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Adaptions to therapeutic pressures exerted on cancer cells enable malignant

progression of the tumor, culminating in escape from programmed cell death

and development of resistant diseases. A common form of cancer adaptation is

non-genetic alterations that exploit mechanisms already present in cancer cells

and do not require genetic modifications that can also lead to resistance

mechanisms. Epithelial-to-mesenchymal transition (EMT) is one of the most

prevalent mechanisms of adaptive drug resistance and resulting cancer

treatment failure, driven by epigenetic reprogramming and EMT-specific

transcription factors. A recent breakthrough in cancer treatment is the

development of KRASG12C inhibitors, which herald a new era of therapy by

knocking out a unique substitution of an oncogenic driver. However, these

highly selective agents targeting KRASG12C, such as FDA-approved sotorasib

(AMG510) and adagrasib (MRTX849), inevitably encounter multiple

mechanisms of drug resistance. In addition to EMT, cancer cells can hijack or

rewire the sophisticated signaling networks that physiologically control cell

proliferation, growth, and differentiation to promote malignant cancer cell

phenotypes, suggesting that inhibition of multiple interconnected signaling

pathways may be required to block tumor progression on KRASG12C inhibitor

therapy. Furthermore, the tumor microenvironment (TME) of cancer cells, such

as tumor-infiltrating lymphocytes (TILs), contribute significantly to immune

escape and tumor progression, suggesting a therapeutic approach that targets

not only cancer cells but also the TME. Deciphering and targeting cancer

adaptions promises mechanistic insights into tumor pathobiology and

improved clinical management of KRASG12C-mutant cancer. This review

presents recent advances in non-genetic adaptations leading to resistance to

KRASG12C inhibitors, with a focus on oncogenic pathway rewiring, TME,

and EMT.
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Introduction

Lung cancer is the most commonly diagnosed malignancies

and the leading cause of cancer death worldwide, with 5-year

survival rates still below 15% (1). The majority of patients with

lung cancer are diagnosed with non-small cell lung cancer

(NSCLC), which has benefited significantly from biomarker-

guided targeted therapies (2). For example, EGFR tyrosine

kinase inhibitors (e.g., gefitinib, erlotinib, and afatinib) and

ALK tyrosine kinase inhibitors (e.g., crizotinib, ceritinib) have

demonstrated superior objective response rates and significant

better progression-free survival in NSCLC patients harboring

epidermal growth factor receptor (EGFR) mutations or

anaplastic lymphoma kinase (ALK) rearrangements than

conventional one-fit-all chemotherapy (3, 4).

KRAS is the most frequently mutated oncoprotein in human

cancers, affecting 25% to 30% of patients with NSCLC (5).

Ironically, unlike the oncoproteins EGFR and ALK, which are

less prevalently altered in NSCLC, there are few targeted

therapies for KRAS-mutant NSCLC, and few clinical studies

have specifically addressed this largest NSCLC subpopulation (6,

7). To date, direct inhibition of various mutant KRAS proteins

has been a clinical challenge (7). Farnesyl transferase inhibitors

designed to specifically inhibit KRAS by disrupting the protein’s

association with the plasma membrane, showed little clinical

efficacy, as did agents targeting effector proteins downstream of

KRAS, such as the coveted RAF-MEK-ERK (MAPK) signaling

pathway (8, 9).

The revolution in the fighting against KRAS-mutant cancers

occurred in 2012 when a breakthrough study showed that KRAS

with G12C (glycine to cysteine) substitution can be targeted by a

group of small molecules that bind covalently to the substituted

cysteine in the Switch-II pocket of the protein (10) (Table 1).

This finding provided the impetus for further studies that

eventually culminated in the FDA approval of the first KRAS

inhibitor, sotorasib (AMG510), for the treatment of locally

advanced or metastatic lung cancer with KRASG12C mutation,

putting an end to the legend of “undruggable RAS proteins” (11).
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Since these inhibitors preferentially target GDP-bound KRAS

(inactive form), a prerequisite for their efficacy is that KRASG12C

retains GTPase activity, which converts the allosteric switch of

KRASG12C from a GTP-bound to a GDP-bound conformation

with assistance of GTPase-activating proteins (GAPs) such as

neurofibromin 1 (NF1) (12, 13).

Despite this milestone, there is still an unmet need to target

other KRAS-mutant alleles (e.g., G12D, G12V, G13D, and

Q61H). In addition, KRASG12C inhibitors are confronted with

low response rates (intrinsic resistance) and development of

resistant disease (acquired resistance) (14–17). While intrinsic

resistance occurs due to preexisting clonal cancer cells that are

refractory to and outgrow upon treatment, cancer cells can also

develop the phenotype of adaptive or acquired resistance during

treatment. The general concept of intrinsic and acquired

resistance to anticancer therapy Has been very recently

reviewed elsewhere (18).

Cancer cells can develop drug resistance by acquiring novel

genetic alterations that promote tumor growth, such as a novel

missense mutation of the KRAS protein other than KRASG12C or

at a site that affects the Switch-II pocket (S-IIP) conformation, or

amplification of upstream receptor tyrosine kinases (RTKs) (19).

Here, we focus on the mechanisms of resistance to KRASG12C

inhibitor therapy driven by phenotypic plasticity and the

identification of alternative strategies to overcome resistance.

First, cancer cells can use non-genetic adaptions to counteract

targeted inhibition of KRASG12C because oncogenic pathways

are woven into intricate signaling circuits, allowing alternative

pathways to assume the role of maintaining proliferating

activities upon the inhibition of one pathway. Second, the

tumor microenvironment (TME) of cancer cells, such as

tumor-infiltrating lymphocytes (TILs), contribute significantly

to immune escape and tumor progression, suggesting a

therapeutic approach that targets not only cancer cells but also

the TME. Third, EMT, an important phenotypic plasticity

program, has been identified as a major cause of both intrinsic

and acquired resistance to KRASG12C inhibitors, as well as

inhibition of the MAPK pathway (20–22). This type of
TABLE 1 KRASG12C inhibitors.

KRASG12C inhibitor Chemical name Drug name Trade name(s)

1st generation ARS853 – –

2nd generation ARS1620 – –

In clinical trial AMG510 Sotorasib Lumakras, Lumykras

MRTX849 Adagrasib –

HBI-2438 – –

JAB-21822 – –

JDQ443 – –

D-1553 – –

HS-10370 – –
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adaption take advantage of mechanism already present in cancer

cells and does not require genetic modifications.

Recent evidence has shown that cancer cells can employ

multiple mechanisms driven by non-genetic adaptations to

counteract therapeutic pressure. Fully deciphering these

mechanisms will provide new approaches to prevent cancer

cells from escaping programmed cell death and to restore their

suscept ib i l i ty to KRASG12C-targeted therapy (23) .

Interestingly, the adaptive response of cells to cancer therapy

has in part in common with the phenotypic plasticity by which

cancer cells evolve during metastasis (reviewed in (24)). In this

context, it has been proposed that the biological pathways

underlying the phenotypic plasticity of scattered tumor cells

during metastasis can be classified into five categories, e.g.,

EMT, stemness, metabolism, dormancy, and host-organ

mimicry (25). In this review, we extend this concept of

phenotypic plasticity and specifically addresses therapy-

induced plasticity of cancer cells (e.g., rewiring of oncogenic

signaling pathways, phenotypic switching, and remodeling of

the TME) in the context of resistance to KRASG12C inhibitors.

In particular, we focus on the causal contribution of oncogenic

signaling bypass, the symbiotic interaction between cancer cells

and TME and EMT, and strategies to improve KRASG12C

inhibitor therapy.
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Non-genetic adaptive resistance to
krasG12C inhibition: bypassing
oncogenic signaling pathways

RAS proteins (KRAS, NRAS, and HRAS) transduce extracellular

signals from upstreamRTKs to downstream signaling pathways, with

the mitogen-activated protein kinase (MAPK) cascade RAF-MEK-

ERK and the PI3K-AKT-mTOR pathway being best studied (26).

Although both pathways play critical roles in cell proliferation and

survival, the MAPK pathway is considered the major downstream

effector of RAS proteins (Figure 1).

The RAF-MEK-ERK and PI3K-AKT-mTOR pathways

negatively interact with each other and thus may compensate

when one of them is inhibited (27). Indeed, ARS1620, a second-

generation covalent inhibitor of KRASG12C, has been reported to

synergize in vitro and in vivo with several PI3K inhibitors in

KRASG12C mutant cancer cells (e.g., HCC44, H2122 and SW1573)

that exhibit intrinsic resistance to ARS1620 (28). That RAF/MEK/

ERK and PI3K/AKT/mTOR are tightly intertwined and

compensate for each other has been further confirmed by the

combinatorial effects of MEK and AKT inhibitors in RAS-

mutated multiple myeloma, which significantly increased

apoptotic cell death compared with single agents (29).
FIGURE 1

Oncogenic KRAS signaling pathway. KRAS switches between the GDP-bound inactive form and the GTP-bound active state, which is facilitated
by GEFs and GAP, respectively. Activated RTKs relay extracellular signals from GRB2 to SOS, one of the major GEFs, to SHP2 and to KRAS.
KRASG12C inhibitors (AMG510, MRTX849, etc.) preferentially target the GDP-bound inactive form of the KRAS protein and prevent its conversion
to the active form (GTP-bound). The major signaling cascades upstream and downstream of KRAS are also highlighted. GAP, GTPase-activating
protein; GEFs, guanine nucleotide exchange factors; GRB2, growth factor receptor-bound protein 2; P, phosphorylation; SHP2, Src homology
region 2 domain-containing phosphatase-2; SOS, son of sevenless protein.
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Inhibition of RAS-RAF-MEK-ERK signaling may also

adaptively activate upstream RTKs by eliminating negative

feedback loops, thereby activating other KRAS downstream

effectors such as mTOR signaling and bypassing RAS-RAF-

MEK-ERK, and promoting resistance to KRASG12C inhibitors.

Indeed, it has been shown that ARS1620 downregulates the

phosphorylation sites of EGFR that is inhibitory for EGFR

activity. Moreover, ARS1620 could downregulate multiple

inhibitory phosphorylation sites of HER2/3 and increased the

total level of HER2/3 (30), suggesting that KRASG12C inhibition

can abrogate EGFR/HER2/3 blockage and facilitate their

activation. As a result, the combination of adagrasib

(MRTX849) with EGFR or ERBB inhibitors was significantly

better than single agents in xenograft models of KRASG12C-

mutant H2122 (NSCLC) and KYSE-410 (esophageal carcinoma)

(31). Moreover, the anti-tumor efficacy of sotorasib is enhanced

by the EGFR inhibitor cetuximab, as the drug combination

significantly reduces cell viability in vitro and potently

suppresses tumor growth in a patient-derived xenograft (PDX)

model (32).

FGFR1 has also been reported to influence the response to

KRASG12C inhibitors. In KRASG12C models, combined FGFR

inhibitors with ARS1620 showed synergistic effects in

mesenchymal subsets (30). MET, also known as hepatocyte

growth factor receptor (HGFR), may play a similar role: it can

activate RAS via GEFs. Independent of RAS, MET induces AKT

activation, and its amplification has been shown to lead to

AMG510 resistance in NSCLC cells. The combination of MET

and KRASG12C inhibitors was able to limit tumor growth in

xenograft models (33).

Inhibition of other nodes of the RAS-RAF-MEK-ERK axis

also has the potential to increase the efficacy of KRASG12C

inhibitors. A synergistic effect has been observed by dual

inhibition of MEK and FGFR1 in genetically engineered

mouse models, and an increase in FRS2, the FGFR adaptor

protein, has been reported to promote KRASG12C inhibitor

resistance (9, 34). Combined inhibition of BRAF and EGFR

effectively improves the response of BRAF(V600E) colon cancers

to BRAF inhibitors (35). Upregulation of EGFR and platelet-

derived growth factor receptor (PDGFRb) by TGF-b signaling

leads to resistance to BRAF and MEK inhibitors (36), and

upregulation of PDGFRa by the Sonic Hedgehog Homolog

(Shh) pathway confers resistance to BRAF inhibition in

metastatic BRAF(V600E) melanoma (37). Similarly, co-

targeting MEK and SHP2 intensively blocks RTK-RAS

signaling and is superior to inhibiting individual RTKs as

RTKs phosphorylate and activate SHP2 and promote signaling

from SOS1/2 to RAS (38).

KRASG12C inhibitors bind to the GDP-bound inactive KRAS

protein, so upstream signaling molecules that promote the

allosteric switch from the inactive to the active conformation

of the protein also promote resistance to KRASG12C inhibitors.

SOS1 is a guanine nucleotide exchange factor (GEF) that
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activates RAS, and SHP2 (SH2 containing protein tyrosine

phosphatase-2) is a tyrosine phosphatase that activates SOS1-

regulated RAS-GTP loading. As an overlapped node in RTKs to

RAS cycle, it is not surprisingly that these factors are now being

targeted as a new therapeutic framework, with improved anti-

tumor efficacy observed by co-targeting SHP2 and KRASG12C,

regardless of ARS1620, AMG510, or MRTX849 (19, 39, 40).

Several novel signaling pathways have been shown to

compensate for KRAS signaling. Polo‐like kinase 1 (PLK1) is a

serine/threonine kinase with pleiotropic functions in mitosis and

in response to DNA damages by regulating ataxia-telangiectasia

mutated (ATM) and ATM- and Rad3-Related (ATR) checkpoint

activity. Inhibition of PLK1 leads to synthetic lethality in RAS-

mutant cells because RAS mutations are associated with mitotic

stress, rendering RAS-mutant cells more dependent upon on

PLK1 activity for proper mitotic progression (41). We have

recently shown that dual inhibition of PLK1 and FGFR1 has

synergistic anticancer effects in KRAS-mutant cancer cells, as

FGFR1 and PLK1 cooperate control the metabolic stress

associated with KRAS mutation (42). We summarize recently

identified targets and strategies that improve KRASG12C

inhibitor therapy in Table 2.

Non-genetic adaptive resistance
krasG12C inhibition: symbiosis of
cancer cells with the TME

The tumor microenvironment (TME), the niche

surrounding the cancer cells, consists of normal resident cells,

immune cells, fibroblasts, stromal cells, blood vessels, signaling

molecules, metabolites, and the extracellular matrix (ECM).

Tumor and the TME co-exist as a symbiotic unit and

constantly interact, which plays a critical role in defense

against external stimuli such as anticancer drugs (Figure 2).

Tumor cells even recruit immune cells as “partners in crime”.

Although the mechanisms underlying immune escape are not

fully understood, it has been shown that tissue-resident

macrophages protect cancer cells from immune surveillance by

upregulating regulatory T-cell (Treg) responses (43).

Remodeling TME significantly affects tumor response to

anticancer drugs, which involves not only immune cells but

also other symbiotic components such as coagulation and

angiogenesis. RAS/PI3K promotes the expression of angiogenic

factors, e.g., vascular endothelial growth factor A (VEGFA), via

cyclooxygenase 2 (COX2) (44) and activation of tumor

angiogenesis and coagulation pathways leads to adaption to

sotorasib (45). Consequently, COX2 inhibition via PI3K

impairs anti-angiogenesis.

The programmed death-1 (PD-1)/PD-1 ligand 1 (PD-L1)

axis expressed on activated T cells and cancer cells functions as

an immune checkpoint. The interaction of PD-L1 with PD-1

silences the T cells, resulting in so-called tumor-induced
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immunosuppression (46). PD-1/PD-L1 inhibitors prevent the

interaction, reactivate T cell function, and kill cancer cells. Other

immune checkpoints such as T-cell immunoglobulin mucin-3

(Tim-3) and transmembrane glycoprotein NMB (GPNMB),

increase sharply after PD-1/PD-L1 blockade, and inhibition of

Tim-3 or GPNMB can reverse anti-PD-1 treatment failure (47,

48). After 24-h exposure to an anti-PD-1 antibody (10 mg/ml) on

tumor-infiltrating lymphocytes (TILs), Tim-3 expression was

increased by 50% and 40% in CD8+ T cells and in CD4+CD25low/

− effector T cells, respectively (49). It was reported that Tim-3

activation is mediated by PI3K/AKT/mTOR, which plays a key

role in inflammatory response (50), and that SHP2 inhibition
Frontiers in Oncology 05
increases the ratio of CD8+/Treg cells and sensitize tumors to

PD-1 inhibition in pancreatic ductal adenocarcinoma (PDAC)

and NSCLC models (39).

In a syngeneic KRASG12C colon cancer model, the number

of total and proliferating CD3+ T cells as well as CD8+ T cells

increased after AMG510 treatment, suggesting remodeling of

the TME by AMG510. AMG510 plus PD-1 inhibitors resulted

in long-term tumor-specific T cell responses (51, 52). However,

a reduction of adaptive immune responses was also observed in

sotorasib-resistant tumors, and immune escape may be a

crucial factor contributing to KRASG12C inhibition

resistance (45).
FIGURE 2

Symbiosis between cancer cells and the tumor microenvironment (TME). The infiltration and ratio of different lymphocytes are determined by
the antigen presentation of cancer cells, which in return influences tumor growth and response to therapy. Hypoxia-inducible factors (HIF) and
metabolites (e.g., lactate) also play a key role in reprogramming the TME of cancer. CD3+ T-lymphocyte: T cells that mediate the activation of
tumor-reactive T cells, e.g., CD8+ naive T cells and CD4+ naive T cells. CD4+ T lymphocyte: also called T helper cell, which remodels TME by
releasing cytokines and mediates the anti-tumor response of CD8+ T cells by cross-presentation of dendritic cells. CD8+ T lymphocytes: also
called cytotoxic T cell, the specific killer that targets the surveilled cancer cells. Treg cells: also called suppressor T cells, a subpopulation
of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Treg cells are
immunosuppressive and generally suppress or downregulate the induction and proliferation of effector T cells. Treg cells express CD4, FOXP3,
and CD25 and are thought to be derived from the same lineage as naïve CD4+ cells. Since effector T cells also express CD4 and CD25, it is
difficult to effectively distinguish Treg cells from effector CD4+ cells, making them difficult to study.
TABLE 2 Targets and strategies to improve the efficacy of KRASG12C inhibitors.

RAS signaling nodes Combination target Reference

KRAS-G12C PI3K/AKT/mTOR Misale, S., et al. (28)

SHP2/SOS Lou, K., et al. (40), Fedele, C., et al. (39),
Hallin, J., et al. (31), Solanki, H.S., et al. (30)

EGFR Hallin, J., et al. (31), Amodio, V., et al. (32)

HER2/HER3 Solanki, H.S., et al.( 30), Ho, C.S.L., et al.(2021)

FGFR Solanki, H.S., et al.( 30)

MET Suzuki, S., et al. (33)

MAPK BRAF
MEK

EGFR Prahallad, A., et al. (35)

PDGFRa/PDGFRb Sun, C., et al. (36), Sabbatino, F., et al. (37)

FGFR Manchado, E., et al. (9), Lu, H., et al. (34)

SHP2/SOS Fedele, C., et al. (38)
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Non-genetic adaptive resistance
krasG12C inhibition: EMT and other
transcriptional/post-transcriptional
adaptions

Epithelial-to-mesenchymal transition (EMT) is the

manifestation of a series of epigenetic and biochemical

alterations that enable the phenotypic change from an epithelial

to a mesenchymal cell phenotype (53). A variety of biochemical

drivers can lead to this progression, e.g., transforming growth

factor-beta (TGF-b), tumor necrosis factor-alpha (TNF-a),
hypoxia-inducible factor-alpha (HIF-a), Wnt signaling,

Interleukins (IL-1b, IL-6), Hedgehog, and the Hippo pathway

(54–56), and impart cancer cells with properties of mesenchymal

stem cells, drug resistance and invasiveness (Figure 3).

Long-term exposure to TGF-b increased the ratio of GTP-

bound KRAS protein level in KRASG12C mutant malignancies, as

did in Twist- or Snail-expressing mesenchymal cells. In KRASG12C

mutant cancers, the amount of GTP-bound KRAS proteins

determines the sensitivity to KRASG12C inhibitors, which interacts

with and blocks KRASG12C when it is in the inactive GDP-bound

state (Figure 1), so an increased ratio of KRAS-GTP versus KRAS-

GDP cause resistance to KRASG12C inhibitors (20, 57).

Regardless of inhibiting KRAS itself or the downstream

MAPK pathway, EMT is blameworthy for drug resistance (45).
Frontiers in Oncology 06
Activation of the PI3K pathway in mesenchymal-like KRASG12C

mutant cancer cells could be the molecular basis for EMT-

mediated resistance or, alternatively, could be due to a cell cycle

alteration leading to CDK4-dependent growth (58). Cells

expressing high levels of CSNK2A1 (Casein Kinase 2 Alpha 1)

were found to have an increased mesenchymal gene signature,

and reduction of CSNK2A1 converted the cells to the epithelial

type and restored their sensitivity to KRASG12C or MEK

inhibitors (59). Therefore, strategies that promote

mesenchymal-to-epithelial transition (MET) are promising to

overcome resistance to KRASG12C inhibitors.

The KRAS-MAPK axis has been shown to be associated with

immune checkpoint activity through a mechanism that controls the

post-transcriptional functions of immune checkpoint proteins. PD-

L1 is encoded by CD274 and MAPK signaling has been shown to

play a critical role in stabilizing CD274 mRNA, increasing PD-L1

protein levels and consequently promoting peripheral immune

tolerance (60). As a result, inhibition of the RAS-MAPK pathway

prevents EGF- and IFNg-induced PD-L1 expression by suppressing
CD274 mRNA and augments the efficacy of immunotherapy (51,

52, 61). More importantly, tumor cells undergoing EMT can escape

immune surveillance, suggesting that EMT is involved in the

acquisition of resistance to immunotherapy (62). Indeed, Snail

has been associated with the induction of immunosuppressive

cytokines, activation of regulatory T cells (Treg), and the

generation of impaired dendritic cells (63). EMT in tumor cells
FIGURE 3

The interaction between KRAS signaling and EMT. The KRAS-MAPK pathway is important for the stability of CD274 (PD-L1) mRNAs. KRAS
signaling and YAP/TAZ converge to activate transcriptional programs that regulates EMT and EMT is a key driver of tumor immune evasion.
IGFR, insulin-like growth factor receptor; FGFR1, fibroblast growth factor receptor 1; TGF-b, transforming growth factor-beta; IFN-g, interferon
gamma; TNF-a, tumor necrosis factor-alpha; HIF-a, hypoxia-inducible factor-alpha; IL-6, interleukins 6; SNAI1, snail family transcriptional
repressor 1.
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that have undergone phenotypic changes has significant effects on

the recognition of cancer cells by the native and adaptive immune

systems. Both down- and up-regulation of cell surface molecules

with immunological significance have been described (64). In

general, these changes are accompanied by immune resistance

and evasion, although exceptions to this rule have also been

reported (Figure 3).

Yes-associated protein (YAP) and TEA domain 2 (TEAD2)

are a transcriptional co-regulator and a downstream effector of

Hippo signaling pathway, respectively, that play critical roles in

controlling the expression of several EMT-related genes and have

been reported to confer resistance to multiple drugs (65, 66). The

relationship between YAP and the RAF/MEK/ERK cascade was

discovered by genetic screens, which showed that the inhibitory

combination of RAF or MEK with YAP has increased efficacy not

only in BRAF-mutant cancers but also in KRAS-mutant cancers

(67). In a KRASG12C mutant PDAC model, inhibition of YAP1

improves the efficacy of KRAS blockade (68).

c-MYC is another oncogenic transcription factor being

involved in crucial processes such as metabolic reprograming,

extracellular matrix remodeling, inflammation, and regulation of a

variety of malignant features in cancer (69). KRAS controls c-

MYC by stabilizing the protein stability and activation of c-MYC

in turn promotes KRAS-driven oncogenic potential. For example,

KRASG12C promotes cap-dependent translation initiation and c-

MYC is an indirect indicator of the process (70). Further, KRAS

and c-MYC cooperate to drive an immunosuppressive TME in

cancer development, leading to increase in macrophage

infiltration of tumours and decrease in CD3+ T cells, B cells

and natural killer (NK) cells. These changes in the TME precede

an increase in tumour size and are promoted by tumour cell-

derived CC-chemokine ligand 9 (CCL9) and interleukin−23 (IL

−23). Depletion of these cytokines can reduce tumour

development as CCL9 is crucial for infiltration of macrophages,

angiogenesis and T cell loss, and IL−23 is crucial for loss of T, B

and NK cells. Infiltrating macrophages also express PD-L1, which

is required for loss of T cells. Consequently, Myc deactivation

rapidly reverse the observed stromal changes and induce tumour

cell apoptosis and NK cell-dependent regression of Kras-driven

lung adenocarcinoma in mice (71).

Overexpression of c-MYC in cancers leads to extracellular

matrix (ECM) degradation and promotes angiogenesis, which in

turn contributes to malignant invasion and metastasis. Overall,

deregulation of c-MYC not only drives an oncogenic signaling in

cancer cells, but also impinges on the TME by linking cellular

signaling pathways, EMT, and the TME (72, 73). Thus, it is not

surprising that amplification of the MYC gene results in drug

resistance to KRASG12C inhibition (70).
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Conclusion

The development of covalent inhibitors that effectively and

selectively target KRASG12C represents an unprecedented

breakthrough in the personalized treatment of patients with

KRAS-mutant cancers. This advance has ushered in a new era of

targeted therapy that distinguishes the G12C mutation from

other KRAS mutations (e.g., G12D, G12S, G12V, Q61H),

resulting in selective eradication of KRASG12C-mediated

oncogenic signal ing without affect ing other KRAS

substitutions and normal tissues. However, the perennial

problem of resistance to targeted therapies also apply here,

pointing to the pressing need to explore and therapeutically

exploit the underlying mechanisms to overcome resistance to

and maximize the efficacy of KRASG12C inhibitor therapy.

Current evidence suggests a multifaceted mechanism of

resistance to KRASG12C inhibitor therapy that involves both

tumor-intrinsic and -extrinsic processes. In addition to

resistance mechanisms driven by genetic alterations in cancer

cells, non-genetic adaptations mediated by rewiring of

oncogenic signaling pathways, reciprocal interactions between

cancer cells and TME, and phenotypic plasticity such as EMT

are among the key strategies used by cancer cells to acquire a

stem cell phenotype, an immunosuppressive niche, and, in

particular, drug resistance.

Because the central role of KRAS is mediated by diverse

cellular processes that not only occur in cancer cells but also

involve the TME, this versatility of KRAS effector pathways is

destined to dictate diverse adaptions that can be undertaken

under treatment pressure. A comprehensive and in-depth

understanding of resistance mechanisms will ultimately and

profoundly transform the therapeutic landscape of KRASG12C

inhibitors, although neither a universal solution nor limited

versatility of mode of action is likely. This underscores the

heterogeneity of KRASG12C-mutant tumors and the need to

consider other factors, such as genetic alterations co-occurring

with KRASG12C that contribute to drug resistance, in

developing precision medicine. Combination therapy holds

the potential to increase efficacy and selectivity, reduce

single-drug dosing, decrease the development of drug

resistance, and possibly avoid toxicity, and thus has emerged

as an effective strategy for the treatment of refractory cancers.

Nevertheless, the advent of potent and selective inhibitors for

KRASG12C is definitely not the beginning of the end, but the

end of the beginning for the era of precision medicine, as this

breakthrough has spurred the search for mutation-specific

targeted therapies, as evidenced by the most recent

development of KRASG12D inhibitors (74).
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