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MRI radiomics-based machine
learning model integrated with
clinic-radiological features for
preoperative differentiation of
sinonasal inverted papilloma
and malignant sinonasal tumors

Jinming Gu1†, Qiang Yu1†, Quanjiang Li1, Juan Peng1*,
Fajin Lv1, Beibei Gong1 and Xiaodi Zhang2

1Department of Radiology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Clinical Science, Philips Healthcare, Chengdu, China
Objective: To explore the best MRI radiomics-based machine learning model

for differentiation of sinonasal inverted papilloma (SNIP) and malignant

sinonasal tumor (MST), and investigate whether the combination of radiomics

features and clinic–radiological features can produce a superior diagnostic

performance.

Methods: The database of 247 patients with SNIP (n=106) or MST (n=141) were

analyzed. Dataset from scanner A were randomly divided into training set

(n=135) and test set 1 (n=58) in a ratio of 7:3, and dataset from scanner B and C

were used as an additional independent test set 2 (n=54). Fourteen clinic-

radiological features were analyzed by using univariate analysis, and those with

significant differences were applied to construct clinical model. Based on the

radiomics features extracted from single sequence (T2WI or CE-T1WI) and

combined sequence, four commonly used classifiers (logistic regression (LR),

support vector machine (SVM), decision tree (DT) and k-nearest neighbor

(KNN)) were employed to constitute twelve different machine learning

models, and the best-performing one was confirmed as the optimal

radiomics model. Furthermore, a combined model incorporated best

radiomics feature subsets and clinic-radiological features was developed.

The diagnostic performances of these models were assessed by the area

under the receiver operating characteristic (ROC) curve (AUC) and the

calibration curves.

Results: Five clinic-radiological features (age, convoluted cerebriform pattern

sign, heterogeneity, adjacent bone involvement and infiltration of surrounding

tissue) were considered to be significantly different between the tumor groups

(P < 0.05). Among the twelve machine learning models, the T2WI-SVM model

exhibited optimal predictive efficacy for classification tasks on the two test sets,

with the AUC of 0.878 and 0.914, respectively. For three types of diagnostic
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models, the combined model achieved highest AUC of 0.912 (95%CI: 0.807-

0.970) and 0.927 (95%CI: 0.823-0.980) for differentiation of SNIP and MST in

test 1 and test 2 sets, which performed prominently better than clinical model

(P=0.011, 0.005), but not significantly different from the optimal radiomics

model (P=0.100, 0.452).

Conclusion: The machine learning model based on T2WI sequence and SVM

classifier achieved best performance in differentiation of SNIP and MST, and the

combination of radiomics features and clinic-radiological features significantly

improved the diagnostic capability of the model.
KEYWORDS

radiomics, machine learning, magnetic resonance imaging, sinonasal inverted
papilloma, malignant sinonasal tumor, differential diagnosis
Introduction

Sinonasal inverted papilloma (SNIP) is a common benign

epithelial sinonasal tumor of Schneiderian mucosa origin (1).

Although histologically benign, it is a biologically aggressive

tumor characterized by a known propensity for a high rate of

local invasiveness, recurrence and a risk of malignant

transformation (2), which is fundamentally different from

other benign sinonasal tumors. The similar clinical symptoms

and overlapping imaging features between SNIP and

malignant sinonasal tumor (MST) have often confounded

their clinical diagnosis (3, 4), but their prognostic and

treatment strategies are quite different. MST are usually

detected at an advanced stage and have poor prognosis.

Clinically, patients with MST are usually treated with a

comprehensive therapeutic strategy of surgery combined with

adjuvant radiotherapy and/or chemotherapy. For patients with

SNIP, complete surgical resection alone could achieve a good

therapeutic outcome (5, 6). Therefore, an accurate preoperative

diagnosis of sinonasal tumors is essential to develop appropriate

treatment strategies and assess prognosis.

Existing examination methods for sinonasal tumor diagnosis

have limitations in accuracy, quantification and objectivity of the

results. Sampling errors and limited sampling sometimes reduce

the diagnostic sensitivity of endoscopic incisional biopsy,

because sinonasal tumors are often accompanied by

inflammatory secretions and polyps (7). Traditional radiology

diagnosis is subjective, and differentiation of SNIP and MST by

analyzing morphological features on conventional CT or MRI

images is challenging, because these features are often

nonspecific and overlapped (1, 3, 8). Functional magnetic

resonance imaging such as diffusion weighted imaging (DWI),

apparent diffusion coefficient (ADC) and dynamic contrast-
02
enhanced MRI (DCE-MRI) have been proved to provide

additional valuable information about functional and tissue

physiological (9, 10). However, magnetic susceptibility artifact

caused by the presence of bone and air around the

nasal cavity and sinuses can distort the views of DWI image of

the region, which may result in measurement bias (3, 11).

Accordingly, there is a need to develop a non-invasive and

accurate preoperative diagnosis method to complement

additional useful information as a decision aid, and help guide

endoscopic biopsy for the sinonasal tumors.

Fortunately, radiomics holds the potential to address these

barriers, which refers to the high-throughput extraction and

subsequent processing of quantitative features from medical

images (12). As an objective, non-invasive and repeatable tool,

radiomics can be used to characterize intratumor heterogeneity

and decode tumor phenotype (13, 14). Recently, Ramkumar

et al. (15) found that MRI-based texture analysis had the

potential to classify SNIP and squamous cell carcinoma.

Another previous study (16) showed that machine learning

models based on MRI radiomics and morphological features

achieved satisfactory predictive efficiency in differentiating SNIP

from SNIP-transformed squamous cell carcinomas. Despite

radiomics method has been utilized in prior studies to classify

sinonasal tumors (17, 18), and has promising performance, the

most appropriate sequence and machine learning classifier for

model construction remain undetermined.

Therefore, the purpose of this study was to explore the

optimal machine learning model for differentiating between

SNIP and MST, and investigate whether the combination of

radiomics features and clinic–radiological features can produce a

superior diagnostic performance, and validate the generalization

performance of the model on an independent test set with

different scanners.
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Materials and methods

This retrospective study was approved by the Institutional

Review Board of our institution (approval ID: 2020080), and the

requirement for the patient informed consent was waived. The

research workflow of this study is presented in Figure 1.
Study population

The database of patients with sinonasal tumors admitted to

our institution between January 2015 and December 2021 were

consecutively obtained, and all the relevant clinical and

radiological data were retrospectively reviewed. All patients

had definitive surgically or biopsy confirmed pathological

results. The inclusion criteria were as follows: (1) patients with

pathologically confirmed SNIP or primary MST; (2) MRI

examination was performed within 2 weeks before biopsy

or surgery; (3) patients with no previous history of

malignant tumors; and (4) patients with complete clinical and

image data. The exclusion criteria were as follows: (1) patients

with a maximum tumor diameter less than 5 mm; (2)

patients with coexistence of SNIP and MST (including

malignant transformation of SNIP); (3) patients received any

radiotherapy or/and chemotherapy before the MRI examination;

and (4) the quality of MRI images unsatisfactory for the

radiomics analysis. All tumors were classified as SNIP or MST

according to the histopathological results and the latest World

Health Organization classification (19). Three most common

types of tumors were included in the MST groups, namely

squamous cell carcinoma (SCC), lymphoma and sinonasal

malignant melanoma (SMM). The enrolment process of

patients for this study is illustrated in Figure 2.
Frontiers in Oncology 03
Atotal of 247patientsmet the criteriawere enrolled in this study.

Images were collected on three different scanners at our institution.

Dataset from scanner A were randomly divided into training set

(n=135) and test set 1 (n=58) in a ratio of 7:3, whereas the dataset

fromscannerB andCwere used as an additional independent test set

2 (n=54). Model training and hyperparameters optimization was

carried out on the training set, and model performance evaluation

was performed on the test set 1. Additionally, the final model was

applied in an independent test set 2 with different scanners to obtain

an unbiased estimate of model performance.
MRI image acquisition

Patients from training set and test set 1 were examined on

scannerA (SiemensMagnetomEssenza 1.5-T scanner), and patients

from test set 2 were examined on scanner B and C (GE Signa HDxt

3.0-T scanner, Siemens Magnetom Skyra 3.0-T scanner). Axial and

coronal fast-spin-echo (FSE) T1-weighted image (T1WI), fat-

suppressed T2-weighted image (T2WI) and contrast-enhanced T1-

weighted image (CE-T1WI) were performed on all patients.

Gadopentetate dimeglumine (Gd⁃DTPA) contrast agent was

administered intravenously at an injection dose of 0.1 mL/kg body

weight and rate of 2.5mL/sec. The scanning protocol and parameters

are detailed in the Supplementary Table S1.
Clinic-radiological features analysis

With no knowledge of the clinical-pathological data, two

radiologists (with 6 and 12 years of head and neck radiology

experience, respectively)independently evaluated the MRI

radiological features, and inconsistencies were resolved through

consultation until consensus was reached. Fourteen clinic-
FIGURE 1

The research workflow of the whole study. SNIP, sinonasal inverted papilloma; MST, malignant sinonasal tumor; 3D-VOI, three-dimensional
volume of interest; SVM, support vector machine; LR, logistic regression; DT, decision tree; KNN, k-nearest neighbor.
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radiological features were evaluated as follows: (a) gender; (b) age;

(c) size; (d) location; (e) extent; (f) shape; (g)margin; (h) convoluted

cerebriform pattern sign (CCP sign, defined as alternating

hypointense and hyperintense bands on T2-weighted and

contrast-enhanced T1-weighted images) (1); (i) T1 high signal; (j)

T2 low signal; (k) heterogeneity; (l) necrosis (defined as a non-

enhanced area with hypointensity on T1WI and hyperintensity on

T2WI) (4); (m) adjacent bone involvement (ABI, including none,

bone sclerosis, bone destruction and both); (n) infiltration of

surrounding tissue (IST, defined as an extension into the

periantral soft tissue, intracranial structures, orbital, cavernous

sinus, skin or subcutaneous tissue et al) (4). Cohen’s kappa was

used to measure the interrater agreement between the two

radiologists’ evaluations of MRI radiological features. Univariate

analysis was performed to identify clinic-radiological features with

significant differences between SNIP and MST, and these features

were applied to build the clinical model. The Chi-square test or

Fisher exact test, Student’s t-test or Mann–Whitney U-test were

used for univariate analysis as appropriate.
Image segmentation, preprocessing and
radiomics feature extraction

Radiologists performed the three-dimensional (3D) volume

of interest (VOI) delineation using ITK-SNAP software (version
Frontiers in Oncology 04
3.6.0, http://www.itksnap.org). The two-dimensional (2D)

region of interest (ROI) was manually delineated around the

outermost boundaries of tumors slice by slice to form the 3D-

VOI on axial T2WI and CE-T1WI sequences. The ROI

segmentation contained the entire primary tumor, but avoided

covering adjacent normal tissue, bone and peripheral

inflammation regions. The examples of manual ROI

segmentation are presented in Figure 3.

In order to reduce the effect of scanning parameters

variations, a series of preprocessing methods were performed

prior to radiomics feature extraction. All images were resampled

to the voxel spacing of 1×1×1 mm³, and the per-

image pixel intensity distributions was normalized. Then, 1130

radiomics features were extracted from each VOI by using

PyRadiomics version 3.0.1, including shape features, first order

statistics and texture features, and we performed different

transformations of these features (such as wavelet filters and

Laplacian of Gaussian (log) filter). Mathematical definitions and

calculation formula for these radiomics features can be found in

PyRadiomics package (https://pyradiomics.readthedocs.io/

en/latest).

In order to evaluate intra-observer reproducibility and inter-

observer reliability of radiomics features, 50 cases of MR images

were randomly chosen to calculate the intraclass correlation

coefficient (ICC). Radiologist 1 and radiologist 2 performed ROI

segmentation independently for the same period, and
FIGURE 2

Flowchart of the study population selection. SNIP, sinonasal inverted papilloma; MST, malignant sinonasal tumor; MRI, magnetic resonance imaging.
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radiologists 1 performed segmentation again after 2 weeks.

Features with ICC above 0.75 were considered to be highly

stability and consistency (20). The remaining image

segmentation was carried out by radiologist 1.

The Spearman correlation coefficients were used for preliminary

screening of radiomics features. In this procedure, feature pairs with

Spearman correlation coefficients greater than 0.9 were identified to

behighlycorrelated, andeachpairoffeaturesonlyonewere remained

in the feature set. All features were then normalized by the use of Z-

score to reduce the influence of differences in dimensions

between different features. Thereafter, recursive feature elimination

(RFE) algorithm was implemented to further screen the radiomics

features, and ensure retain the best feature subsets. Briefly, after a

classifier was trained, the least important features were dropped, and

thenwetrainedanewmodelusing those features remaining, repeated

this process until the feature set is reduced to a previously selected

number of features (21).
Frontiers in Oncology 05
Optimal machine learning
model selection

Based on the radiomics features extracted from single

sequence (T2WI or CE-T1WI) and combined sequence (the

combination of T2WI and CE-T1WI), four frequently used

classifiers such as logistic regression (LR), support vector

machine (SVM), decision tree (DT) and k-nearest neighbor

(KNN) have been employed to constitute twelve different

machine learning models. Herein, the classification

capabilities of different machine learning models were

compared to identify the best performing one. For model

training, the GridSearchCV function (10-fold cross-validation

grid search) was used to tune and optimize the model

hyperparameters in the training set. The prediction

performances of all machine learning models were validated in

the test 1 and test 2 sets.
B C

D E F

A

FIGURE 3

Examples of manual ROI segmentation. Case 1: a 47-year-old man with SNIP in the left maxillary sinus, (A) Original image; (B) The ROI contour
formed by manual segmentation; (C) 3D volumetric reconstruction. Case 2: a 60-year-old man with squamous cell carcinoma in the right
maxillary sinus, (D) Original image; (E) The ROI contour formed by manual segmentation; (F) 3D volumetric reconstruction. SNIP, sinonasal
inverted papilloma; MST, malignant sinonasal tumor; ROI, region of interest; 3D, three-dimensional.
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Development and performance
assessment of the clinical model,
radiomics model and combined model

Based on the optimal classifiers and feature subset selected

above, three types of diagnostic models were developed

to differentiate SNIP from MST. A clinical model

constructed with clinic-radiological features alone, a radiomics

model constructed with radiomics features alone, and a

combined model constructed with the combination of both.

The area under the receiver operating characteristic (ROC) curve

(AUC), accuracy, sensitivity, specificity, positive predictive value

(PPV) and negative predictive value (NPV) were used to

evaluate the prediction performance of each model. The

calibration curves were plotted to assess the degree of

deviation between the model predictions and actual outcomes.

The DeLong test was used to analyze the statistical differences of

AUC values between different models.
Statistical analysis

Quantitative variables were expressed as mean values ±

standard deviations or median with interquartile range as

appropriate, with differences analyzed using Student’s t-test or

Mann–Whitney U-test, respectively. Categorical variables were

expressed as frequencies or percentages, with differences

analyzed using the Chi-square test or Fisher exact test as

appropriate. Statistical analysis was performed with IBM SPSS

Statistics (version 24.0) software, with statistical significance set

at 0.05. The machine learning classifiers were implemented by

the Python version 3.7.6 “scikit-learn version 1.0.1” package.
Frontiers in Oncology 06
Results

Demographic information

Eventually, a total of 247 patients were studied, including

106 patients with SNIP and 141 patients with MST (57

squamous cell carcinoma, 39 lymphoma and 45 sinonasal

malignant melanoma). The demographic information of

training set, test set 1 and test set 2 are summarized in

Table 1. There were no statistically significant differences in

patient age, gender and tumor type between the training set and

test set 1, and also no significant differences between the training

set and test set 2 in these baseline characteristics.

The analysis result of the clinic-
radiological features

Interrater agreement between the two radiologists’

assessments of MRI radiological features was good, with the

kappa coefficients greater than 0.80 (Supplementary Table S2).

Table 2 shows the univariate analysis result of the clinic-

radiological features between SNIP and MST groups. In the

training, test 1 and test 2 sets, statistically significant differences

were found in age, CCP sign, heterogeneity, adjacent bone

involvement and infiltration of surrounding tissue between the

tumor groups (P < 0.05). Therefore, the above five clinic-

radiological features were applied to establish the clinical model.

Radiomics features selection

1130 radiomics features were extracted from each sequence,

respectively. ICC analysis identified high stability features with
TABLE 1 Demographic information of the study population.

Characteristic Training set Test set 1 Test set 2 P1 P2

Scanner Scanner A Scanner A Scanner B, C

Number of patients 135 58 54

Gender 0.992 0.588

Male 93 40 35

Female 42 18 19

Age (years) 62.00(18.00) 58.00(14.25) 59.50(22.25) 0.332 0.713

Tumor type 0.986 0.963

SNIP 58 25 23

MST 77 33 31

SCC 29 16 12

Lymphoma 22 7 10

SMM 26 10 9
frontiersi
P1 represent the P values of comparison between training set and test set 1. P2 represent the P values of comparison between training set and test set 2. SNIP, sinonasal inverted papilloma;
MST, malignant sinonasal tumor; SCC, squamous cell carcinoma; SMM, sinonasal malignant melanoma.
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ICC greater than 0.75 for subsequent analysis, including 1095

T2WI features and 1101 CE-T1WI features. The Spearman

correlation coefficient was used to rejected those similar

features with high correlations. After screening using RFE

algorithm, 18 radiomics features from each single sequence

and combined sequence were reserved for subsequent

radiomics model construction, respectively. Figure 4 showed

the Spearman correlation coefficients of 18 radiomics features

screened from T2WI sequence, and the variables A to R

represent the corresponding radiomics features, which are

detailed in Table 3.
Frontiers in Oncology 07
Predictive efficacy comparison of the
machine learning models

The predictive efficacies of twelve different machine learning

models are summarized in Table 4. According to results, the best

performing model used only T2WI sequence and achieved

highest AUC of 0.914 (95%CI: 0.806-0.973) in the test set 2.

The model derived from combined sequence (T2WI+CE-T1WI)

had comparable performance to the T2WI sequence model in

the training set and test set 1, but its predictive performance

decreased in the test set 2. Meanwhile, four different classifiers
TABLE 2 Analysis result of the clinic–radiological features between SNIP and MST.

Characteristics Training set (n=135) Test set 1 (n=58) Test set 2 (n=54)

SNIP
(n=58)

MST
(n=77)

P1 SNIP
(n=25)

MST
(n=33)

P2 SNIP
(n=23)

MST
(n=31)

P3

Gender* 0.008 0.664 0.075

Male 47(81.0%) 46(59.7%) 18(72.0%) 22(66.7%) 18(78.3%) 17(54.8%)

Female 11(19.0%) 31(40.3%) 7(28.0%) 11(33.3%) 5(21.7%) 14(45.2%)

Age (years)# 54.50(20.00) 64.00(14.00) 0.004 52.00(14.00) 61.00(15.00) 0.019 53.00(13.00) 68.00(25.00) 0.021

Size (mm)# 34.28(14.35) 39.70(19.88) 0.317 43.15(14.98) 38.65(22.20) 0.583 34.35(23.55) 39.55(24.40) 0.773

Location* 0.023 0.465 0.802

Frontal sinus 1(1.7%) 1(1.3%) 0(0%) 1(3.0%) 0(0%) 0(0%)

Ethmoid sinus 15(25.9%) 7(9.1%) 6(24.0%) 7(21.2%) 4(17.4%) 4(12.9%)

Sphenoid sinus 2(3.4%) 1(1.3%) 0(0%) 0(0%) 0(0%) 0(0%)

Maxillary sinus 18(31.0%) 22(28.6%) 13(52.0%) 12(36.4%) 8(34.8%) 9(29.0%)

Nasal cavity 22(37.9%) 46(59.7%) 6(24.0%) 13(39.4%) 11(47.8%) 18(58.1%)

Extent* 0.350 0.217 1.000

Unilateral 54(93.1%) 68(88.3%) 24(96.0%) 27(81.8%) 22(95.7%) 29(93.5%)

Bilateral 4(6.9%) 9(11.7%) 1(4.0%) 6(18.2%) 1(4.3%) 2(6.5%)

Shape* 0.494 0.536 0.693

Regular 6(10.3%) 11(14.3%) 1(4.0%) 4(12.1%) 2(8.7%) 5(16.1%)

Irregular 52(89.7%) 66(85.7%) 24(96.0%) 29(87.9%) 21(91.3%) 26(83.9%)

Margin* 0.228 0.588 0.766

Well-defined 12(20.7%) 23(29.9%) 6(24.0%) 6(18.2%) 6(26.1%) 7(22.6%)

Ill-defined 46(79.3%) 54(70.1%) 19(76.0%) 27(81.8%) 17(73.9%) 24(77.4%)

CCP sign* 19(32.8%) 8(10.4%) 0.001 12(48.0%) 3(9.1%) 0.001 8(34.8%) 2(6.5%) 0.022

T1 high signal* 13(22.4%) 21(27.3%) 0.520 8(32.0%) 9(27.3%) 0.695 1(4.3%) 9(29.0%) 0.051

T2 low signal* 9(15.5%) 16(20.8%) 0.436 8(32.0%) 5(15.2%) 0.128 1(4.3%) 6 (19.4%) 0.225

Heterogeneity* 55(94.8%) 54(70.1%) <0.001 24(96.0%) 22(66.7%) 0.006 21(91.3%) 19(61.3%) 0.013

Necrosis* 7(12.1%) 18(23.4%) 0.094 3(12.0%) 8(24.2%) 0.401 1(4.3%) 7(22.6%) 0.140

ABI* 0.009 0.021 0.010

None 33(56.9%) 41(53.2%) 9(36.0%) 14(42.4%) 14(60.9%) 17(54.8%)

Bone sclerosis 12(20.7%) 4(5.2%) 9(36.0%) 2(6.1%) 6(26.1%) 2(6.5%)

Bone destruction 6(10.3%) 21(27.3%) 3(12.0%) 11(33.3%) 1(4.3%) 11(35.5%)

Both 7(12.1%) 11(14.3%) 4(16.0%) 6(18.2%) 2(8.7%) 1(3.2%)

IST* 12(20.7%) 33(42.9%) 0.007 7(28.0%) 19(57.6%) 0.025 3(13.0%) 14(45.2%) 0.012
frontiersi
#Data are quantitative variables, presented as mean ± standard deviation or median (quartile), p-value was calculated with Student’s t-test or Mann-Whitney U-test. *Data are categorical
variables, expressed as frequencies or percentages, p-value was calculated with the c2 or Fisher exact test. The analysis result of CCP sign, T1 high signal, T2 low signal, heterogeneity,
necrosis and IST is registered as absent or present, and present by default in the table. CCP, convoluted cerebriform pattern; ABI, adjacent bone involvement; IST, infiltration of surrounding
tissue; SNIP, sinonasal inverted papilloma; MST, malignant sinonasal tumor.
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exhibit different performances. Compared with the other three

classifiers, SVM showed the highest predictive efficacy on the

two test sets (AUC= 0.878 and 0.914, respectively). The

classification performance of LR was comparable to that of

SVM (AUC= 0.881 and 0.906, respectively). The models

trained with DT classifier showed the worst performance in all

test sets (AUC= 0.786 and 0.862, respectively). The AUC values

of twelve machine learning models on the two test sets were

visualized as a heatmap (Figure 5). To sum up, the T2WI-SVM

model demonstrated relatively stable and optimal predictive

efficacy in all machine learning models for classification tasks

on the two test sets, and served as the optimal radiomics model.
Performance assessment of the
clinical model, radiomics model
and combined model

Based on the five significant clinic-radiological features selected

by univariate analysis, SVM algorithm was used to build the clinical

model. Meanwhile, the combined model was constructed with the

combination of the best radiomics feature subsets (T2WI) and five

significant clinic-radiological features by using SVM algorithm.

Table 5 reports the diagnostic capacity of the clinical model, the
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radiomics model (T2WI+SVM) and the combined model,

the corresponding ROC curves are presented in Figure 6. As it

turns out, the combinedmodel achieved highest AUC of 0.912 (95%

CI: 0.807-0.970) and 0.927(95%CI: 0.823-0.980) for differentiation of

SNIPandMST in test 1 and test 2 sets,whichperformedprominently

better than clinical model (P=0.011 and P=0.005, respectively), but

not significantly different from the radiomics model (P=0.100 and

P=0.452, respectively). Next, the radiomics model (T2WI+SVM)

yieldedAUCof0.878 (95%CI:0.765-0.949)and0.914(95%CI:0.806-

0.973) in two test sets, which significantly outperformed the clinical

model in the test set 2 (P=0.011), but no significant difference was

found in the test set 1 (P=0.064). Finally, the clinical model showed

a relatively poor diagnostic performance in all sets, with theAUCs of

0.727 (95%CI: 0.644-0.800), 0.749 (95%CI: 0.618-0.854) and 0.729

(95%CI: 0.591-0.841) in the training, test 1 and test 2 sets,

respectively. The calibration curves demonstrated good agreement

between predicted and actually observed of the radiomics model

(T2WI+SVM) and the combined model (Figure 7).
Discussion

We compared the classification performance of twelve

different machine learning models composed of single-
FIGURE 4

The Spearman correlation coefficients between radiomics features selected from T2WI sequence.
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sequence, combined-sequence and four classifiers, and

determined that T2WI-SVM classifiers served as the best

performing machine learning model for differential diagnosis

of SNIP and MST. Moreover, the combination of radiomics

features and clinic-radiological features significantly improved
Frontiers in Oncology 09
the diagnostic performance of model, compared to the clinical

model alone (P=0.011, 0.005). The good performance and

robustness of our final models were validated by test set 1 as

wel l as an addit ional independent test set 2 with

different scanners.

Conventional radiology emphasized an active role

of morphological characteristics in qualitative diagnosis (3,

22). Our results indicated that CCP sign, tumor heterogeneity,

adjacent bone involvement and infiltration of surrounding tissue

were significant morphological features in differentiation

between SNIP and MST. Signs of extensive osseous lytic

destruction and significant surrounding soft tissue infiltrate

strongly suggest malignancy tumor, while localized bone

sclerosis and inhomogeneous signal intensity caused by

convoluted cerebriform pattern signs are characteristic features

of benign SNIP. The convoluted cerebriform pattern was

revealed to be a valuable sign for differential diagnosis, and

actually reflected the histological architecture of the SNIP (the

hyperplastic epithelium grows into the underlying stroma) (1,

23). Our results are consistent with previous studies (4, 8, 24).

Unfortunately, the clinical model exhibited a relatively poor

predictive performance for classifying SNIP and MST. Even

though traditional radiology diagnostic methods are convenient

and cost effective in routine clinical practice, the clinic-

r ad io log i c a l f e a ture s a lone are no t su ffic i en t t o

accurately differentiate SNIP from MST in a substantial

number of cases.
TABLE 4 Predictive efficacies of different machine learning models.

Model SVM LR DT KNN

Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

T2WI AUC 0.901 0.878 0.914 0.916 0.881 0.906 0.954 0.786 0.862 0.924 0.842 0.893

95%CI [0.837-
0.946]

[0.765-
0.949]

[0.806-
0.973]

[0.856-
0.957]

[0.769-
0.951]

[0.795-
0.968]

[0.904-
0.983]

[0.659-
0.883]

[0.741-
0.941]

[0.866-
0.963]

[0.722-
0.924]

[0.779-
0.941]

Accuracy 0.815 0.793 0.833 0.867 0.828 0.833 0.867 0.776 0.815 0.830 0.810 0.852

Sensitivity 0.831 0.788 0.935 0.870 0.818 0.871 0.870 0.788 0.806 0.818 0.758 0.935

Specificity 0.793 0.800 0.696 0.862 0.840 0.783 0.862 0.760 0.826 0.845 0.880 0.739

CE-
T1WI

AUC 0.865 0.759 0.888 0.863 0.768 0.871 0.951 0.776 0.634 0.894 0.766 0.804

95%CI [0.796-
0.918]

[0.628-
0.861]

[0.772-
0.957]

[0.793-
0.916]

[0.639-
0.869]

[0.752-
0.947]

[0.900-
0.981]

[0.648-
0.875]

[0.492-
0.761]

[0.830-
0.941]

[0.636-
0.867]

[0.673-
0.899]

Accuracy 0.770 0.724 0.852 0.748 0.741 0.815 0.881 0.707 0.704 0.800 0.672 0.778

Sensitivity 0.805 0.727 0.903 0.792 0.788 0.871 0.883 0.667 0.903 0.779 0.697 0.774

Specificity 0.724 0.720 0.783 0.690 0.680 0.739 0.879 0.760 0.435 0.828 0.640 0.783

T2WI+
CE-
T1WI

AUC 0.931 0.892 0.663 0.946 0.914 0.813 0.967 0.796 0.504 0.944 0.878 0.548

95%CI [0.874-
0.967]

[0.783-
0.958]

[0.522-
0.786]

[0.893-
0.977]

[0.810-
0.971]

[0.684-
0.906]

[0.922-
0.990]

[0.669-
0.890]

[0.365-
0.643]

[0.890-
0.976]

[0.765-
0.949]

[0.407-
0.684]

Accuracy 0.852 0.793 0.685 0.874 0.810 0.741 0.896 0.759 0.648 0.837 0.810 0.556

Sensitivity 0.831 0.758 0.806 0.857 0.788 0.806 0.922 0.758 0.774 0.805 0.727 0.516

Specificity 0.879 0.840 0.522 0.897 0.840 0.652 0.862 0.760 0.478 0.879 0.920 0.609
fron
T2WI, T2-weighted image; CE-T1WI, contrast–enhanced T1-weighted image; T2WI+CE-T1WI, the combination of T2-weighted image and contrast–enhanced T1-weighted image; AUC,
area under the curve; CI, confidence interval; SVM, support vector machine; LR, logistic regression; DT, decision tree; KNN, k-nearest neighbor.
TABLE 3 Radiomics features selected from T2WI sequence.

Variables Radiomics features

A wavelet-LLH_firstorder_10Percentile

B wavelet-LHL_firstorder_Mean

C wavelet-LHL_glszm_SmallAreaLowGrayLevelEmphasis

D wavelet-LHH_glszm_SmallAreaEmphasis

E wavelet-HHH_glcm_Idm

F wavelet-LLL_glcm_MCC

G log-sigma-1-0-mm-3D_firstorder_10Percentile

H log-sigma-1-0-mm-3D_firstorder_90Percentile

I log-sigma-2-0-mm-3D_glcm_ClusterShade

J log-sigma-2-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis

K log-sigma-3-0-mm-3D_firstorder_Median

L log-sigma-3-0-mm-3D_firstorder_RootMeanSquared

M log-sigma-3-0-mm-3D_glcm_ClusterShade

N log-sigma-3-0-mm-3D_glcm_Correlation

O log-sigma-3-0-mm-3D_glcm_MaximumProbability

P log-sigma-3-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis

Q log-sigma-3-0-mm-3D_glszm_SmallAreaEmphasis

R log-sigma-3-0-mm-3D_ngtdm_Complexity
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Until lately, the performance of radiomics analysis has been

compared to that of practicing radiologists in the differential

diagnosis of sinonasal tumors. In the Ramkumar et al. study

(15), texture analysis was applied to differentiate 22 SNIPs from

24 MSTs, the accuracy achieved by texture analysis (89.1%) was

significantly better than that of the ROI-based neuroradiologists’

review (56.5%, P=0.0004). However, small sample size reduces

the reliability of the results, and simple texture analysis might

not be sufficient to capture more valuable higher-order features

and also unable to combine clinical data for comprehensive

analysis. Zhang et al. (17) reported that margin, bone

involvement, and rad-score were independent indicators of

sinonasal tumor malignancy, the radiomic nomogram based

on pre-contrast MRI image achieved the AUC of 0.91,

performed significantly better than that of the clinical model

(AUC=0.83, P<0.001) in predicting malignant sinonasal tumors.

However, in Zhang’s study, only pre-contrast MR images

were used for features extraction, which has potential to miss
Frontiers in Oncology 10
some important information related to tumor angiogenesis and

vascular permeability.

Choosing the most appropriate machine learning methods

according to different classification objects is one of

the critical issues in radiomics research. In contrast

to previous studies (15, 17), we developed more machine

learning models by combining different classifiers and

sequences. Notably, our research indicated that SVM classifiers

did better than other three classifiers in clinical classification

tasks of sinonasal tumors. SVM is a supervised machine learning

algorithm, which has been widely used for various classification

and regression tasks (25). The problems of latitude disaster and

overfitting of the small specimen model can be handled well by

SVM, and the model trained with it has high generalization

ability and prediction accuracy (26). In addition, the selection of

MRI sequence is one of the factors affecting the performance of

the model. In our study, models based on T2WI sequence

achieved good performance on two test sets. The combined
TABLE 5 Diagnostic performance of the clinical model, the radiomics model and the combined model.

Group Model AUC (95%CI) Accuracy Sensitivity Specificity NPV PPV P-value

Training set Clinical model 0.727 [0.644-0.800] 0.674 0.831 0.466 0.675 0.674 Pa <0.001

Radiomics model (T2WI+SVM) 0.901 [0.837-0.946] 0.815 0.831 0.793 0.780 0.842 Pb =0.062

Combined model 0.927 [0.870-0.965] 0.874 0.883 0.862 0.847 0.895 Pc <0.001

Test set 1 Clinical model 0.749 [0.618-0.854] 0.724 0.879 0.520 0.765 0.707 Pa =0.064

Radiomics model (T2WI+SVM) 0.878 [0.765-0.949] 0.793 0.788 0.800 0.741 0.839 Pb =0.100

Combined model 0.912 [0.807-0.970] 0.845 0.818 0.880 0.786 0.900 Pc =0.011

Test set 2 Clinical model 0.729 [0.591-0.841] 0.648 0.710 0.565 0.591 0.688 Pa =0.011

Radiomics model (T2WI+SVM) 0.914 [0.806-0.973] 0.833 0.935 0.696 0.889 0.806 Pb =0.452

Combined model 0.927 [0.823-0.980] 0.870 0.871 0.870 0.833 0.900 Pc =0.005
front
The P-value was calculated by the Delong test. Pa means the Delong test between the clinical model and the radiomics model; Pb means the Delong test between the radiomics model and the
combined model; Pc means the Delong test between the clinical model and the combined model. AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV,
negative predictive value.
BA

FIGURE 5

Performance of twelve machine learning models on the two test sets. (A) The AUC values in the test set 1. (B) The AUC values in the test set 2.
SVM, support vector machine; LR, logistic regression; DT, decision tree; KNN, k-nearest neighbor; T2WI, T2-weighted image; CE-T1WI,
contrast–enhanced T1-weighted image; T2WI+CE-T1WI, the combination of T2-weighted image and contrast–enhanced T1-weighted image.
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sequence model (T2WI+CE-T1WI) had comparable

performance to the T2WI sequence model in the training set

and test set 1, but its predictive performance significantly

decreased in the test set 2. This may indicate that the

generalization performance of the combined sequence model

is not as good as that of the single sequence model. We

considered that this may be related to the feature selection

method and the fact that our models were only trained on the

single-scanner training set.

Radiomics features are related to the intra-tumoral

heterogeneity, and may help explain the complex tumor

biological behavior (13, 14). Among the radiomics features

extracted in our study, small area emphasis (SAE), IDM and

maximal correlation coefficient (MCC) can be served as

indicators to quantify the intensity heterogeneity and texture

complexity of tumor (27). SAE is a measure of the distribution of

small size areas, with a higher value indicates a smaller area and

finer texture. IDM (also known as Homogeneity 2) and MCC are

the measures of the local homogeneity and texture complexity of

the image, respectively. These features emphasizes that MST are

more heterogeneous and complex in spatial texture than SNIP.

Pathological evidences reflect that histological inner component

of MST tend to be more complicated and disordered in terms of

cell proliferation, arrangement and angiogenesis than benign

SNIP (3, 28, 29). This subtle histological difference could be

barely recognized through the naked eye, but detected

by radiomics.

Compared with traditional morphological features,

radiomics features has the potential to provide more

comprehensive, quantitative tumor heterogeneity information,

which can be helpful in interpreting the potential relationship

between pathophysiological properties and radiology
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imaging phenotype. Furthermore, the complementarity

between radiomics features and clinic-radiological features has

been demonstrated in this study, the combination of both

features could improve the performance of model.

There are several limitations of the current study. First, our

models were trained on the single-scanner training set, which

might degrade the generalization performance of the models.

Although the good performance of our models was verified by

an independent test set 2 with different scanners, the small

sample size may result in biased results. Our group plans to

conduct a cross-institution collaboration trial to expand the

sample size and carry out further cross-validation. Second,

complex anatomical structure and ill-defined margin bring

barriers to the manual segmentation of sinonasal neoplasm,

which makes the segmentation process time-consuming and

complicated. Semi-automatic or automatic segmentation

methods (30) can be explored to improve the efficiency and

accuracy of lesion segmentation. Third, the current binary

classification radiomics research is not sufficient to meet the

complicated clinical diagnosis needs, deep learning (31) is

expected to achieve the multi-class classification task, simplify

the process and capture more high-level features. Last but not

the least, only conventional MRI images were used for radiomics

analysis in this study. It has been reported that functional MRI

(such as DWI, ADC and DCE-MRI) can provide additional

valuable information for the discrimination between SNIP and

MST (9, 10), but we did not include functional images due to

limited sample size and insufficient image quality. Future work

needs exploring the effective role of functional MRI in radiomics

research. Anyhow, when radiomics is applied in clinical practice,

more rigorous studies with multicenter and large-scale data set

are needed to supply more evidence to confirm its feasibility.
B CA

FIGURE 6

The receiver operating characteristic (ROC) curves of the clinical model, the radiomics model (T2WI+SVM) and the combined model in the
training set (A), test set 1 (B) and test set 2 (C), respectively.
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Conclusion

In conclusion, we developed different machine learning

models for preoperative distinction of SNIP and MST, and

demonstrated that T2WI-SVM classifier achieved best

predictive efficacy in clinical classification tasks. Moreover, the

incorporation of radiomics features and clinic-radiological

features helped improve model performance. In other words,

radiomics integrated with clinic-radiological features has

potential to provide a non-invasive and credible predictions to

clinicians, which may facilitate better clinical decision making.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Frontiers in Oncology 12
Ethics statement

The studies involving human participants were reviewed and

approved by the Institutional Review Board of the First Affiliated

Hospital of Chongqing Medical University. Written informed

consent from the participants’ legal guardian/next of kin was not

required to participate in this study in accordance with the

national legislation and the institutional requirements.
Author contributions

JP, JG, and QY designed the research and drafted the

manuscript. JG, QY, QL, and BG collected the data and

preprocessed data. JG, QY, and XZ performed major data

analyses. JP and FL participated in the review and editing. All

authors contributed to the article and approved the

submitted version.
B

A

FIGURE 7

Calibration curves of the radiomics model and the combined model in the training, test 1 and test 2 sets. (A) Calibration curves of the radiomics
model (T2WI+SVM). (B) Calibration curves of the combined model.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1003639
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2022.1003639
Funding

This project received support from The Foundation of

Science and Technology Bureau of Yuzhong District,

Chongqing, China (Grant No. 20190111) and the Natural

Science Foundation of Chongqing, China (Grant No.

cstc2021jcyj-msxmX0020).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Oncology 13
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1003639/full#supplementary-material
References
1. Jeon TY, Kim HJ, Chung SK, Dhong HJ, Kim HY, Yim YJ, et al. Sinonasal
inverted papilloma: Value of convoluted cerebriform pattern on MR imaging. Am J
Neuroradiol (2008) 29(8):1556–60. doi: 10.3174/ajnr.A1128

2. Sun Q, An L, Zheng J, Zhu D. Advances in recurrence and malignant
transformation of sinonasal inverted papillomas. Oncol Lett (2017) 13(6):4585–92.
doi: 10.3892/ol.2017.6089

3. Wang P, Tang Z, Xiao Z, Hong R, Wang R, Wang Y, et al. Dual-energy CT in
differentiating benign sinonasal lesions from malignant ones: Comparison with
simulated single-energy CT, conventional MRI, and DWI. Eur Radiol (2022) 32
(2):1095–105. doi: 10.1007/s00330-021-08159-3

4. Kawaguchi M, Kato H, Tomita H, Mizuta K, Aoki M, Hara A, et al. Imaging
characteristics of malignant sinonasal tumors. J Clin Med (2017) 6(12):116.
doi: 10.3390/jcm6120116

5. Ungari C, Riccardi E, Reale G, Agrillo A, Rinna C, Mitro V, et al.
Management and treatment of sinonasal inverted papilloma. Ann Stomatol
(Roma) (2015) 6(3-4):87–90. doi: 10.11138/ads/2015.6.3.087

6. Robin TP, Jones BL, Gordon OM, Phan A, Abbott D, McDermott JD, et al. A
comprehensive comparative analysis of treatment modalities for sinonasal
malignancies. Cancer (2017) 123(16):3040–9. doi: 10.1002/cncr.30686

7. Han MW, Lee BJ, Jang YJ, Chung YS. Clinical value of office-based
endoscopic incisional biopsy in diagnosis of nasal cavity masses. Otolaryngol
Head Neck Surg (2010) 143(3):341–7. doi: 10.1016/j.otohns.2010.05.019

8. Koeller KK. Radiologic features of sinonasal tumors. Head Neck Pathol
(2016) 10(1):1–12. doi: 10.1007/s12105-016-0686-9

9. Wang XY, Yan F, Hao H, Wu JX, Chen QH, Xian JF. Improved performance
in differentiating benign from malignant sinonasal tumors using diffusion-
weighted combined with dynamic contrast-enhanced magnetic resonance
imaging. Chin Med J (Engl) (2015) 128(5):586–92. doi: 10.4103/0366-6999.151649

10. Sasaki M, Eida S, Sumi M, Nakamura T. Apparent diffusion coefficient
mapping for sinonasal diseases: Differentiation of benign and malignant lesions.
AJNR Am J Neuroradiol (2011) 32(6):1100–6. doi: 10.3174/ajnr.A2434

11. Jiang JX, Tang ZH, Zhong YF, Qiang JW. Diffusion kurtosis imaging for
differentiating between the benign and malignant sinonasal lesions. J Magn Reson
Imaging (2017) 45(5):1446–54. doi: 10.1002/jmri.25500

12. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting more information from medical images
using advanced feature analysis. Eur J Cancer (2012) 48(4):441–6. doi: 10.1016/
j.ejca.2011.11.036

13. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun (2014) 5:4006. doi: 10.1038/ncomms5006

14. Zhang B, He X, Ouyang F, Gu D, Dong Y, Zhang L, et al. Radiomic
machine-learning classifiers for prognostic biomarkers of advanced
nasopharyngeal carcinoma. Cancer Lett (2017) 403:21–7. doi: 10.1016/
j.canlet.2017.06.004
15. Ramkumar S, Ranjbar S, Ning S, Lal D, Zwart CM, Wood CP, et al. MRI-
Based texture analysis to differentiate sinonasal squamous cell carcinoma from
inverted papilloma. AJNR Am J Neuroradiol (2017) 38(5):1019–25. doi: 10.3174/
ajnr.A5106

16. Yan Y, Liu Y, Tao J, Li Z, Qu X, Guo J, et al. Preoperative prediction of
malignant transformation of sinonasal inverted papilloma using MR radiomics.
Front Oncol (2022) 12:870544. doi: 10.3389/fonc.2022.870544

17. Zhang H, Wang H, Hao D, Ge Y, Wan G, Zhang J, et al. An MRI-based
radiomic nomogram for discrimination between malignant and benign sinonasal
tumors. J Magn Reson Imaging (2021) 53(1):141–51. doi: 10.1002/jmri.27298

18. Wang X, Dai S,WangQ, Chai X, Xian J. Investigation ofMRI-based radiomics
model in differentiation between sinonasal primary lymphomas and squamous cell
carcinomas. Jpn J Radiol (2021) 39(8):755–62. doi: 10.1007/s11604-021-01116-6

19. Thompson LDR, Franchi A. New tumor entities in the 4th edition of the
world health organization classification of head and neck tumors: Nasal cavity,
paranasal sinuses and skull base. Virchows Arch (2018) 472(3):315–30.
doi: 10.1007/s00428-017-2116-0

20. Xu L, Yang P, Liang W, Liu W,WangW, Luo C, et al. A radiomics approach
based on support vector machine using MR images for preoperative lymph node
status evaluation in intrahepatic cholangiocarcinoma. Theranostics (2019) 9
(18):5374–85. doi: 10.7150/thno.34149

21. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer
classification using support vector machines. Mach Learn (2002) 46(1):389–422.
doi: 10.1023/A:1012487302797

22. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al.
Radiomics: The facts and the challenges of image analysis. Eur Radiol Exp (2018) 2
(1):36. doi: 10.1186/s41747-018-0068-z

23. Lisan Q, Laccourreye O, Bonfils P. Sinonasal inverted papilloma: From
diagnosis to treatment. Eur Ann Otorhinolaryngol Head Neck Dis (2016) 133
(5):337–41. doi: 10.1016/j.anorl.2016.03.006

24. Fang G, Lou H, Yu W, Wang X, Yang B, Xian J, et al. Prediction of the
originating site of sinonasal inverted papilloma by preoperative magnetic
resonance imaging and computed tomography. Int Forum Allergy Rhinol (2016)
6(12):1221–8. doi: 10.1002/alr.21836

25. Noble WS. What is a support vector machine? Nat Biotechnol (2006) 24
(12):1565–7. doi: 10.1038/nbt1206-1565

26. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
support vector machine (SVM) learning in cancer genomics. Cancer Genomics
Proteomics (2018) 15(1):41–51. doi: 10.21873/cgp.20063

27. Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: Standardized quantitative
radiomics for high-throughput image-based phenotyping. Radiology (2020) 295
(2):328–38. doi: 10.1148/radiol.2020191145

28. Ozturk K, Gawande R, Gencturk M, Boegel K, Caicedo-Granados E, Cayci
Z. Imaging features of sinonasal tumors on positron emission tomography and
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1003639/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003639/full#supplementary-material
https://doi.org/10.3174/ajnr.A1128
https://doi.org/10.3892/ol.2017.6089
https://doi.org/10.1007/s00330-021-08159-3
https://doi.org/10.3390/jcm6120116
https://doi.org/10.11138/ads/2015.6.3.087
https://doi.org/10.1002/cncr.30686
https://doi.org/10.1016/j.otohns.2010.05.019
https://doi.org/10.1007/s12105-016-0686-9
https://doi.org/10.4103/0366-6999.151649
https://doi.org/10.3174/ajnr.A2434
https://doi.org/10.1002/jmri.25500
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/j.canlet.2017.06.004
https://doi.org/10.1016/j.canlet.2017.06.004
https://doi.org/10.3174/ajnr.A5106
https://doi.org/10.3174/ajnr.A5106
https://doi.org/10.3389/fonc.2022.870544
https://doi.org/10.1002/jmri.27298
https://doi.org/10.1007/s11604-021-01116-6
https://doi.org/10.1007/s00428-017-2116-0
https://doi.org/10.7150/thno.34149
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1016/j.anorl.2016.03.006
https://doi.org/10.1002/alr.21836
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.3389/fonc.2022.1003639
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2022.1003639
magnetic resonance imaging including diffusion weighted imaging: A pictorial
review. Clin Imaging (2018) 51:217–28. doi: 10.1016/j.clinimag.2018.05.018

29. Wang X, Zhang Z, Chen X, Li J, Xian J. Value of magnetic resonance imaging
including dynamic contrast-enhanced magnetic resonance imaging in differentiation
between inverted papilloma and malignant tumors in the nasal cavity. Chin Med J
(Engl) (2014) 127(9):1696–701. doi: 10.3760/cma.j.issn.0366-6999.20132409
Frontiers in Oncology 14
30. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak
RH, et al. Robust radiomics feature quantification using semiautomatic
volumetric segmentation. PloS One (2014) 9(7):e102107. doi: 10.1371/
journal.pone.0102107

31. Schmidhuber J. Deep learning in neural networks: An overview. Neural
Netw (2015) 61:85–117. doi: 10.1016/j.neunet.2014.09.003
frontiersin.org

https://doi.org/10.1016/j.clinimag.2018.05.018
https://doi.org/10.3760/cma.j.issn.0366-6999.20132409
https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3389/fonc.2022.1003639
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors
	Introduction
	Materials and methods
	Study population
	MRI image acquisition
	Clinic-radiological features analysis
	Image segmentation, preprocessing and radiomics feature extraction
	Optimal machine learning model selection
	Development and performance assessment of the clinical model, radiomics model and combined model
	Statistical analysis

	Results
	Demographic information
	The analysis result of the clinic-radiological features
	Radiomics features selection
	Predictive efficacy comparison of the machine learning models
	Performance assessment of the clinical model, radiomics model and combined model

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


