < 0.05, and they included nine upregulated DEGs (logFC >

2) and nine downregulated DEGs (|logFC| < 2). These 18 DEGs

were further imported into the STRING database to build the

PPI network, and eight DEGs were identified that were

significantly correlated with the expression profiles of CCA
A B

FIGURE 1

Genes that differed between normal subjects and CCA patients, including all intersecting genes in the three data sets. (A) 9 DEGs were
upregulated (logFC>2). (B) 10 DEGs were downregulated (logFC<-2).
TABLE 2 The 8 DEGs obtained by STRING included 3 up-regulated
and 5 down-regulated genes.

DEGs Genes name

Up-regulated EPCAM KRT19 SOX9

Down-regulated AOX1 ADH1A FGA FGB FGG
frontiersin.org
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patients. Thus, GERO2R, Venn Diagram, and STRING are

important bioinformatics tools used to identify CCA

biomarkers and search molecular targets (19).

We further utilized the curated studies in the BSCE database

(11) and selected additional GEO datasets (GSE32225 (16),

GSE34166 (17), and GSE15765 (18)) containing 10 biosets with

human CCA. Through the meta-analysis, the top and most

consistent DEGs across these 10 biosets were selected and

subjected to a literature search using “cholangiocarcinoma” as the
Frontiers in Oncology 06
keyword, and nine additional DEGs were identified. All selected

DEGs had literature support (Table 4). GEPIA is a useful tool for

determining the genomic features and clinical characteristics of

CCA (20). We used GEPIA to verify the clinical significance of the

18 genes. The increased expression of CEACAM6, EPCAM,

LAMC2, MMP11, KRT7, KRT17, KRT19, SFN, and SOX9

(Figure 4) and the decreased expression of ADH1A, ALDOB,

AOX1, CTH, FGA, FGB, FGG, GSTA1, and OTC (Figure 5) were

significantly correlated and showed clinical significance for the
FIGURE 2

PPI network intersection of differential genes between the CCA patients and normal subjects was determined based on the STRING database.
FIGURE 3

Heatmap of 18 DEGs and 10 biosets. Genes that correspond to the same biosets have a value of zero. A higher −log (p-values) corresponds to a
higher positive correlation. The format is Gene_GSE bioset_Bioset name.
frontiersin.org
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diagnosis of CCA. These findings highlight the usefulness of the

BSCE and GEPIA.
Upregulated biomarkers in CCA

The human carcinoembryonic antigen-associated cell

adhesion molecule 6 (CEACAM6) gene is highly expressed in

CCA, and this molecule can be detected in the bile of CCA

patients (21). CEACAM6 is a potential prognostic indicator and

probable drug resistance marker for intrahepatic CCA (22).

Epithelial cell adhesion molecule (EPCAM) is a surface

biomarker of tumor stem cells in bile duct carcinoma that is

highly expressed in CCA (23, 24). EPCAM+ status, in

combination with annexin V+ and ASGPR1+ fluorescence

labeling, can be used as a noninvasive assessment of the

presence and extent of CCA in patients with advanced liver

diseases (24).

Cytokeratin19 (KRT19), KRT17, and KRT7 are all members

of the keratin gene family. KRT19 is a specific and independent

predictor of poor disease-free and overall survival in patients
Frontiers in Oncology 07
with CCA (25). KRT19 plays an important role in the

pathogenesis of CCA (26) and is a biomarker for the diagnosis

of bile duct carcinoma (25–28). KRT17 is mainly expressed in

basal epithelial cells and many malignant tumors. KRT17

immunostaining has been used to distinguish pancreatic head

cancer from distal CCA (29, 30). KRT7 expression is generally

restricted to epithelia and neoplasms, and its rate of positivity in

CCA is 93% (31). One case report indicated that ductal or

glandular foci of iCCA present with strong and diffuse

expression of KRT7 (32).

High expression of laminin g2 chain genes (LAMC2) in

tumors is associated with CCA development via the EGFR

signaling pathway. Silencing LAMC2 inhibits EGFR activation

and suppresses epithelial–mesenchymal transition in CCA (33).

Matrix metalloproteinase-11 (MMP11) promotes the invasion

and metastasis of CCA and is a biomarker for poor prognosis in

this disease (34).

Stratified protein (SFN, 14-3-3s) is highly expressed in

detached CCA cells; silencing its expression results in

increased CCA cell death and could be a potential target for

CCA therapy (35). However, the overexpression of SFN was also

reported to be associated with a better prognosis, lower early

cancer recurrence rates, and distant metastasis following

resection (35, 36). The transcription factor SOX9 is part of a

superfamily of high-mobility domain transcription factors. The

upregulation of SOX9 expression reduces the expression of E-

cadherin and increases the expression of vimentin and a-SMA,

thereby promoting the invasion and metastasis of cancer cells

(37–39) and decreasing the survival of patients with CCA by

conferring chemoresistance (39).
TABLE 3 Selection of 9 up-regulated and 9 down-regulated DEGs.

DEGs Genes name

Up-regulated CEACAM6 EPCAM KRT7 KRT17 KRT19

LAMC2 MMP11 SFN SOX9

Down-regulated ADH1A ALDOB AOX1 CTH GSTA1

FGA FGB FGG OTC
TABLE 4 Selected DEGs with clinical relevance with PubMed ID.

DEGs Genes name PMID

Up-regulated CEACAM6 26974538 16868542 19055478 23806607

EPCAM 28267620 31450710 29497050 32984373 22907641

KRT7 30588199 16258812 12588436 10320910 18622386

KRT17 30953499 21333016 11003076

KRT19 27833076 31017316 30588199 30717258 31602368

LAMC2 31345467 25773857 23775819 24124977 15105812

MMP11 25987024 7632822

SFN 31751820 26729014 17391729 24030981 20976731

SOX9 26341967 30420613 31383647 29464042 31128214

Down-regulated ADH1A 31637215 27777109

ALDOB 31773848 32252311 32525595 27265876 33275593

AOX1 31383940 31775891 25238417 18033820

CTH 28962123 31468690 33522955

FGA 22836734

FGB 31735647

FGG 30863175

GSTA1 24782056 31892975

OTC 30108309
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FIGURE 4

GEPIA website-based verification of the expression of nine upregulated genes associated with poor prognosis (*P < 0.05).
FIGURE 5

GEPIA website-based verification of the expression of nine downregulated genes associated with poor prognosis (*P < 0.05).
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Downregulated biomarkers in CCA

Differential expression of the alcohol dehydrogenase 1A

(ADH1A) gene has been observed in biliary stricture and liver

cancer (40). ADH1A and aldehyde dehydrogenase 2 (ALDH2)

are key regulators of alcohol metabolism, and their suppression

aligns well with the gene expression profiles of hepatocellular

carcinoma (HCC) and can predict HCC onset and progression.

Based on the Liver Hepatocellular Carcinoma database in the

Cancer Genome Atlas, higher expression levels of ADH1A and

ALDH2 are associated with good prognosis (41). Hepatic

fructose-1, 6-diphosphate aldolase B (ALDOB) plays an

important role in glycolysis. The loss of ALDOB activates Akt

and promotes hepatocellular carcinogenesis by destabilizing the

Aldob/Akt/PP2A protein complex (42). Risk factors for CCA

include viral hepatitis, smoking, alcohol use, metabolic diseases,

and genetic susceptibility (43). The suppressed expression of

ADH1A and ALDOB could contribute to aberrant metabolism;

thus, these genes represent a prognostic nutritional index for

predicting survival and chemotherapy response in patients (44).

The relationship between decreased expression of aldehyde

oxidase (AOX1) and cystathionine-g-lyase (CTH) and the

prognosis of patients with CCA has not been previously

reported. AOX1 catalyzes the oxidation of a variety of

endogenous and exogenous aldehydes and N-heterocyclic

aromatic compounds, and the epigenetic loss of AOX1 leads to

metabolic deregulation and promotes cancer progression (45).

AOX1 is a DNA methylation marker for prostate cancer, and

hypermethylation leads to AOX1 inhibition (46). Similarly, DNA

hypermethylation of the CTH promoter caused by the FOXC1-

mediated upregulation of DNAmethylase 3B results in low CTH

expression in HCC cells, and HCC patients with positive FOXC1
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expression and negative CTH expression exhibit the worst

prognosis (47).

Fibrinogens consist of three pairs of polypeptide chains that

are not identical, and different genes encode fibrinogen a (FGA),

fibrinogen b (FGB), and fibrinogen g (FGG) (48). FGA is

enhanced by mutations in fibrinogen enhancer 2. Genome

sequence variations may affect the production of liver

fibrinogen and enhance expression in liver cancer cells (49).

FGB and CRP are inflammatory markers in iCCA samples, and

reduced inflammatory marker scores in the periductal-

infi l t r a t i ve type , mass - fo rming type wi thout the

cholangiolocellular differentiation trait, and non-small-duct

type iCCAs are associated with poor prognosis (50). FGG is

expressed in primary liver cancer tissues, and clinicopathological

analyses have shown that the upregulation of intracellular FGG

expression is correlated with an increase in tumor vascular

infiltration. HCC patients with upregulated FGG expression

have a higher recurrence rate and a correspondingly shorter

overall survival time (51). Ten serum-derived exosomal proteins

were screened as potential biomarkers for HCC; the expression

of six of these was downregulated (including FGA, FGB, and

FGG) at the protein level, which was verified at the gene

expression level through GEPIA (52), which is consistent with

the current findings.

Glutathione S-transferases (GSTs) play an important role in

detoxification, metabolism, and carcinogenesis. Lower GSTA1

expression is associated with poor prognosis in patients with

HCC (53), which is consistent with the reducedGSTA1 expression

in patients with CCA in the present study. GSE34166 (17) was

used to build biomarkers for CCA, with GSTA1 representing the

most critical hub gene and a GSTA1-based interaction network

consisting of 25 genes, including GSTA3 (54).
A B

FIGURE 6

Network and heat map display correlation analysis of 18 gene expression in CCA. (A) Heatmap of correlation between genes. (B) The PPI
network relationships of the gene combinations.
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Ornithine carbamoyltransferase (OTC) is a metabolizing

enzyme responsible for converting nitrogenous waste into urea

and allowing for its excretion. When the urea cycle is impaired,

ammonia accumulates in the blood, resulting in toxicity and

tumorigenesis (55). Hepatocellular neoplasms can develop with

genetic metabolic disorders, such as OTC deficiency (56). In the

present study, reduced OTC expression was found to be

associated with CCA.

CCA is a cancer of the intrahepatic or extrahepatic bile duct

that is characterized by a late diagnosis, high mortality, and early

invasion and metastasis. The occurrence and development of

CCA are associated with biliary tract inflammation, cholestasis,

and liver inflammation (57). The 18 genes identified in this study

could serve as potential prognostic biomarkers for the diagnosis

and treatment of CCA. The PPI network analysis indicated that

the expression of these 18 protein-encoding genes was

significantly correlated with their integrated roles in CCA. The
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GEPIA database was used to screen these 18 genes, resulting in

the identification of four genes with the highest correlation, and

clinical samples were used to verify their expression. The data

obtained in this study might provide useful information and

directions for further research on CCA. However, further

research is warranted to improve the prognosis of patients

with these rare tumors. However, in this study, these four hub

genes were only screened using a database, and were validated

using the tissues of 11 clinical cholangiocarcinoma patients.

Expression in CCA also needs to be validated by performing

both in vivo and in vitro experiments and should be further

investigated with a large patient sample size. Currently existing

tumor biomarkers have poor specificity and low sensitivity, are

associated with false positives and negatives, and lack of

predictivity, consistency, and standardization. In addition,

different research groups use different databases to screen

different tumors, or use different methods to study different
A B

FIGURE 7

(A) Representative images of IHC staining from eleven primary CCA specimens and eleven paracancer normal tissue specimens (200x
magnification). (B) Statistical analysis of the mean optical density (MOD) of CTH, FGA, OTC and MMP11 staining in CCA specimens and normal
tissues. The bar chart shows the mean ±SEM of more than three independent experiments (***P< 0.001).
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tumors, which has resulted in massive amounts of data, with no

accurate conclusions, and the possibility of accidental error,

among other issues.

In summary, the bioinformatics analysis performed in this

study utilized the GEO database and the GEO2R, Venn diagram,

STRING, BSCE, and GEPIA tools to identify and verify 18

biomarkers of CCA. The 18 biomarkers were analyzed by

GEPIA; four hub genes with the highest correlations (FGA,

OTC, CTH, and MMP11) were screened, and their expression

was verified by immunohistochemistry. The results showed that

the expression of FGA, OTC, and CTH in the tumor tissues of

patients with CCA is significantly lower than that in normal

tissues, but that the expression of MMP11 is significantly higher

than that in normal tissues. The experimental results were

consistent with those of the bioinformatics and meta-analyses.

These four hub genes might play key roles in the occurrence and

development of CCA and could serve as potential biomarkers of

this disease, which could improve its diagnosis and treatment, as

well as patient prognosis. The screening of tumor markers

preliminarily confirmed that these four genes were related to

the occurrence of CCA; however, quantitative studies have not

been performed, and the results presented here should be
Frontiers in Oncology 11
verified using a large sample size based on their detection in

each CCA stage.
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