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Pancreatic cancer is the fourth leading cause of cancer death in the United States.

Themainmethods of treating pancreatic cancer are surgery and chemotherapy, but

the treatment efficacy is lowwith a poor prognosis. Immunotherapy represented by

PD-1/PD-L1 has brought amilestoneprogress in the treatment of pancreatic cancer.

However, the unique tumor microenvironment of pancreatic cancer presents

challenges for immunotherapy. In addition, m6A is a common RNA modification

and a potential molecular target in tumor therapy. The expression pattern of m6A in

pancreatic cancer is still unclear. LncRNAs also play an essential role in pancreatic

cancer development and treatment. In this study, we found that some m6A

regulators were significantly elevated in pancreatic cancer and associated with the

expression of PD-1/PD-L1. Moreover, we observed that METTL3 can increase the

expression of PD-L1. Notably, METTL3 positively regulates the expression of lncRNA

MALAT1 in pancreatic cancer cells. Strikingly, lncRNA MALAT1 increased the

expression of PD-L1 in pancreatic cancer cells. This finding indicated that METTL3

regulated the expression of PD-L1 possibly via targeting lncRNA MALAT1 in

pancreatic cancer cells. Lastly, MALAT1 governed the viability of pancreatic cancer

cells. Taken together, lncRNA MALAT1 is involved in METTL3-mediated promotion

of PD-L1 expression in pancreatic cancer.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors

of the pancreas and more than 90% of pancreatic cancer are exocrine PDAC (1).

According to an epidemiology report, the five-year survival rate of pancreatic cancer after

diagnosis is about 10%, and it is estimated that the pancreatic cancer will surpass breast
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cancer as the third leading cause of death (2). Cancer statistics

suggest that there were 32,970 new cases of pancreatic cancer in

men and 29,240 new cases of pancreatic cancer in women in the

United States (3). The number of people who died from

pancreatic cancer was 49,830 for men and 25,970 for women,

respectively (3). Surgery and chemotherapy remain the

mainstays of treatment for pancreatic adenocarcinoma (4).

However, pancreatic cancer is aggressive with no obvious

symptoms in the early stage. Most PDAC patients are late to

be treated when diagnosed, and less than 20% of the patients are

eligible for surgery (5). For unresectable patients, chemotherapy

is the main treatment, but its efficacy is not ideal, and the median

OS (Overall survival) is basically less than 1 year (6). Recently,

immunotherapy, represented by immune checkpoint inhibitors

(ICIs), has brought milestone progress to tumor treatment.

However, ICIs are almost completely wiped out in pancreatic

cancer, and most of them have failed in phase I and II clinical

trials (7).

However, studies have shown that pancreatic cancer has a

special tumor microenvironment (TME), which brings

challenges to immunotherapy and deserves further study (8,

9). Tumor immune microenvironment (TIME) refers to the

internal environment in which tumor cells are generated and

live, which includes not only tumor cells themselves but also

fibroblasts, immune and inflammatory cells, and glue cells that

are closely related to tumor cells. However, compared with other

cancers, pancreatic cancer has a unique TIME, which presents

challenges for immunotherapy, and this may be one of the

reasons why programmed death (PD-1)/PD ligand 1 (PD-L1)

therapy is not highly sensitive to pancreatic cancer. PD-1, a 288

amino acid type 1 transmembrane protein, is often expressed on

the surfaces of several immune cell types, while PD-L1, a 290

amino acid type 1 transmembrane protein, is expressed on

hematopoietic cells (10, 11). Pancreatic tumor cells promote

t h e a c t i v a t i on o f p e r i ph e r a l s t r oma l c e l l s a nd

immunosuppressive cells, including regulatory T cells (Tregs),

bone-marrow derived inhibitory cells (MDSCs), and tumor-

associated macrophages (TAMs). At the same time, they

secrete a series of cytokines and chemokines that cause these

cells to flock to the tumor site. On the other hand, activated

stromal cells generate a large amount of extracellular matrix that

forms a fibrous “barrier” around pancreatic tumor cells,

preventing effector cells (T and NK cells) from infiltrating into

the tumor which allows tumor cells to evade immune

surveillance. Activated immunosuppressive cells secrete

immunosuppressive factors and express ligands (e.g., PD-L1

a n d B 7 - 1 / 2 ) , f o rm i n g a n immun o s u p p r e s s i v e

microenvironment. This plays an important role in the

occurrence, development, invasion, metastasis and drug

resistance of pancreatic cancer (12). The antitumor immune

response is a complex, multistep process (13). Therefore, the
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mechanism of TIME should be further studied to explore new

and potentially beneficial targets to improve the efficacy of

pancreatic cancer immunotherapy.

Meanwhile, m6A is the most common RNA modification in

eukaryotic RNA and plays an important role in cancer

progression (14). It has been demonstrated that m6A

modification is a dynamic and reversible process, which is

composed of methyltransferase complex (Writers) ,

demethylase (Erasers) and function managers (Readers) (15).

It is believed that the function of m6A writers is stability of

mRNA (2). A recent study show that there are 28 m6A

regulators, including METTL3, METTL14, METTL16, WTAP,

RBM15, RBM15B, ZC3H13, VIRMA, CBLL1, ZCCHC4,

LRPPRC, ELAVL1, YTHDC1, YTHDC2, YTHDF1, YTHDF2,

YTHDF3, HNRNPC, HNRNPA2B1, EIF3A, EIF3H, IGF2BP1,

IGF2BP2, IGF2BP3, CBLL1, PRRC2A, FTO, ALKBH5 (16).

m6A modification plays a role in pre-mRNA splicing, 3’-end

processing, nuclear output, translation regulation, mRNA decay

and miRNA processing, and its dynamic reversible changes

control and determine cell growth and differentiation,

suggesting that abnormalities of m6A and modified proteins

may also produce pathological effects in the occurrence and

progression of tumors (17). Besides, as the most common

modification in mRNA, m6A links epigenomics with

tumorigenesis and development, and affects the processes of

tumor stem cell self-renewal and differentiation, proliferation

and apoptosis, invasion and metastasis, drug resistance, and

immunosuppression. Therefore, m6A is involved in m6A-

modified key proteins that are expected to be potential

molecular targets for cancer diagnosis and treatment and drug

development. For instance, a study examining DNA and RNA

methylation status in circulating tumor cells (CTCs) from lung

cancer patients demonstrated for the first time elevated m6A

modification levels in CTCs from lung cancer patients (18).

LncRNA, one type of noncoding RNA, participates in

tumorigenesis and progression (19–22). LncRNA MALAT1

has been reported to regulate pancreatic oncogenesis. The

expression of MALAT1 was highly elevated in PDAC

compared with the adjacent normal specimens (23). MALAT1

expression was linked to invasion, tumor stage, poor survival,

tumor size and metastasis in PDAC patients (23, 24). Moreover,

MALAT1 enhanced invasion, migration and viability of

pancreatic cancer cells via reduction of EMT and cancer stem

cells as well as induction of apoptosis and cell cycle arrest (25).

The role of MALAT1 in PDAC development is not fully

elucidated. The expression pattern and pathophysiological role

of m6A in pancreatic cancer remain unknown. In addition, the

association between m6A methylation modulator and PD-L1

remains unexplored. Therefore, the main purpose of this paper

aims to analyze the relationship between m6A RNA methylation

regulators, PD-L1 and MALAT1 in pancreatic cancer.
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Materials and methods

Data collection and m6A-
related regulators

The data was collected from The Cancer Genome Atlas

(TCGA) database and the basic information including age,

gender, grade, stage, T, M and N of 178 samples was obtained.

In this study, we collected 24 m6A-related regulators, including

writers, erasers and readers. The writers include RBM27,

METTL3, WTAP, RBM15, ZC3H7B, CAPRIN1 and

METTL14. The erasers include FTO and ALKBH5. The

readers include YTHDF1, YTHDF2, YTHDF3, IGF2BP1/2/3,

YTHDC1/2, IGF2BPs, KIAA1429 (VIRMA), EIF3A, EIF3H,

HNRNPC, HNRNPA2B1, LRPPRC, ELAVL1 and PRRC2A

(26). To determine the interaction of these 20 regulators, they

were searched in the Genes/Protein database to gain a

preliminary understanding of their biological functions (27).
Bioinformatic analysis

Consensus cluster ing is a method of providing

quantitative evidence for determining the number and

members of possible clusters in a data set, such as

microarray gene expression (28). This approach is widely

used in cancer genomics. In this study, we adopted this

method to explore two PDAC clusters and their association

with clinicopathological parameters. Gene set enrichment

analysis (GSEA) 3.0 was used to predict the underlying

downstream pathways of the two clusters (29). Immune

score, stromal score, and tumor purity of each sample were

calculated by using the ESTIMATE algorithm (30).

Genes with significant (p<0.01) prognosis were screened

from DEGs using univariate COX regression analysis, and

gene prognosis models were established by lasso-cox

regression. The K-M curve was drawn using the R package

survival, and the survival difference between different groups was

calculated by the log-rank test to draw the K-M curve. The ROC

of the model was calculated using the R package time ROC.

Finally, the independent prognostic ability of risk scores was

tested by univariate and multivariate Cox regression models.

Groups will be divided into two groups including high-risk

group and low-risk group by evaluating the distribution of

clinical case characteristics using the R package “heatmap”.

This study adopted Cox regression models to assess whether

the risk score combining with other clinical characteristics, could

be an independent prognostic factor.
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Cell culture and transfection

The human pancreatic cancer cell lines, BxPC-3 (with

epithelial properties) and PANC-1 (with more mesenchymal

properties), were cultured in DMEM medium supplemented

with and 10% FBS and 1% penicillin/streptomycin solution. The

cells were cultured in an incubator with 5% CO2 at 37°C. Human

MALAT1 cDNAs were subcloned into pcDNA3 vector. Human

METTL3 cDNAs were subcloned into pLenti-C-mGFP vector.

Specific small hairpin RNAs (shRNAs) targeting METTL3

(shMETTL3) or MALAT1 (shMALAT1) and the control

shRNA (shNC) were obtained (GenePharma, Shanghai, China).
Quantitative real-time reverse
transcription-PCR

Total RNA was extracted from pancreatic cancer cells using

1ml TRLzol Reagent. Then, RNA was used for reverse

transcription and PCR was performed using SYBR Green Kit

Data were analyzed by the DDCt approach. GAPDH was used as

the control. MALAT1: FW: GGA TCC TAG ACCAGCATGCC;

RV: AAA GGT TAC CAT AAG TAA GTT CCA GAA AA (31).

The detailed method for PCR was described previously (32).
Western blotting analysis

The pancreatic cells were lysed by RIPA buffer and a

bicinchoninic acid (BCA) assay was used for detection of

protein qualification. After proteins were separated onto SDS-

PAGE, the proteins were transferred onto a PVDF membrane.

The membrane was incubated with 5% non-fat milk and then

incubated with METTL3 (1:1000), PD-L1 (1:1,000) or Tubulin

(1:1,000) antibody for overnight at 4°C. The membranes were

washed by TBST and then incubated with the secondary

antibody for 1 h. Then, ECL method was used to examine the

protein expression (33).
Cell viability assay

The treated pancreatic cancer cells were cultured in 96-well

plates for 48 and 72 hours. The viability of pancreatic cancer cells

was determined by CCK8 assay as described previously (34).

Briefly, 10 mL CCK8 reagent was added to each well and

incubated for 2.5-3 hours in a cell culture incubator. The

OD450 values were obtained by the microplate reader.
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Statistical analysis

In this study, the Pearson correlation coefficient was

widely used to measure the degree of correlation between

two variables, and its value was between -1 and 1. To assess the

impact of M6A-related risk characteristics on the prognosis of

PDAC, we compared the prognostic differences between the

high-risk and low-risk groups. Kaplan-Meier plotter was used

to analyze the relationship between gene expression profile

and survival information in PATIENTS with PDAC. In

addit ion, multivariate Cox regression analysis was

performed to determine prognostic factors for PDAC

patients. Student t test was used to validate significance

between two groups. ANOVE was used to validate

significance among three or more groups. P <0.05 is

considered statistically significant.
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Results

Expression of m6A RNA Methylation
Regulators in PDAC

Initially, we analyzed the frequency of mutations in 24

expressed m6A regulators and found that 18 regulators all had

a mutation frequency of 1%~2%. Mutations occurred in 7.3%

of the 178 samples, the most common mutation being missense

mutation (Figure 1A). To further understand the expression of

m6A RNA methylation regulator in tumor and normal

samples, the heatmap was conducted and the results have

revealed that compared with normal samples, there were 24

regulators of m6A, whose expression was relatively higher in

cancer tissues (Figure 1B). Besides, the expression difference of

m6A RNA methylation regulators between tumor and normal
A B

DC

FIGURE 1

(A) The mutation frequency in each regulator. (B) Heatmap of m6A RNA methylation regulator expression level in each sample. **p<0.01;
***p<0.001. (C) The expression difference of m6A RNA methylation regulator between tumor and normal samples. (D) Correlation among PD-1,
PD-L1 and m6A RNA methylation regulators.
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samples was significant since the p-value is less than

0.05 (Figure 1C).
Correlations among PD-L1, PD1, and
m6A RNA methylation regulators

The results of Pearson correlation suggested that PD-1 is

associated with 20 regulators, including RBM15, YWHAG,

MSI2, RBM27, YTHDF3, ZC3H13, METTL14, FTO,

ZCCHC4, ALKBH5, PCIF1, YTHDF1, KIAA1429, YTHDF2,

CAPRIN1, HNRNPC, TRA2A, ZC3H7B, WTAP, HNRNPD,

YTHDC1 and METTL3. The correlation coefficient of PD-1 and

RBM15 was the strongest. Similarly, the correlation between PD-

L1 and WTAP was the strongest with a correlation coefficient of

0.69, while the relationship between PD-L1 and KIAA1429 was

the weakest with a correlation coefficient of 0.55. All regulators

of PD-1, PD-L1 andM6A were positively correlated (Figure 1D).
Analysis of consensus clustering

Consensus clustering method was adopted to aggregates data

such as transcriptome and proteome profiles. From Figure 2A, it

is believed that k = 2 has the optimal clustering stability from k =

2 to 9. Then, the consensus clustering has identified the PDAC
Frontiers in Oncology 05
cohort of TCGA into two clusters and demonstrated their

relationship with clinicopathological parameters (Figure 2A).

Subsequently, the heatmap of correlation of m6A RNA

methylation regulators with characteristics of PDAC patients

and the tracking plot have been concisely displayed (Figures 2B,

C). Furthermore, the overall survival (OS) for PDAC patients

was analyzed by using Kaplan-Meier curves. It is noteworthy

that cluster2 had a significantly higher survival rate than

cluster1 (Figure 2D).
Infiltrating levels of immune cell types in
cluster1/2 with PDAC

We analyzed the infiltrating levels of various immune cells in

cluster1/2 in PDAC and the results were displayed (Figure 3A).

Meanwhile, the graph of estimated proportion of 22 immune cell

types in cluster1/2 suggested that the estimated proportion of

Macrophages MO of cluster1 was higher than that of

Macrophages MO of cluster2, (Figure 3B). In order to further

understand the infiltrating levels in cluster1/2 with PDAC, we

compared the StromalScore, ImmuneScore and EstimateScore.

We found the StromalScore and EstimateScore of cluster2 were

higher than that of cluster1, which indicated that cluster2 had a

higher degree of immune infi ltration than cluster1

(Figures 4A–C). Moreover, cluster1 and cluster2 were involved
A B

DC

FIGURE 2

Correlation of consensus clustering for m6A RNA methylation regulators with the characteristics and survival of PDAC patients. (A) Consensus
clustering matrix for k=2 (left panel); Consensus clustering cumulative distribution function (CDF) for k=2 to 9 (middle panel); relative change in
area under CDF curve for k=2 to 9. (B, C) Heatmap of correlation of m6A RNA methylation regulators with characteristics of PDAC patients. (D)
Kaplan-Meier curves of overall survival (OS) for patients.
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in the following five signaling pathways: cell cycle, mismatch

repair, p53 signaling pathway, RNA degradation and

Spliceosome (Figure 4D).
Construction and validation of
prognostic characteristics of m6A
regulators

Univariate analysis of 24 m6A RNA methylation regulators

was performed to identify genes, which may significantly

associate with prognosis. Indeed, the results revealed that

GNL3, CAPRIN1, PCIF1, METTL3, YWHAG and ALKBH5

were significantly associated with OS with hazard ratios of 1.807,

2.289, 0.534, 0.647, 1.759 and 0.474, respectively. The 95 percent

confidence intervals were (1.128-2.893), (1.315-3.984), (0.325-

0.897), (0.443-0.945), (1.068-2.895) and (0.306-0.735),
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respectively (Figure 5A). Overall, the hazard ratio of GNL3,

CAPRIN1 and YWHAG was greater than 1, while the hazard

ratio of PCIF1, METTL3 and ALKBH5 was less than 1. Then

through the lasso regression algorithm, the coefficient of

prognostic genes was identified (Figures 5B, C).

Moreover, survival analysis showed higher survival rates in

the low-risk group than in the high-risk group (Figure 5D). The

AUC at 1 years, 3 years and 5 years is 0.615, 0.756 and 0.801

(Figure 5E). Furthermore, to determine whether prognostic

marker-based risk scores are independent prognostic

indicators for pancreatic cancer patients, univariate and

multivariate Cox regression analyses of risk scores were

performed. The results proposed that N and risk score were

independent prognostic indexes (p-value=0.014, HR=0.017; p-

value<0.001, HR=2.247) (Figures 5F, G). The clinical features of

PDAC cohort has been displayed in Figure 6A. The riskscore of

cluster2 was higher than that of cluster1, and similarly, the
A

B

FIGURE 3

(A) Heatmap of infiltrating levels of various immune cells in cluster1/2 in pancreatic cancer. (B) Estimated proportion of 22 immune cell types in
cluster1/2 in pancreatic cancer. *p<0.05; ns, no significance.
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riskscore of the low-risk group was higher than that of the high-

risk group. Among G1, G2, G3 and G4 groups, G3 group had the

highest riskscore, while G4 group had the lowest riskscore

(Figure 6B). It is noteworthy that PD-1 and PD-L1 were

highly expressed in pancreatic cancer cells compared with

normal cells. Compared with cluster2, PD-L1 was highly

expressed in cluster1(Figure 6C).
METTL3 regulates the expression of PD-
L1 and lncRNA MALAT1.

To confirm the association between METTL3 and PD-L1 in

pancreatic cancer cells, we transfected METTL3 cDNA and

shMETTL3 plasmids to BxPC-3 and PANC-1 cells. We

observed that overexpression of METTL3 increased the

expression of PD-L1, whereas shMETTL3 infection led to

downregulation of PD-L1 in pancreatic cancer cells

(Figure 7A). It has been known that METTL3 can regulate the

expression of lncRNA MALAT1. Next, we tested whether

METTL3 modulation can govern the expression level of
Frontiers in Oncology 07
lncRNA MALAT1 in pancreatic cancer cells. Indeed,

upregulation of METTL3 increased the MALAT1 level, and

downregulation of METTL3 reduced the expression of

MALAT1 in pancreatic cancer cells (Figure 7B). Moreover,

MALAT1 overexpression increased PD-L1 expression level,

while reduction of MALAT1 reduced PD-L1 level in

pancreatic cancer cells (Figure 7C). Taken together, METTL3

regulates the expression of PD-L1 partly due to regulation of

lncRNA MALAT1 in pancreatic cancer.
LncRNA MALAT1 regulates viability of
pancreatic cancer cells.

To define the role of lncRNA MALAT1 in regulation of

viability of pancreatic cancer cells, we used shMALAT1 or

MALAT1 cDNA to modulate the expression of MALAT1 in

pancreatic cancer cells. We found that shMALAT1 transfection

suppressed the expression of lncRNAMALAT1, while MALAT1

cDNA transfection elevated the expression of MALAT1 in

pancreatic cancer cells (Figures 7D, E). Moreover, increased
A B

D

C

FIGURE 4

StromalScore (A), ImmunoScore (B), EstinateScore (C) in the cluster1/2 subtypes are illustrated. (D): The signaling pathways are involved in
cluster1 and cluster2.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1004212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2022.1004212
expression of MALAT1 promoted the viability of BxPC-3 and

PANC-1 (Figure 8A). Furthermore, depletion of MALAT1

attenuated the cell viability at 48 h and 72 h in pancreatic

cancer cells (Figure 8B). Altogether, lncRNA MALAT1 regulates

viability of pancreatic cancer cells.
Discussion

Pancreatic cancer is one of the commonmalignant tumors of

the digestive tract and is known as the “king of cancer” in the

field of tumor (35). The current treatment methods are mainly

chemotherapy and surgery (36). However, the five-year survival

rate after diagnosis of pancreatic cancer is about 10%, and it is

one of the malignant tumors with poor prognosis (37).

Immunotherapy of PD-1/PD-L1 has brought the hope for the

treatment of pancreatic cancer (38). However, studies have

shown that pancreatic cancer has a special tumor immune

microenvironment, which brings challenges to immunotherapy
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and deserves further study (8). m6A methylation is the most

common form of mRNA modification and involves in

tumorigenesis (39). However, the role of m6A methylation in

pancreatic cancer and the relationship between m6A, PD-1 and

the infiltration of TIME in pancreatic cancer were unelucidated.

This study analyzed the relationship between m6A RNA

methylation regulators, PD-L1, prognosis and TIME in

pancreatic cancer. We found a total of 24 m6A genes that

were highly expressed in the tumor samples. PD-1/PD-L1 was

significantly associated with 20 m6A regulators. Subsequently,

we used consensus clustering to identify two subgroups (cluster

1 and cluster 2) and found that patients in cluster2 displayed

better prognosis than cluster1. Furthermore, cluster1 and

cluster2 may be associated with cell cycle, p53 pathway,

mismatch repair, RN degradation and Spliceosome. Notably,

we identified risk signatures, including GNL3, CAPRIN1,

METTL3, YWHAG, ALKBH5 and PCIF1.

A recent study found that there is a significantly increasing

of METTL3 expression in PDAC cells (40), and this is consistent
A B

D E

F G

C

FIGURE 5

(A) Univariate analysis of 24 regulators. (B, C) LASSO Cox regression algorithm. (D) The Kaplan-Meier curve of high risk and low risk group. (E)
Time-dependent ROC curves. (F, G) Univariate and multivariate Cox regression analysis of the risk scores in TCGA.
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with our study. Our findings suggested that the expression

difference of m6A RNA methylation regulator between tumor

and normal samples was significant. Moreover, other evidence

suggested that the upregulation of METTL3 can promote

proliferation and invasion of pancreatic cancer (41). The

chemical resistance in tumor cells will increase because of the

rising expression of METTL3 (42). More specifically, a study

pointed out that hypomethylation of the METTL3 promoter

leads to overexpression of METTL3, which cooperates with NF-
Frontiers in Oncology 09
kB activating protein (NKAP) to coordinate m6A modification

of the primary transcript of miR-25, making it mature miR-25-

3p. Moreover, miR-25-3p inhibits PHLPP2 and activates

oncogenic AKT-p70S6K signaling, and promotes the

occurrence and progression of pancreatic cancer (43).

METTL3 expression plays an important role in the TIME of

pancreatic cancer (44, 45).

METTL3 has been reported to regulate the expression of

PD-L1 in various cancer types. One study showed that METTL3
A

B

C

FIGURE 6

(A) Heatmap of clinicopathological features of pancreatic cancer cohort. (B) Distribution of risk scores stratified by cluster1/2. (C) The expression
of PD-1 and PD-L1 in tumors, cluster1/2 and high/low-risk groups. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, no significance.
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increased the expression of PD-L1 and intensified the malignant

phenotype in oral squamous cell carcinoma (46). Another group

identified that METTL3 can upregulate the expression of PD-L1

mRNA in breast cancer cells (47). In line with this report,

METTL3 also elevated the PD-L1 mRNA in bladder cancer

cells (48). In the present study, we found that METTL3 had a
Frontiers in Oncology 10
weak association with PD-L1 expression in pancreatic cancer

patients. Moreover, METTL3 positively regulates the expression

of PD-L1 in pancreatic cancer cells. METTL3 has been known to

upregulate the expression of MALAT1 in several cancer types.

METTL3 promoted the stability of MALAT1 and enhanced the

glioma progression (49). METTL3 targeted MALAT1/miR-26b/
A

B D

EC

FIGURE 7

The relationship between METTL3, lncRNA MALAT1 and PD-L1 in PADC cells. (A) Western blotting was used to measure the expression of PD-L1
in BxPC-3 and PANC-1 cells after METTL3 modulation. (B) RT-PCR was used to measure the expression of lncRNA MALAT1 in BxPC-3 cells after
METTL3 modulation. (C) RT-PCR was used to test the expression of PD-L1 in BxPC-3 cells after lncRNA MALAT1 changes. D-E: RT-PCR was
used to measure the expression of MALAT1 in BxPC-3 (D) and PANC-1 cells (E) after MALAT1 modulation. **p<0.01.
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HMGA2 axis and caused EMT and promotion of migration and

invasion in breast cancer (50). METTL3 regulated MALAT1/

E2F1/AGR2 pathway and subsequently controlled Adriamycin

resistance in breast cancer (51). We also found that METTL3

controlled the expression of MALAT1 in pancreatic cancer cells.

LncRNA MALAT1 upregulated the expression of PD-L1 via

sponging miR-195, leading to promotion of tumorigenesis in

diffuse large B cell lymphoma (52). MALAT1 elevated the PD-

L1 expression level via inhibition of miR-200a-3p, resulting in

non-small lung cancer progression (53). Our data showed that

MALAT1 can regulate the expression of PD-L1 in pancreatic

cancer cells. LncRNA MALAT1 has been found to maintain the

cancer stem cell-like properties in pancreatic cancer cells,

including self-renewing ability, chemoresistance and

angiogenesis (54). Han et al. reported that MALAT1 interacted
Frontiers in Oncology 11
with EZH2 and suppressed E-cadherin expression, leading to

EZH2-induced invasion and migration in pancreatic cancer

(55). Li et al. found that MALAT1 facilitated tumor cell

metastasis and proliferation via the promotion of autophagy in

pancreatic cancer (56). Zhang et al. revealed that miR-216a

triggered apoptosis and G2/M arrest in pancreatic cancer cells

via inhibition of MALAT1 expression (57). MALAT1

downregulation retarded pancreatic cancer progression via

targeting Hippo-YAP signaling pathway (58). Moreover,

MALAT1 was involved in efficacy of gemcitabine treatment in

pancreatic cancer patients (59). Recently, MALAT1 was identified

to govern pancreatic cancer progression via modulation of miR-

129-5p (60). In the current study, we found that depletion of

MALAT1 reduced cell viability, whereas overexpression of

MALAT1 enhanced viability of pancreatic cancer cells.
A

B

FIGURE 8

LncRNA MALAT1 regulates viability of pancreatic cancer cells. (A) CCK-8 assay was used to measure the viability of BxPC-3 and PANC-1 cells
after MALAT1 overexpression. (B) CCK-8 assay was conducted to measure the viability of BxPC-3 and PANC-1 cells after MALAT1
downregulation. **p<0.01.
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Conclusion

In summary, this study is the first time to apply a

bioinformatic approach to describe the relationship between

m6A and PD-L1 and the TIME in pancreatic cancer. There is

a limitation that this work mainly used a bioinformatic strategy

to explore the association among m6A, PD-L1 and TME in

pancreatic cancer. The role of METTL3 in pancreatic cancer

development should be validated in animal study and clinical

tissue samples. The mechanism of lncRNA MALAT1-mediated

pancreatic oncogenesis should be dissected. How METTL3

regulates PD-L1 expression via regulation of lncRNA

MALAT1 is required to be determined in the future.
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