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A growing attention has been attached to the role of fatty acid metabolism (FAM)

in the development of cancer, and cervical cancer (CC) is still the primary cause

of cancer-associated death in women worldwide. Therefore, it is imperative to

explore the possible prognostic significance of FAM in CC. In this study, CC

samples and corresponding normal samples were acquired from the Cancer

Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Single sample

gene set enrichment analysis (ssGSEA) was conducted for calculating FAM-

related scores (FAMRs) to screen FAM-related genes (FAMRGs). Two subtypes

related to FAMwere identified by consistent clustering. Among them, subtype C2

had a poor prognosis, andC1 had a high level of immune cell infiltration, while C2

had a high possibility of immune escape and was insensitive to chemotherapy

drugs. Based on the differentially expressed genes (DEGs) in the two subtypes, a

5-gene signature (PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7) was generated

by the least absolute shrinkage and selection operator (LASSO) and Akaike

information criterion (AIC). The model demonstrated a high prognostic

accuracy (area under the curve (AUC)>0.7) in multiple cohorts and was one

independent prognostic factor for CC patients. Accordingly, FAMRGs can be

adopted as a biomarker for the prediction of CC patients’ prognosis and help

guide the immunotherapy of CC.
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Introduction

Since the World Health Organization (WHO) called for the

worldwide elimination of cervical cancer (CC) in 2018, various

preventive measures for CC have emerged one after another,

among which human papillomavirus (HPV) vaccine and

cervical screening are the two most effective interventions (1).

However, such prevention and treatment schemes are extremely

limited by resources and basic health facilities, and the coverage

of them in low-and middle-income countries is less than one

tenth of that in developed countries, so CC is still the primary

cause of cancer-associated death in poor countries over the globe

(2, 3). At present, there is still a need to develop a brand-new

screening technology that can identify the symptoms in the

incubation period and early stage of CC, and is affordable in

most regions, thus reducing the difference in the incidence of CC

worldwide due to the gap in resources and infrastructure by

greatly lowering the incidence of CC in developing countries (4,

5). Therefore, a faster and more cost-effective screening method

for CC is still wanted worldwide (6).

As the next-generation sequencing technology and the

accumulation of CC sequencing data develop, it becomes clear

and cost-effective to find biomarkers for prognosis assessment

and treatment of CC through genome-wide analysis (7).

Valuable decision-making guidance can be provided for

clinicians by unbiased synthesis of various data, screening of

molecular characteristics of cancer-causing subgroups of CC,

and re-classification of them, so that more medical resources can

be concentrated on high-risk CC patients who really have disease

progression, and the economic and psychological burden caused

by HPV vaccination and cervical screening can be greatly

reduced (7–9).

Compared with normal cells, tumor cells often have different

cell metabolic phenotypes to meet the energy needs of rapid cell

proliferation and growth (10, 11). Recently, a growing number of

studies have found that lipid metabolism disorder often occurs

in the development of various human malignant tumors

including prostate cancer (12) and colon cancer (13), and the

change of FAM has greatly promoted the energy conversion of

cancer cells (14). All the activities of tumor cells are inseparable

from the intake and synthesis of fatty acids (15). The gradually

accumulated fatty acids seem to be bound up with the disease

recurrence and unfavorable prognosis of patients, and the

metabolic characteristics of fatty acids may become a new

target of anti-cancer therapy (12, 14, 15).

Zhang et al. (16) have found that fatty acid-binding protein 5

induces lymphatic metastasis of CC through metabolic

reprogramming, but the clinical significance of FAM-related

characteristics in CC is still under investigation, and it is still a

challenge to identify stable fatty acid-related signature. This

study comprehensively analyzed the expression, immune and
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prognostic characteristics of fatty acid metabolism-related genes

(FAMRGs) in CC, identified two different CC subtypes

associated with FAM and their immune characteristics, and

verified the FAM-associated prognosis model by multiple

cohorts, which provided a theoretical basis for forecasting the

survival risk of CC patients.
Methods

Variation analysis acquisition and
pre-processing of data sets

From the Cancer Genome Atlas (TCGA, https://www.

cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga) (17) and Genotype-Tissue Expression (GTEx)

(https://commonfund.nih.gov/gtex) (18), the data about

expression profile of CC tissues and normal cervical tissues

were downloaded. Their batch effect was eliminated by the

remove batch effect function of limma in the R package, and

two data sets were corrected by the normalize between arrays

function. Principal Component Analysis (PCA) was used for

evaluating the degree of batch effect removal. Totally 300 data of

CC expression profiles were downloaded from the GSE44001

dataset of Gene Expression Omnibus (GEO) as a verification set

(19), and files of the probe platform were downloaded. The

probe ID numbers were annotated to gene symbols. Probes

corresponding to multiple genes meantime were removed, and

the value of probes with the same gene expression was averaged.

In addition, the 272 tumour samples in TCGA were assigned

to a training set and a verification set in the random manner

based on the proportion of 1:1 after 100 times of random

grouping with replacement to facilitate the subsequent

model construction.

Limma in the R package was adopted in the variation

analysis of different groups, and the differentially expressed

genes (DEGs) were screened with the absolute value of log2
(fold change) > log2 (1.2) and FDR< 0.05.
Single-sample gene-set
enrichment analysis

The fatty acid metabolism-related scores (FAMRs) were

calculated through ssGSEA and R package GSVA after

downloading the FAMRGs sets in the molecular signature

database (MSigDb, c2.cp.kegg. v7.4.symbols) (20). The rcorr

function in Hmisc in the R package was adopted for

determining the correlation of FAMRs with DEGs. The

correlation with FAMRGs was found with cor > 0.2 and

FDR<0.05 as the filter condition.
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Survival analysis

Univariate Cox analysis was carried out by the coxph

function of Survival in the R package to screen the genes

associated with CC patients’ prognosis, with p<0.05 as the

filter condition. The log rank test was adopted for analyzing

the survival differences between groups and corresponding

Kaplan-Meier (K-M) curves were drawn.
Construction of FAM-related subtypes

272 CC samples were consistently clustered using

ConsensusClusterPlus in the R package, and 500 times of

bootstraps were performed by the pam algorithm and

“Pearson” as the measurement distance. Each bootstrap

process covered 80% of patients in the training set. With the

number of clusters set to 2 to 10, the consistency matrix and

consistency cumulative distribution function were calculated for

determining the optimal classification.
Analysis of immune escape characteristics

According to the previous research (21, 22), the molecular

characterization of aneuploid score, nosilent mutation rate,

fraction altered, number of segments, and homologous

recombination defects were collected to evaluate tumour

immunogenicity among different subtypes, and maftools in the

R package was used for visually analyzing the mutation data of

the top 10 genes with significant differences in expression.
Calculation of the difference in
immune microenvironment
among different subtypes

The CIBERSORT algorithm in IOBR of the R package was

adopted for calculating the relative abundance of 22 kinds of

immune cells in CC (23), and the ESTIMATE algorithm was

adopted for calculating the matrix score and immune score of

each sample of CC (24).
Prediction of clinical efficacy

With the Tumour Immune Dysfunction and Exclusion

(TIDE) algorithm developed by Jiang et al. (25), TIDE, IFNG,

Dysfunction, Exclusion, and TAM.M2 scores were downloaded

from TIDE (http://tide.dfci.harvard.edu) for predicting the

clinical treatment response of different subtypes, and the

Wilcox.test was used for comparing the scores among different
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subtypes. Additionally, the half-maximum inhibitory

concentration (IC50) of traditional drugs was downloaded

from Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org/) (26), and pRRophetic in the R packet

was used for predicting the chemotherapy response of

CC samples.
Construction of prognosis-related
signature based on FAMRGs

The glmnet in the R package was used for further feature

selection by the least absolute shrinkage and selection operator

(LASSO), and a risk model was built by 10-fold cross-validation.

According to Akaike information criterion (AIC), the

complexity of the model was evaluated, and the number of

parameters was gradually deleted to acquire the optimal model.

The RiskScore of patients with different subtypes was calculated

(RiskScore =on
i=1Coef (i)*Exp(i) ), and Coef was taken as the

characteristic coefficient of each signature. Exp presented the

expression of each signature in CC samples. The samples of

RiskScore with Z score and RiskScore > 0 were assigned to a

high-risk group and those with scores<0 to a low-risk group, and

the timerROC in the R package was used to evaluate the

prediction accuracy of different risk levels. The rms in the R

package was adopted for establishing nomograms to predict

the1-year, 3-year and 5-year overall survival rates and calculate

the prognosis risk of individual patients. The Decision Curve

Analysis (DCA) curve was drawn by ggDCA in the R-packet for

evaluating the clinical predictive performance of the model.
Clinical sample collection and
qPCR validation

100 cases of cervical cancer tissues and 100 cases of adjacent

tissues in our hospital were collected, and qPCR verification of

PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7 genes was

performed. The tissue samples were fully ground with liquid

nitrogen, 1 ml of Trizol (Invitrogen) solution was added, mixed

well, and placed at room temperature for 5 minutes to fully lyse;

(the sample name should be marked on the tube cover and tube

wall) qPCR verification was carried out according to the specific

operation steps of qPCR. Primers: PLCB4, F:ACAG

ATACGAGGAGGAATCC, R: TCCATGTCAGAAAGAAGCC;

FBLN5, F: CATCAATACTGAAGGCGGG, R: TCATCAAT

GTCTAAGCACTGG; TSPAN8, F: CAAGAAGAGTTTAA

ATGCTGCG, R: AGGCACATAATTCAGGATAGTG; CST6,

F: TACTACTTCCGAGACACGC, R: AGGAAGTACTTG

ATGCCGG; SERPINB7, F: TCCCACAAGGATTATGATC

TCAG, R: CTCAATGTAGTCCTTATGAAAGCC. The relative

expression levels of PLCB4, FBLN5, TSPAN8, CST6 and

SERPINB7 genes were calculated by 2-△△CT.
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Results

Screening of FAMRGs

The working route of this study is shown in Figure 1.

According to PCA, two data sets were clustered together

mainly according to their sources (Figure 2A), but after the

integration of these data sets, the samples in the two data sets

were mixed, and the batch effect between the data sets was

eliminated (Figure 2B).

As shown in Figure 3A, 487 DEGs were selected from tumor

samples of CC and corresponding normal samples, of which 120

DEGs were up-regulated and 367 DEGs were down-regulated.

Furthermore, ssGSEA results revealed notably fewer FAMRGs in

tumor samples than those in normal samples (Figure 3B) and

also revealed differences in FAM between CC tissues and normal

tissues. Among them, 48 DEGs were greatly associated with

FAM (Figure 3C). Univariate Cox analysis showed that 7

FAMRGs including S100A11 were bound up with the

prognosis of CC patients (Figure 3D; Supplementary Table 1).
Identification of two different FAM-
related subtypes based on FAMRG

Based on the cumulative distribution function (CDF) and

CDF Delta area curve, the optimal number of clusters

(Figures 4A, B) was determined. When k=2, there was a

comparatively stable clustering result, and two subtypes (C1,

and C2) were obtained (Figure 4C). Further analysis of the

prognosis of these two CC subtypes revealed a notably lower

survival rate in patients from the C2 group that that in patients

from the C1 group at the same time (p<0.05, Figure 4D).

Similarly, the same difference in GSE44001 was found. The

same method was adopted for processing the CC samples

from GSE44001. Patients in Group C2 still had an unfavorable

prognosis (Figure 4E), which was similar to the results of the

data set from TCGA. The findings indicate that the two subtypes

based on FAMRG can be transplanted in different research

cohorts. The Chi-square test was used for comparing the

distribution of different clinicopathological features between

the two subtypes, and the results revealed notable differences

in the living conditions of CC patients in the TCGA cohort

between the two groups (Figure 5, p<0.05).
Immune characteristics of FAM-
related subtypes

The results revealed a notably higher fraction altered in C1

than that in C2 (Figure 6A), and also showed that genes with

significant differences in CC such as TTN and PIK3CA had
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higher mutation frequency in C1 (Figure 6B). The potential

function of FAM-related subtypes in CC was further analyzed,

and the proportion of 22 immune cell types between the two

subtypes was evaluated by CIBERSORT. Compared with C2, the

proportion of B cells navie, Plasma cells, T cells memory resting

and T cells regulatory (Tregs) in C1 was significantly lower,

while T cells memory activated, Macrophages M1 and Dendritic

cells activated were significantly enriched (Figure 7A). C1 got

higher immune score and estimate score than C2, and C1 had a

higher level of immune cell infiltration (Figure 7B). As shown in

Figure 7D, the TIDE score of subtype C2 in the TCGA cohort

was higher than that of C1, suggesting that subtype C2 was more

likely to escape and less likely to benefit from immunotherapy.

The IC50 of 6 traditional chemotherapeutic drugs in C1 was

significantly lower than that in C2, and these drugs were more

effective in C1 patients (Figure 7E).
Construction and verification of
prognosis-related model of FAMRGs

Totally 558 DEGs of the two-fatty acid-related subtypes were

screened by variation analysis (Figure 8A), and 58 DEGs related

to prognosis were further filtered by univariate Cox analysis in

the training set (Supplementary Table 2). When lambda=

0.0385, the model reached the optimal state (Figures 8B, C),

and the parameters were further compressed to obtain a model

composed of five genes: Riskscores = 0:48� PLCB4 + 0:49�
FBLN5 + 0:15� TSPAN8 + 0:38� CST6 + 0:30� SERPINB7

(See Supplementary Table 3 for detailed descriptions of

the genes.)

The Risk Score of each sample was calculated. As shown in

Figures 8D and E, the training set and validation set of TCGA

both revealed a shorter survival time in CC patients from the

high-risk group than that from the low-risk one (p<0.05).

Moreover, this model had high accuracy in the prediction and

classification of CC in one year, three years and five years (area

under the curve (AUC)>0.7). For further verifying the

generalization ability of the model, all TCGA data and the

independent data set GSE44001 were verified. The results, as

shown in Figures 8F and G, were in agreement with those of the

training set of TCGA. FAMRGs prognosis-associated model was

a prognosis scoring system with high precision (AUC>0.7), and

the high-risk group had an unfavorable prognosis.
Association of RiskScore with other
clinicopathological features and its
prognostic value

The associations of RiskScore with subtype, T. Stage, N.

Stage, M. Stage, Stage, age, Event and Grade were tested. As
frontiersin.org
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FIGURE 1

Graphical abstract of the construction of a prognostic index associated with fatty acid metabolism in cervical cancer.
BA

FIGURE 2

Evaluation of sample clustering by the principal component analysis (PCA) (A) PCA diagram between two data sets before the batch effect was
removed; (B) PCA diagram between two data sets after the batch effect was removed. TCGA, The Cancer Genome Atlas; GTEx, Genotype-
Tissue Expression.
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B

C D

A

FIGURE 3

Screening of fatty acid metabolism-related genes (FAMRGs) (A)Volcano map of variation analysis between CC samples and normal samples;
(B) Comparison of fatty acid metabolism-related scores (FAMRs) between CC samples and corresponding normal samples; (C) FAMRGs-related
Heat map, (D) Forest map of prognosis-related FAMRGs. * vs p<0.05. *p<0.05,**p<0.01,***p<0.001.
B C

D

A

E

FIGURE 4

Construction of fatty acid metabolism-related subtypes and prognosis (A) Consensus clustering samples between each category number k in
the TCGA cohort; (B) Delta area curve of cumulative distribution function (CDF) of TCGA cohort sample; (C) Heat map of sample clustering
when k=2; (D) Kaplan-Meier curve of two subtypes in the TCGA cohort; (E) The prognostic Kaplan-Meier curves of the two subtypes in the
GSE44001 cohort.
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shown in Figure 9A, the proportion of subtype C2 and dead

population in the high-risk group was higher (p<0.05). Further

comparison of the difference in RiskScore among people with

different clinicopathological features revealed higher RiskScore

in people with subtype C2, age ≤ 50 and death (Figure 9B).

Univariate and multivariate Cox regression analysis was

used for evaluating the prognostic value of RiskScore and

other clinicopathological characteristics in CC. As shown in

Figures 10A, B, T. Stage and RiskScore were independent

prognostic factors of CC patients, and RiskScore was the most

significant prognostic factor. Then, a nomogram composed of T.

Stage and RiskScore was constructed. According to Figure 10C,

RiskScore made the greatest contribution to the survival

prediction of CC patients. The nomogram correction map and

DCA curve showed that RiskScore had higher predictive

performance than other clinicopathological features.
Biological pathway of potential
regulation of FAMRGs prognosis-
related model

For better studying the potential function of the FAMRGs

prognosis-related model, the score of each KEGG pathway in CC
Frontiers in Oncology 07
patients was calculated by GSVA package, and 90 significant

pathways were calculated in the high-and low-risk groups (p<

0.05, Supplement Table 3), as shown in Figure 11A. Among

them, there were 53 significant pathways in high and low risk

groups (p< 0.001). The association of enrichment score with

RiskScore was analyzed (Figure 11B; Supplementary Table 4).

The FAMRGs prognosis-related model was significantly bound

up with signals including O GLYCAN BIOSYNTHESIS, CELL

CYCLE, BASAL TRANSCRIPTION FACTORS, and

P53_SIGNALING_PATHWAY, which was similar to our

previous research results (Figure 7C). There were significant

differences in FAM-related subtypes among 10 classic oncogenic

pathways (27), and FAMRGs prognosis-related model was

strongly bound up with these signals.
Clinical cohort qPCR validation

100 cervical cancer tissues and 100 paracancerous tissues

were collected from our hospital for qPCR verification of

PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7. The results

showed that PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7

were highly expressed in cervical cancer tissues (Figure 12,

p<0.05).
FIGURE 5

Distribution of clinicopathological features between two fatty acid metabolism-related subtypes in the TCGA cohort.
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Discussion

Compared with sugar metabolism and amino acid

metabolism, FAM has received less attention, but the

importance of fatty acids in the development of cancer is

increasingly recognized (28, 29). As a crucial component of the

membrane matrix, the fatty acid is a crucial messenger and fuel
Frontiers in Oncology 08
source for energy production (30). Compared with normal cells,

tumour cells are more likely to rely on de novo synthesis to

synthesize fatty acids for energy metabolism and membrane

formation for the maintenance of the rapid growth and

proliferation of cells (31). It is worth noting that there are many

fatty acids and metabolic by-products of them, each of which has

different feedback mechanisms and regulation nodes and affects
B

A

FIGURE 6

Differences in genome mutation between two fatty acid-related subtypes (A) Differences of Homologous Recombination Defects, Aneuploidy
Score, Fraction Altered, Number of Segments and Tumor mutation burden in molecular subtypes in the TCGA cohort; (B) Somatic mutation
landscape in two molecular subtypes. ** p<0.01, ns, P>0.05.
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B C

D

E

A

FIGURE 7

Immunological characteristics, immunotherapy, chemotherapy and target therapy responses of two fatty acid-related subtypes (A) Difference of
22 immune cell scores between different molecular subtypes in the TCGA cohort; (B) Difference of ESTIMATE immune infiltration between
different molecular subtypes in the TCGA cohort; (C) Difference in the score of 10 pathways related to tumor abnormality between different
subgroups in the TCGA cohort; (D) Difference of TIDE analysis results between different groups in the TCGA cohort; (E) The box plots of the
estimated IC50 for drug in TCGA-CECS. *p<0.05,**p<0.01,***p<0.001, ****p<0.0001, ns, P>0.05.
B C

D E

F G

A

FIGURE 8

Construction and verification of prognostic correlation model of FamRGS (A)Volcanic map of the variation analysis of molecular subtypes;
(B) The changing trajectory of each independent variable, with the horizontal axis representing the log value of the independent variable
lambda, and the vertical axis representing the coefficient of the independent variable; (C) Confidence interval under each lambda; (D) AUC
curve and KM curve of the risk model of the training set data from TCGA; (E) AUC curve and KM curve of the risk model of the verification set
data from TCGA; (F) AUC curve and KM curve of the risk model of all data sets from TCGA; (G) AUC curve and KM curve of the risk model of
data set from GSE44001.
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B

A

FIGURE 9

Relationship between RiskScore and different clinicopathological features of CC patients (A) Comparison in terms of the distribution of different
clinical characteristics between high-and low-risk groups in TCGA data sets; (B) Differences in RiskScore of different clinical characteristics in
TCGA data sets. **p<0.01, ****p<0.001, ns, P>0.05.
B

CA

FIGURE 10

Compared with other clinicopathological features, RiskScore has higher prognostic value. (A) Forest map of clinical phenotype in the TCGA
cohort and univariate Cox analysis of RiskScore; (B) Forest map of clinical phenotype in the TCGA cohort and multivariate Cox analysis of
RiskScore; (C) Anomogram, nomogram alignment map and DCA curve constructed by TCGA data set.
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many ways of disease behavior through extremely complex

regulatory networks (32). Different tumor subtypes may drive

specific lipid phenotypes (28, 31). Therefore, identifying a

potential subtype related to FAM helps predict the CC

patients’ prognosis.

By integrating cervical sample data from TCGA and

GTEx, DEGs related to FAMRs were searched and molecular

subtypes related to FAM (C1 and C2) were constructed. C2

showed poor prognosis in both TCGA cohort and GSE44001

cohort, independent verification set, and the proportion of

deaths in subtype C2 was notably higher than that in subtype

C1. In addition, a high Fraction of Altered was found in C1,

and TTN and PIK3CA, common drivers in CC, have a high

mutation frequency (14). C1 shows a higher proportion of T

cells, macrophages and dendritic cells activated, and immune

score and estimate score than C2, which means a lower level of

tumor purity (24). The proportion of immune cells is high in

the samples with lower tumor purity (33), and the

inflammatory reaction caused by immune cells will increase

the cell mutation rate and activate stronger anti-tumor

characteristics and faster reaction speed (34, 35). The

samples with higher tumor mutation load often show better

immunotherapy effects (34, 36). These results were in

agreement with our research results. The IC50 of traditional

chemotherapeutic drugs in subtype C1 was notably lower than
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that in subtype C2, and subtype C1 was less likely to escape

from immune surveillance than C2 and was more sensitive

to immunotherapy.

Then, a prognostic model related to FAM was constructed

for CC based on the two subtypes of DEGs, and the

generalization and prediction accuracy of the model was

repeatedly verified by multiple cohorts. Patients with subtype

C2 and dead ones accounted for a higher proportion in the

high-risk group, and these patients had a higher RiskScore.

Consistent with our expectations, RiskScore can serve as one

independent prognostic factor to predict the CC patients’

prognosis and contributes greatly to the prediction of the

survival of CC. The accuracy of the model prediction has

been further confirmed.

As we described above, the up regulation of FAM

contributes to cell membrane production and signal

transmission, including activation signals (4, 37). The

enrichment of multiple signals is significantly different in

different risk levels. Research has pointed out that one of the

key mechanisms of signal transduction in CC cells is the

glycosylation of proteins (38). As a glycoprotein on the cell

surface, N-Glycon directly affects cell signal transduction and is

the diagnostic target of malignant transformation in the early

stage of CC (39–41). O-glycan can be used as a biological marker

of proliferation, senescence and metastasis of CC cells by
BA

FIGURE 11

Biological pathway for potential regulation of FAMRGs prognosis-related model (A) Heat map in which GSVA analysis of TCGA dataset pathway
showed significant enrichment scores of related pathways in high and low risk groups, and (B) Heat map of correlation analysis of pathways with
significant differences in TCGA data sets and RiskScores (*p<0.05,**p<0.01,***p<0.001).
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regulating immune response and controlling cell metabolism

(42, 43). In addition, in the G2 phase, de novo synthesis is

enhanced to synthesize lipids, which ensures the membrane

material needed for mitosis and promotes cell proliferation (44).

Subtype C1 had a higher score on cell cycle than subtype C2, and

RiskScore and cell cycle enrichment showed a significantly

negative correlation. The high-risk group and patients with

subtype C2 may escape from the control of the cell cycle and

fails, leading to continuous cell division and promoting cancer

progress (45, 46).

Although some studies have explored biomarkers related to

FAM in clear cell renal cell carcinoma (47) and bladder cancer

(48), this study has revealed molecular subtypes related to FAM

in CC for the first time and constructed a FAM-related

prognostic model with strong predictive ability. It provides

some new insights for accurate screening of CC, which is

helpful to guide clinical treatment and prognosis prediction.
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