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Liver carcinogenesis is a multiprocess that involves complicated interactions

between genetics, epigenetics, and transcriptomic alterations. Aberrant

chromatin regulator (CR) expressions, which are vital regulatory epigenetics,

have been found to be associated with multiple biological processes.

Nevertheless, the impression of CRs on tumor microenvironment remodeling

and hepatocellular carcinoma (HCC) prognosis remains obscure. Thus, this

study aimed to systematically analyze CR-related patterns and their correlation

with genomic features , metabol ism, cuproptos is act iv i ty , and

clinicopathological features of patients with HCC in The Cancer Genome

Atlas, International Cancer Genome Consortium-LIRI-JP cohort, and

GSE14520 that utilized unsupervised consensus clustering. Three CR-related

patterns were recognized, and the CRs phenotype-related gene signature

(CRsscore) was developed using the least absolute shrinkage and selection

operator-Cox regression and multivariate Cox algorithms to represent the

individual CR-related pattern. Additionally, the CRsscore was an independent

prognostic index that served as a fine predictor for energy metabolism and

cuproptosis activity in HCC. Accordingly, describing a wide landscape of CR

characteristics may assist us to illustrate the sealed association between

epigenetics, energy metabolism, and cuproptosis activity. This study may

discern new tumor therapeutic targets and exploit personalized therapy

for patients.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent type

of primary liver tumor, accounting for > 80% of all liver cancers

(1). HCC features include significant inter- and intratumoral

heterogeneities (2). A growing body of evidence has elucidated

that liver carcinogenesis is a multiprocess that involves

complicated interactions between genetic, epigenetic, and

transcriptomic alterations. Surprisingly, epigenetic regulation is

among the most common abnormal pathways and may

contribute to remarkable gene expression changes to accelerate

HCC onset and development (3). Chromatin regulators (CRs)

are vital regulatory epigenetic factors (4). However, CRs can be

classified into three major categories: chromatin remodelers,

histone modifiers, and DNA methylators (5–7).

The current studies suggest that aberrant CR expressions are

associated with multiple biological processes, including immune

activity, apoptosis (8), inflammation (9), proliferation (10), and

autophagy (11), which indicates that CR deregulation could lead

to poor outcomes in patients with cancer. Epigenetic silencing by

SET domain bifurcated histone lysine methyltransferase 1

suppresses tumor intrinsic immunogenicity (12). Of note, the

invertibility of epigenetic events makes the epigenetic

mechanism an interesting target for therapeutic measures (13).

Altered metabolism is a hallmark of cancer (14–16).

Malignant cells are generally known to exhibit nutritional

distinctions in comparison with normal cells (17), and

accumulating evidence advocates that they also harbor

epigenetic changes driven by their rewired cellular metabolism

(18–21). In particular, pyruvate kinase directly regulates

transcription through histone phosphorylation and chromatin

modifier interaction, and a series of chromatin structure changes

are mediated by chromatin remodelers under the control of

ATP (21).

To our surprise, previous studies have revealed that aberrant

chromatin is stronge associated with many cell death pathways,

such as Programmed cell death (22), NETosis (23),

caspase-dependent regulated necrosis (24), Apoptosis and

necrosis (25). However, “Cuproptosis” is a new concept in

research (26, 27). Copper-dependent regulated cell death relies on

mitochondrial respiration, and copper leads to cell death via the

direct bonding of copper to lipoylated tricarboxylic acid cycle

constituents (26). Illuminating the cuproptosis mechanism might
Abbreviations: CR, chromatin regulator; CRsscore, chromatin regulators

phenotype-related gene signature; WGCNA, the weighted gene co-expression

network analysis; DEGs, differentially expressed genes; HCC, hepatocellular

carcinoma; GSVA, gene set variation analysis; LASSO, least absolute

shrinkage and selection operator; FAO, fatty acid oxidation; PPP, pentose

phosphate pathway; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; OS, overall survival; ROC, received operating

characteristic; C-index, Harrell’s concordance index; ssGSEA, single-sample

gene set enrichment analysis.
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help discern new tumor therapeutic targets and exploit personalized

therapy for patients. However, the exact role of cuproptosis in liver

cancer remains controversial. This study aimed to explore the

characteristics of cuproptosis activity among CRsclusters for the

first time.

In the past several years, the fast enhancement of intrinsic

mechanism comprehension of HCC development and occurrence

has been witnessed. Several diverse molecular subtypes, which are

similar to the native biology of HCC (24–26), have been verified.

Collectively, these results indicate that HCC is a more complicated

disease than formerly understood.

However, the influence of CR-related genes in HCC has not

been elaborated. Therefore, this study aimed to analyze the

expression profiles from The Cancer Genome Atlas (TCGA:

https://www.cancer.gov/tcga), Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), and the International

Cancer Genome Consortium (ICGC: https://dcc.icgc.org/) to

explore and conduct an in-depth evaluation of CR signatures

in HCC. Here, for the first time, we identified CR-related genes

in HCC sample groups with different immune cell infiltration

features and metabolic and cuproptosis characteristics.

Additionally, a CRsscore was constructed to quantify the CR-

related pattern in individuals. The CRsscore was developed as a

significant independent prognostic index in HCC and had the

potential to direct personalized HCC treatment.
Methods

Raw data and preprocessing

Comprehensive computerized searches of three publicly

available datasets were conducted to procure the messenger

RNA (mRNA) expression profiles. The TCGA LIHC cohort

(28) included 370 patients and the ICGC LIRI-JP cohort

included 232 samples (29). The microarray datasets, including

225 samples of GSE14520, were downloaded from the GEO. A

total of 870 CRs were retrieved from previous research (4). The

“limma” R package was utilized to select the CRs related to

differentially expressed genes (DEGs) between nontumor and

tumor tissues in the TCGA LIHC cohort, with a P-value of<0.05

and |log2FC| of ≥0.2.
Weighted gene co-expression network
analysis and their modules

WGCNA was applied for pinpointing the HCC clinical

characteristic-specific module by running the R package

“WGCNA” (30, 31). The expression profiles of CR-related

DEGs were utilized as an import for the WGCNA, and clinical

characteristics were analyzed and defined as the sample

phenotype. The power of b = 10 and scale-free R2 of 0.95 was
frontiersin.org
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instituted as the soft threshold parameters to ensure a signed

scale-free co-expression gene network. Correlations were

calculated between the module eigengenes and clinical

information based on the eigengenes function. Several hub

genes were considered functionally significant because they

were markedly interconnected with nodes in a module. Our

study selected an attractive module and identified hub genes by

clinical trait significance and module connectivity.

A co-expression network based on the selected module was

constructed by the exportNetworkToCytoscape function in the

WGCNA R package and visualized in Cytoscape software to

obtain hub nodes (32). Hub genes were calculated by applying

the cytoHubba plugin based on the maximal clique centrality

(MCC) algorithm (33).
Distinguishing CR-related patterns

A consensus clustering algorithm was applied based on the

hub genes to confirm the number of clusters in the TCGA cohort

and further validated in the ICGC-LIRI-JP cohort and

GSE14520. This step was run and repeated 1,000 times in R

using the package ConsensusClusterPlus to guarantee

classification stability.
Assessment of infiltrating immune cells
in the tumor microenvironment

A single sample gene set enrichment analysis (ssGSEA) was

used to disclose the relative amount of infiltration of 28 immune

cells in the TME according to the TCGA-HCC dataset (34). The

marker gene sets for TME infiltration of immune cell types were

procured from Charoentong et al. (35). The content of immune

cells in individual samples in the ssGSEA was estimated by

utilizing differentially expressed marker genes. Each enrichment

score was denoted by the relative content of each immune cell

type. Furthermore, the Kruskal–Wallis test was used to analyze

the distinctions in immune cell abundance between CR clusters

to better comprehend the associations between CR clusters and

immune cell infiltration in HCC.
Annotation and functional
enrichment analyses

Gene-annotation enrichment analyses were utilized to

explore the differences in biological processes between distinct

CR-related patterns through the package clusterProfiler in R

(36). The gene sets of h.all.v7.5.1.symbols were procured from

the Molecular Signatures Database v5.1 (MSigDB) (http://www.

broad.mit.edu/gsea/msigdb/). Herein, a distinct energy

metabolic scoring system was defined based on Dr. Yu et al.’s
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energy metabolism classifier for breast cancer (36) and the gene

sets of HALLMARK_GLYCOLYSIS.v7.5.1, which was acquired

from the MSigDB.

Additionally, 10 cuproptosis-related genes were retrieved

from the literature and divided into activated and inhibitor

groups (Supplement Table 3) (26). Moreover, these analyses

were run by implementing the ComplexHeatmap and gene set

variation analysis (GSVA) (37) packages in R to quantify the

heterogeneity in different CR-related HCC patterns.
Construction of CR phenotype-related
gene signature

A scoring system, named CRsscore, was constructed to

assess the epigenetic regulation pattern of individuals with

HCC as follows. DEGs were identified between CR clusters via

the package limma in R. The significance criteria for determining

DEGs were a P-value of<0.001 and |log2 fold change (FC)|

of >2.0 (38). DEG intersection from different CR clusters in the

TCGA-HCC cohort and the genes involved in the ICGC LIRI-JP

cohort were regarded as the ultimate DEGs. The prognostic

genes in the TCGA cohort were screened using univariate Cox

regression analysis on the premise of correlating (P< 0.01) with

the overall survival (OS) of patients. All 152 genes were further

incorporated into a least absolute shrinkage and selection

operator (LASSO) analysis for dimension reduction in the

“glmnet” R package. Next, a multivariate Cox analysis further

screened five genes based on the lowest Akaike information

criterion value. The CRsscore of our model for each sample was

determined by the relative expression of each CR phenotype-

related gene and its associated Cox coefficient.

CRsscore =  

= esum(each gene 0 s expression�corresponding regression coefficient)

The ICGC LIRI-JP cohort was used to validate the prediction

effect of the model.
Drug susceptibility analysis

In order to explore the difference in the responses to

chemotherapeutic drugs between the two sets, the semi-

inhibitory concentration (IC50) values of the chemotherapeutic

drugs which are usually utilized to treat LIHC was calculated by

using the “pRRophetic” package.
Immunohistochemical staining

The tissue microarray (TMA), including 30 paired liver

cancer tissues and para-carcinoma tissues, was derived from
frontiersin.org
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2019 to 2021 at the First Affiliated Hospital of Wenzhou

University. This study was supported by the hospital’s ethics

committee, and all the patients provided informed consent.

TMA sections (4-mm thick) were deparaffinized and

hydrated, and 0.3% hydrogen peroxide, and incubated with

primary antibody overnight at 4°C and with secondary

biotinylated goat anti-rabbit antibody successively; the sections

were then stained using SignalStain® DAB (Cell Signaling

Technology, Danvers, MA) and counterstained with

hematoxylin QS (Vector Laboratories). The intensity of

staining (0, 1, 2, 3) and the proportion of positive cells (0%–

100%) were semi-quantified, and scored from 0 (no stained cells)

to 3 (all cells intensely stained). The detail information of tissue

microarrays is available in Supplementary Table 1.
Statistical analysis

Pearson correlation was used to analyze the correlations

between variables, and a t-test was used to explore the

continuous variables that conformed to a normal distribution

between binary groups. The Kruskal–Wallis test was utilized to

distinguish the differences for comparison of the three clusters.

The cutoff values of each dataset were evaluated with the survival

outcome and CRsscore in each dataset using the R package

survminer. The Kaplan–Meier method was applied to depict

survival curves for the subsets in each cohort, and the log-rank

test was used to statistically identify significant differences.

Significance was defined at P< 0.05 in the premise. All

statistical analyses were performed using R, version 4.1.0.
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Results

Data processing

A flow chart of the data processing and course in this study is

presented in Figure 1.
DEG screening

The expression matrix was obtained from the 370 samples in

the TCGA cohort after data processing and quality assessment.

A total of 549 DEGs (267 upregulated and 282 downregulated)

were derived for subsequent analysis under the threshold of a

P-value of<0.05 and |log2FC| of ≥0.2 (Supplement Table 2).
Co-expression network construction

The samples of the TCGA LIHC cohort were clustered using

the average linkage and Pearson’s correlation methods

(Figure 2A), and the co-expression network was developed by

implementing the co-expression analysis. The power of b = 10

(scale-free R2 = 0.95) in this study was screened as the soft-

thresholding parameter to guarantee a scale-free network

(Figures 2B, C). In total, two modules were found by the

average linkage hierarchical clustering. The turquoise module

had the most significant relationship with the tumor stage

(Figures 2D, E), and this module was screened as the crucial

clinical module for further exploration. Finally, the association
FIGURE 1

Schematic summary of the workflow.
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between different modules was illustrated by an eigengene

adjacency heatmap (Figure 2F).
RF-related classifier identification
and validation

A total of 30 hub genes were calculated by applying the

cytoHubba plugin based on the MCC algorithm (33)

(Supplement Figure 1A). The intersection between the 30 hub

genes and the gene involved in GSE14520 was taken to apply this
Frontiers in Oncology 05
classifier to multiple datasets. Finally, an RF-related classifier

involving 16 hub genes was customized (Supplement Table 3).
Three different CR-related patterns
identified by unsupervised learning

Three unique CR clusters (Figure 3A) were identified by

unsupervised clustering in the TCGA cohort according to 16

hub genes. Importantly, analysis from the ICGC LIRI-JP cohort

as well as GSE14520 externally verified the stability of our
A B

D

E F

C

FIGURE 2

CR-related genes in the TCGA-HCC cohort by the weighted gene co-expression network analysis (WGCNA). Sample dendrogram (A) and the
mean connectivity and scale independence of the WGCNA analysis (B). Clustering dendrograms of samples in the TCGA-HCC cohort (C).
Heatmap of the correlation between module eigengenes and disease progression of HCC (D). Scatter plot of module eigengenes in the
turquoise module (E). Heatmap describing the topological overlap matrix among genes based on co-expression modules (F).
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clustering results (Supplement Figures 2A, B). The Kaplan–

Meier analysis illustrated that cases in cluster 3 correlated with

more adverse prognoses (Figure 3B). Similar results were

obtained for OS in the ICGC LIRI-JP cohort and GSE14520

(Figures 3C, D). Hence, the classifier robustness was well

validated. The cluster-related gene expression distribution and

specific clinical characteristics between the subgroups were

revealed (Figure 3E). Our CR-based classification revealed the

CR-related gene expression levels, which were abundant in

cluster 3. Similar results were obtained in the ICGC LIRI-JP

cohort as well as GSE14520 (Supplement Figures 3A, B). These
Frontiers in Oncology 06
results draw the same conclusion that patients with HCC with

poor outcomes are abundant with the 16 hub gene expressions.
Levels of infiltrating immune cells
in patients with different
CR-related subtypes

The relative amount of infiltrating immune cell constitution

in the TME of HCC between the CRsclusters was calculated via

the ssGSEA algorithm to find the correlation between TME and
A B

D

E

C

FIGURE 3

Consensus matrices of samples in the TCGA-HCC cohort via the unsupervised consensus clustering method (K-means) (A). Survival analysis of
the different CR clusters in the TCGA (B) and ICGC (C) cohorts and GSE14520 (D). Heatmap of the clinicopathological manifestations among
the CR clusters (E).
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CR-related subtypes. Moreover, a heatmap was utilized to

visualize the significant differential levels of infiltrating

immune cells, which were defined with a strict cutoff of p<

0.05 by the Kruskal–Wallis test (Figure 4A). CRscluster1 had

features of high TME immune cell infiltration with conspicuous

surges in the infiltration of natural killer cells, B cells, pDCs, Th2

cells, mast cells, DCs, and neutrophils as well as cytolytic activity,

tumor necrosis factor (TNF) II interferon (IFN) response, TNF I

IFN response, and CCR. Figure 4B reveals the surprising
Frontiers in Oncology 07
negative correlation between the 16 hub gene expression and

most immune signatures. This is consistent with our conclusion.
Features of the biological process in
distinct CR-related subtypes

The biological process among CR-related clusters was

further explored via performing ssGSEA for hallmark gene
A B

D

E

F

C

FIGURE 4

Heatmap of immune responses among the CR clusters (A). Analysis of the hub genes–immune response relationships of HCC based on TCGA
data (B). Exploration of the difference in DNA damage repair pathways among CR clusters in the TCGA (C) and ICGC (D) cohorts and GSE14520
(E) by ssGSEA analysis. GSVA enrichment analysis exhibits the activation status of biological pathways among different CR clusters (Kruskal–
Wallis test, P< 0.05), with red representing activation and blue representing inhibition (F). *p<0.05,**p<0.01,***p<0.001
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sets. Figure 4A shows that CRscluster1 was strongly activated in

stromal and metabolism pathways, such as glutathione, fatty

acid, and phenylalanine metabolism pathways. CRscluster3 was

markedly related to carcinogenic and DNA damage repair-

associated pathways. CRscluster2 was the intermediate state of

the other two clusters. These phenomena are similar to the

GSEA analysis results (Supplement Figure 3A).

Subsequently, markers that represent DNA damage repair

signaling pathways were screened (Supplement Table 4) and

determined among different clusters by ssGSEA. The

phenomenon (Figure 4C) illustrated that CRscluster3 is

associated with better DNA damage repair than the other

CRsclusters. The ICGC LIRI-JP cohort and GSE14520 analysis

drew the same conclusion (Figures 4D, E), considering the

survival analysis results (Figures 3C, D).

The customized energy metabolic scoring system containing

four central metabolic pathways, including glycolysis,

glutaminolysis, fatty acid oxidation (FAO), and the pentose

phosphate pathway (PPP) (39)(Figure 5A, Supplement Table 4),

was used to further explore the metabolic heterogeneity among

different clusters. The abundance of the activities of the four

metabolic pathways was then evaluated by ssGSEA among

different clusters. As expected, CRscluster1 was more dependent

on FAO and glutaminolysis. CRscluster3 was more dependent on

glycolysis and PPP. CRscluster2 was the intermediate state of the

other two clusters (Figure 6A). Surprisingly, the ICGC LIRI-JP

cohort and GSE14520 analysis externally verified the robustness of

our results (Figure 6B,C). Moreover, the relationship between the

four metabolic pathway activities and outcomes in this study
Frontiers in Oncology 08
followed breast cancer (39). We then analyzed the activity of

cuproptosis-related genes by ssGSEA among different clusters.

CRscluster1 was abundant with cuproptosis activity (Figure 6D).

The ICGC-LIRI-JP cohort and GSE14520 show similar results in

combination with the finding of the survival analysis

(Figures 6E, 6F).

The enrichment score of 10 classical oncogenic pathways was

evaluated via referred signatures (Figure 6G, Supplement Table 4).

Oncogenic pathways, such as hippo-related signaling and

phosphatidylinositol 3-kinase (PI3K) signaling, had higher scores

in CRscluster3. These results are consistent with those of previous

studies associated with the glycolytic cancer tendency (39).
Development of the CR
phenotype-related gene signature

CRs exert a profound effect on shaping different TME

landscapes, but the CR-related pattern in individuals cannot be

conveniently predicted. Hence, we tried to develop a set of

CRsscores to quantify the CR-related pattern of individuals with

HCC. We first identified 902 DEGs across clusters 1–3

(Supplement Table 5). Additionally, we applied a GO and

KEGG analysis to explore the biological pathways associated

with the DEGs. DEGs between diverse CR phenotype-related

patterns were found to be enriched in metabolism and epigenetic-

related biological processes (Supplement Figures 4A, B).

In order for the CRsscore to be well validation by other

datasets, the final 429 DEG2, which intersected between the 902
FIGURE 5

Energy metabolism diagram. G6P glucose-6- phosphate, 6-PG Glucose 6-phosphate, R-5-P ribose-5-phosphate, a-KG a-ketoglutarate, LA
lipoylation, DLAT, a protein target of lipoylation.
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DEGs and the gene involved in the ICGC LIRI-JP cohort, were

further analyzed as the candidates (Supplement Figure 5A). The

univariate Cox analysis selected 152 CR phenotype-related genes

(Supplement Table 6) that were incorporated in the LASSO and

multivariate Cox analyses. Eventually, five genes (CDCA8,

NEIL3, ANXA10, PON1, and CYP26B1) were identified as

independent HCC prognosis indicators. Consequently, we

developed the CRsscore using the following formula:

CRsscore = (0.088144 ´ expression of CDCA8) + (0.18774´

expression of NEIL3) + (-0.023476 ´ expression of ANXA10) +

(-0.002680 ´ expression of PON1) + (0.081717 ´ expression

of CYP26B1).

Samples with HCC in the high CRsscore set had a shorter OS

according to the K-M survival analysis (P< 0.001, Figure 7A).

Moreover, the area under the curve (AUC) of the CRsscore was

0.823, which shows a more accurate predictive ability than that

of the traditional clinicopathological features (Figure 7F). The

predictive value of the AUC of the CRsscore regarding the 1-, 2-,

and 3-year survival rates was 0.823, 0.736, and 0.731,

respectively (Figure 7B).

The hazard ratio and 95% CI of the CRsscore in the

univariate (P< 0.001) and multivariate Cox regression analyses
Frontiers in Oncology 09
(P< 0.001) respectively elucidated the CRsscore as a cancer

indicator (Supplement Figures 5B, C) and independent

prognosis index of OS in patients with HCC.

The hea tmap o f the as soc i a t ion be tween the

clinicopathological features and the CRsscore is also presented

(Figure 7G). A hybrid nomogram (c-index = 0.735) encompassing

the CRsscore and clinicopathological features is shown in

Supplement Figure 5D. The practical and predicted 1-, 2-, and

3-year survival rates following the reference curve via the

calibration curve analysis are depicted in Supplement Figure 5F.

These findings suggest that the nomogramwas precise and steady;

therefore, its implementation in the clinical services of patients

with HCC is appropriate.

The CRsscore of each patient in the ICGC LIRI-JP cohort

was also calculated, and the cohort was divided into two

groups based on the median value. A survival analysis

illustrated a better outcome in the low-risk group (log-rank

test; p< 0.001; Figure 7D). An analysis of the 1-, 2-, and 3-year

prognostic prediction classification efficiencies suggested that

the CRsscore still had relatively high AUC values (Figure 7E),

indicating that the CRsscore had a prominent ability to predict

HCC prognosis.
A B

D

E F

G

C

FIGURE 6

The different activated statuses of metabolism pathways among different CR clusters was exhibited by ssGSEA in the TCGA (A) and ICGC (B)
cohorts and GSE14520 (C). The distinct statuses of cuproptosis activity among different CR clusters was exhibited by ssGSEA in the TCGA (D)
and ICGC (E) cohorts and GSE14520 (F). The boxplot illustrates score variations in 10 vital cancerogenic signaling pathways between the CR
clusters (G).
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A B

D

G

E F

C

FIGURE 7

The CRsscore in the TCGA cohort. Kaplan–Meier curves (A), time-dependent ROC analysis (B), risk score (C), and multi-index ROC analysis (F).
Thermograph of the clinicopathological features among risk subgroups (G). The CRsscore was validated in the ICGC cohort. Kaplan–Meier
curves (D) and time-dependent ROC analysis (E).
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CRsscore was a predictive biomarker for
some biological characteristics

The energy metabolism level, cuproptosis level, and DNA

damage repair pathway were further explored among CRsscore-

high and -low groups by applying ssGSEA (Figure 8A,

Supplement Figure 4A). CRsscore-high, which was associated

with adverse outcomes, showed more abundant DNA damage

repair pathway, glycolysis, and PPP. CRsscore-low, which was

related to a benign prognosis, showed more abundant

cuproptosis, FAO, and glutaminolysis. These results were

identical to the results of the CR cluster analysis. Moreover,

Supplement Figures 7A–E reveal that the levels of cuproptosis

activity, FAO, and glutaminolysis in patients with HCC

significantly decreased as the CRSsscore increased. In contrast,

the glycolysis and PPP levels increased. Lastly, we further

explored the correlation between the CRsscore and cuproptosis

activity from a genomics perspective (Supplement Figure 7F).

Surprisingly, the CRsscore had a significant negative correlation

with FDX1 expression, which was the most crucial for

cuproptosis regulation (26).
Chemotherapy sensitivity related to
the CRsscore

The IC50 values which can reflect the sensitivity to

chemotherapeutic drugs of usual chemotherapeutic drugs were
Frontiers in Oncology 11
predicted and compared. Patients in the low-CRsscore group were

more susceptible to Sorafenib and Gefitinib, whereas patients in

the high-CRsscore set were more responsive to Cisplatinl,

Mitomycin.C and Doxorubicin(Supplement Figures 8A–E).
Verification of the protein expression of
the CRsscore-related molecules

Immunohistochemical images of CDCA8, NEIL3, ANXA10,

PON1, and CYP26B1 were obtained from the First Affiliated

Hospital of Wenzhou University cohort(Figure 9). These results

have indicated that higher expressions of PON1, ANXA10 genes

in para cancerous tissues. Meanwhile, higher expressions of

CDCA8, NEIL3 genes in liver cancer and the expression of

CYP26B1 was no significant difference between para-cancer and

cancer. Most important of all, there were many studies involved

in the relative expression of PON1 (40–43), ANXA10 (44, 45),

CDCA8 (46–48) and NEIL3 (49, 50) in HCC consisting of my

experiment. This further revealed validity of the CRsscore.
Discussion

Previous studies stratified patients with HCC through

unsupervised clustering of tumors based on genomics and

transcriptomics data because HCC possesses high heterogeneity

(51–54). This resulted in the discovery of many patient group-
FIGURE 8

The variation scores of significant biological processes by ssGSEA analysis among risk subgroups in the TCGA cohort.
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specific distinctions, such as immune responses (52, 53)and

metabolism (51), hepatic stem-like phenotypes (54), and

cholangiocarcinoma-like traits (55).

To the best of our knowledge, this is the first study to establish

a CR-related classifier for several liver cancer cohorts. Our analyses

contained genomics, transcriptomics, metabolomics, and clinical

data among three data sets with hundreds of HCC tumors.

Obvious differences were identified in metabolic signaling

pathways, cuproptosis activity, and clinical survival between the

three major HCC subtypes. CRscluster1, which was associated with

better outcomes, exhibited a higher level of infiltrating immune
Frontiers in Oncology 12
cells, lesser DNA damage repair pathway ability, more dependence

on FAO and glutaminolysis, less dependence on glycolysis and

PPP, and more cuproptosis activity. Interestingly, mitochondrial

respiration is required for copper-induced cell death (26, 56).

CRscluster1 was more abundant in oxidative phosphorylation

(Figure 4F). This is consistent with our results.

CRscluster3, which was related to poor outcomes, revealed a

lower level of infiltrating immune cells, more DNA damage repair

pathway ability, less dependence on FAO and glutaminolysis,

preference for utilizing glycolysis and PPP for survival, and less

cuproptosis activity. Moreover, CRscluster3 tumors were
A B

FIGURE 9

IHC analysis in the First Affiliated Hospital of Wenzhou University cohort. (A) Representative IHC staining of CRsscore-related genes in HCC and
normal tissues. (B) Comparison of the relative expression of CRsscore-related genes between HCC and normal tissues. *p<0.05,**p<0.01,
***p<0.001
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correlated with multiple malignancy characteristics. For instance,

the transforming growth factor-b signal pathway, which is related

to the hypoxic response, metastasis, malignancy, and Treg cell

induction (57, 58), was upregulated in CRscluster3. PI3K/AKT/

mTOR signaling activation is one of the crucial features of this

tumor group. Asparagine synthetase, PPP, and glycolysis are also

activated by PI3K/AKT/mTOR signaling (59), consistent with our

observations of CRscluster3. Drugs that target PI3K/AKT/mTOR

signaling or processes, such as rapamycin, l-asparaginase, or their

analogs, are regarded as potential therapeutics for CRscluster3

treatment but not the other CR clusters.

Warburg (59) concluded that tumor cells tend to utilize glucose

for glycolysis despite sufficient oxygen. Tumor proliferation and

immune escape were gradually acknowledged to be fueled by

aggravated glycolysis (60). Liver cancer cases in CRscluster3,

which had a worse prognosis, had higher glycolytic levels and

lower oxidative phosphorylation, indicating that CRscluster3 had a

strong Warburg effect, and glycolysis does not synergistically act

with fatty acids and glutamine to fuel tumor development.

Furthermore, the metabolomics analysis revealed the following

trend: downstream metabolite accumulation and decreased

upstream metabolites. Consequently, diverse therapeutic

measures that target metabolic heterogeneities are indispensable.

CRscluster2, which correlated with a median outcome, had

intermediate performance of the other two clusters. The ICGC

LIRI-JP cohort and GSE14520 exploration externally validated the

universality of our results in combination with the survival analysis

conclusions. Additionally, the CRsscore involved NEIL3, CDCA8,

ANXA10, PON1, and CYP26B1 might be acknowledged as an

indispensable reference for predicting the outcome of patients with

LIHC. NEIL3 is a multifunctional glycosylase. When knocking

down NEIL3 in Huh-7 and HepG2 cells, cell abilities including

growth, proliferation, invasion and migration, displayed deficiency

to different degress (49). NEIL3 can repair Oxidative Lesions at

Telomeres during Mitosis in order to avert Senescence in

Hepatocellular Carcinoma (50). Meanwhile, CDCA8 knockdown

also inhibits cell proliferation and promotes cell differentiation in

colorectal cancer, lung cancer, breast cancer, cutaneous melanoma,

and human embryonic stem cells (61–65). Besides, ANXA10 is the

latest ANXA member (66). In former studies, overexpression of

ANXA10 suppresses proliferation and promotes apoptosis of

hepatoma (67). ANXA10 boosts melanoma metastasis via

inhibiting E3 ligase TRIM41-directed PKD1 degradation (68).

ANXA10 suppresses papillary thyroid carcinoma apoptosis and

promotes proliferation by up-regulating TSG101 thereby activating

the MAPK/ERK signaling pathway (69). Moreover, PON1 is a

high-density lipoprotein- associated protein. Knockdown of PON1

obviously lessened the cytotoxicity of sorafenib in Huh7 cells (43).

Microvascular invasion could be diagnosed depending on serum

PON1 (70). PON1 was identified to be a potential marker of

prognosis in patients with breast cancer recurrence (71).

What’s more, the CRsscore was constructed to estimate and

quantify the energy metabolism and cuproptosis activity of
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individuals with HCC. The low CRsscore group was abundant in

glutaminolysis, FAO, and strong cuproptosis. In contrast, the high

CRsscore group was abundant in glycolysis and PPP. Notably, these

conclusions were well verified in the ICGC LIRI-JP cohort.

Constructing the CRsscore makes it possible to adequately

utilize the unique metabolic variations and cuproptosis activity

differences in HCC therapy. Targeting glycolytic enzymes in HCC

therapy is speculated to be an efficient approach, as some related

medicines are now under investigation and will be gradually

accepted (72, 73). PPP suppression has been used in cancer

therapy apart from glycolysis, and the enzymes symbolic for the

non-oxidative or oxidative phase of PPP are transketolase (TKT)

and glucose-6-phosphate dehydrogenase, respectively. Both

enzymes are upregulated and positively correlated with worse

outcomes and aggressive clinicopathological HCC characteristics

(74, 75). A study proved that oxythiamine, which is a TKT

inhibitor and thiamine antagonist, mechanically suppresses

HCC cell growth both in vitro and in vivo by increasing the

reactive oxygen species levels (76). Moreover, glutaminolysis is a

significant metabolic characteristic of malignant cells. Glutamine-

based therapy has been shown to be useful for cancer treatment

(77). Regarding therapy that targets fatty acid metabolism, some

studies have proved that TVB-3166 and TVB-2640, fatty acid

synthase (FASN) inhibitors, have anti-tumor effects in preclinical

colorectal and breast cancer models, as well as limited systemic

toxicity and favorable tolerability in early-phase clinical trials (78,

79). Currently, no FASN inhibitors are being tested in clinical

trials for HCC treatment. However, FASN inhibitors are used in

other cancer types to guide HCC treatment. Notably, a potential

link was found between cuproptosis and energy metabolism and

epigenetics, which needs to be further tested in the future. This

will promote the understanding of cuproptosis activity and

metabolism heterogeneity. Personalized management still has a

long way to go before it is substantially improved.

This study has some limitations. First, the stability of the

CRsscore and CR-related gene classifier was tested and validated

in common datasets. The analysis of prospective cohorts would

have been more cogent. Second, scRNA-seq, the most advanced

technology, should be further combined for future analysis to

evaluate possible distinctions in tumor heterogeneity, cuproptosis

activity, and intercellular communication between the CRsscore-

high and CRsscore-low groups at single-cell resolution. Lastly, we

did not illustrate the roles of the genes in HCC at a comprehensive

level by experiments when exploring the genes involved in the

CRsscore. Therefore, the underlying mechanisms of the genes in

HCC should be investigated in the future.
Conclusion

Overall, comprehensively assessing the CR-related patterns of

individuals with HCC using the CRsscore was credible and the

CRsscore was related to clinical, cellular, and molecular features,
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containing clinical stages, energy metabolism, and cuproptosis

activity. Furthermore, the CRsscore could be identified as an

independent prognostic index for patients with HCC and could

roughly evaluate their level of energy metabolism and cuproptosis

activity. This adequately utilized the unique metabolic variations in

HCC therapy and developed novel target treatment based on

cuproptosis activity and chromatin regulators continue to be a

huge obstacle for pharmacologists, biologists, and clinicians.
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