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Gastric cancer (GC) is a major global health issue and one of the leading causes

of tumor-associated mortality worldwide. Autophagy is thought to play a

critical role in the development and progression of GC, and this process is

controlled by a set of conserved regulators termed autophagy-related genes

(ATGs). However, the complex contribution of autophagy to cancers is not

completely understood. Accordingly, we aimed to develop a prognostic model

based on the specific role of ATGs in GC to improve the prediction of GC

outcomes. First, we screened 148 differentially expressed ATGs between GC

and normal tissues in The Cancer Genome Atlas (TCGA) cohort. Consensus

clustering in these ATGs was performed, and based on that, 343 patients were

grouped into two clusters. According to Kaplan–Meier survival analysis, cluster

C2 had a worse prognosis than cluster C1. Then, a disease risk model

incorporating nine differentially expressed ATGs was constructed based on

the least absolute shrinkage and selection operator (LASSO) regression analysis,

and the ability of this model to stratify patients into high- and low-risk groups

was verified. The predictive value of the model was confirmed using both

training and validation cohorts. In addition, the results of functional enrichment

analysis suggested that GC risk is correlated with immune status. Moreover,

autophagy inhibition increased sensitivity to cisplatin and exacerbated reactive

oxygen species accumulation in GC cell lines. Collectively, the results indicated

that this novel constructed risk model is an effective and reliable tool for

predicting GC outcomes and could help with individual treatment through

ATG targeting.
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Introduction

With more than 1 million new cases diagnosed annually and

approximately 783,000 deaths reported in 2018, gastric cancer

(GC) is considered the fifth most common malignancy and the

third leading cause of cancer-related mortality globally (1, 2).

Currently, the predominant treatment strategies for GC are

surgery, chemoradiotherapy, molecular-targeted therapies,

and immunotherapy (3, 4). Despite great improvements

in treatments, the current therapeutic strategy remains

unsatisfactory (5). Owing to the lack of specific diagnostic

biomarkers for GC, most initially asymptomatic patients are

diagnosed at the late stages of the disease and thus have a poor

prognosis (6). To date, prognostication in oncology has been

largely based on tumor-node-metastasis (TNM) staging

guidelines (7). Nevertheless, the high heterogeneity of GC

could lead to distinct clinical outcomes for patients even if

they have similar clinicopathological characteristics, suggesting

that the current TNM staging guidelines are not satisfactory

prognostic tools for disease risk stratification (8, 9). Therefore, to

ameliorate the typically poor outcomes of patients with GC, new

prognostic models that utilize novel biomarkers to stratify GC

patients are urgently needed.

Great progress has been made in recent years in terms of

understanding tumor pathogenesis and progression, particularly

the effects of autophagy in cancers (10). Autophagy was

originally defined by de Duve in 1963 as the programmed self-

digestion of the cell (11). Autophagy, which serves as a primary

mechanism for the maintenance of cellular homeostasis, can be

viewed as a critical lysosome-dependent catabolic process in

eukaryotic cells and is responsible for the turnover of organelles

and proteins through lysosomal degradation (12, 13). There have

been several reports of the correlation between autophagy and

poor prognosis, increased metastasis, and chemoresistance (14,

15). Excessive autophagy can trigger type II programmed cell

death, which differs from other programmed cell death

processes, such as apoptosis and ferroptosis (16, 17).

Accumulating evidence indicates that abnormal autophagy is

involved in multiple types of cancer, including esophageal,

gastric, and breast cancer (18–20). In contrast to other

cancers, GC is characterized by an elevated level of autophagy,

which could account for the associated high rates of cell death

(21, 22). We thus reasoned that the induction of autophagic cell

death in cancer cells holds promise as a useful supplement to

current treatments for GC and that the identification of

molecular-defined targets might help improve the prognosis of

patients with GC.

In the past decade, autophagy has attracted much interest as

a research topic, leading to the discovery of a large number of

autophagy-related genes (ATGs) that control this process (23).

Previous studies have shown that the expression levels of several

ATGs (e.g., Beclin1, LC3, and P62/SQSTM1) significantly affect

the prognosis of GC (24–26). Therefore, we reasonably inferred
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that ATGs might be promising tools for GC prognostication.

Given the heterogeneity of disease severity and outcomes of GC,

a multigene-based prognostic model is expected to be superior to

previous single-gene biomarkers in predicting GC outcomes.

Therefore, we established a risk model based on nine ATGs,

which might provide more options for predicting the prognosis

of GC and offer clinicians more promising therapeutic targets.

We first clustered patients with GC after analyzing the

expression levels of ATGs from TCGA database. The least

absolute shrinkage and selection operator (LASSO) regression

analysis was then performed to screen ATGs that were markedly

survival-related, and a nine-gene prognostic model was

confirmed to have the ability to stratify patients into different

risk groups. The specificity and sensitivity of the model were

verified using a Gene Expression Omnibus (GEO) cohort, and

the performance of the new model was assessed using a receiver

operating characteristic (ROC) curve and Kaplan–Meier (K–M)

survival analysis. Finally, we compared immune infiltration

activity between the subgroups. Moreover, we found that

autophagy inhibition increased sensitivity to cisplatin (DDP)

and exacerbated reactive oxygen species (ROS) accumulation in

GC cell lines. Collectively, our results showed that the

established prognostic model provides an effective and

trustworthy strategy for outcome prediction in GC and might

help with individual treatments targeting ATGs.
Methods

Datasets

The GC samples were obtained from TCGA Data Portal

(https://portal.gdc.cancer.gov/repository). According to the 14th

and 15th digits of the sample barcode, tumor tissues ranged from

01-09 and normal tissues from 10-19. Finally, the transcriptome

profiles of 343 tumor samples and 30 normal samples were

extracted from TCGA database. The RNA-seq data and the

corresponding clinical information were acquired for further

research. For validation, the GSE84437 dataset and GSE26942

dataset were retrieved from the Gene Expression Omnibus

(GEO dataset https://www.ncbi.nlm.nih.gov/geo/). The FPKM

values of TCGA-STAD were transformed into transcripts per

kilobase million.
Defining differentially expressed ATGs

232 ATGs were collected from the Human Autophagy

Database (http://www.autophagy.lu/index.html) which were

listed in Table S1. Gene expression values were log2

transformed, then the differentially expressed genes (DEGs)

between GC and adjacent normal tissues were identified by the

“limma” package with |logFC| ≥1 and adjusted p< 0.05 (Table
frontiersin.org
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S2). For visualizing the differences in gene expression, a heatmap

was performed with the “pheatmap” R package. Utilizing the R

program “igraph” and “reshape2”, the correlation of DEGs was

examined, and the results were presented in the expressional

correlation networks with the cutoff score of 0.4. Protein-protein

interaction (PPI) network for the DEGs with an interaction score

of 0.9 was built by using the Search Tool for the Retrieval of

Interacting Genes (STRING v11.5, https://cn.string-db.org/).
Consensus clustering analysis of ATGs

In TCGA cohort, consensus clustering was employed to

cluster GC patients into two clusters by the R packages “limma”

and “ConsensusClusterPlus” based on the expression of ATGs.

The optimal cluster number k = 2 was selected according to the

cumulative distribution function. Variances in clinical

characteristics of the two clusters were explored by the chi-

squared test and “survival” package. The heatmap and K–M

curves visualized the results via R packages “pheatmap”,

“survival”, and “survminer”.
Establishing and validating the
prediction model

The prognostic and predictive value of DEGs were examined

by the univariate Cox analysis in TCGA cohort. Then, 17 ATGs

were identified as significantly survival-related genes with

p<0.001. To prevent overfitting, the LASSO regression analysis

was performed with the R package “glmnet”. Ultimately, nine

candidate genes with their corresponding coefficients were kept.

The penalization parameters (l) were assessed by tenfold cross-

validation based on minimum criteria. We established the final

model according to the optimal l which achieved the highest

mean cross-validation areas under the curves (AUC). Then we

assigned every patient a risk score with the formula below: risk

score = o
n

k=1

exp k*l   (where n, exp k, and l represent the gene

number, gene expression level, and the coefficient of gene

k, respectively). The median cut-off of the risk score

was considered to allocate patients into two different risk

subgroups. Principal component analysis (PCA) and t-

Distributed Stochastic Neighbor Embedding (t-SNE) analysis

(R package “Rtsne” and “ggplot2”) visualized the distribution of

two subgroups in terms of gene expression level. Besides, the K–

M curves (“survminer” R package) and the time-dependent ROC

curves (“timeROC” packages) were plotted to appraise the

clinical value. To further validate the prognostic model, we

carried out the same formula of the risk score in the GEO

database (GSE84437) and found that patients were also divided

into low- or high-risk subgroups. The model’s performance was

examined in the validation cohort as well.
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Analysis of the expression levels of
modeling genes

Protein expression levels of modeling genes were analyzed

from the Human Protein Atlas (HPA, https://www.proteinatlas.

org) , which involves immunohis tochemistry data .

Immunohistochemical images of the proteins between normal

and GC tissues were downloaded for omparisons. The

microarray data of the GSE26942 dataset was downloaded

from the GEO database (http://www.ncbi.nih.gov/geo) for

additional validation at the transcriptional level.
Evaluation of independent prognostic
factors in GC patients

To identify risk factors associated with survival, univariate

and multivariate Cox regression analyses were performed with R

package "survival" in TCGA and GEO cohorts. The differences in

clinical traits between the risk groups were analyzed by

employing the chi-squared test and the result was presented

by a heatmap.
Functional enrichment of DEGs between
distinct risk groups

In the training and testing cohorts, the DEGs filtered across the

high- and low-risk groups with significance criteria (p<0.05) were

further conducted with Gene ontology (GO) annotation and Kyoto

Encylopedia of Genes and Genomes (KEGG) analysis by using the

“clusterProfiler” package. The single-sample gene set enrichment

analysis (ssGSEA) was adopted to assess immune-related pathway

activity and infiltrating immune cell scores by applying the “GSVA”

package. Furthermore, the “limma” and “pheatmap” R packages

were utilized for immune deconvolution analysis between the risk

groups in TCGA cohort through different algorithms, such as

TIMER, CIBERSORT, CIBERSORT-Absolute, quanTIseq,

MCPcounter, xCell, and EPIC. A heatmap was drawn to exhibit

the combined results.
Construction of nomogram in
TCGA cohort

Based on the results of multivariate Cox analysis, we

developed a nomogram by applying the R package “survival”

and “regplot”, and evaluated the performance of the nomogram

by the ROC curves. In the end, we performed the decision curve

analysis (DCA) through the R package “survival” and “ggDCA”

to compare the predictive power of the nomogram model with

all the clinical features.
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Cell culture

The human gastric cancer cell line AGS was purchased from

the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China). Cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM, Hyclone, United States), containing 10%

fetal bovine serum (FBS, Gibco, United States), 100 U/mL

penicillin, and 100 μg/mL streptomycin (Beyotime, China).

Cells were incubated at 37°C under a humidified atmosphere

with 5% CO2.
Reagents and antibodies

The antibody to b-Actin (Abcam, ab179467) was purchased

from Abcam (Cambridge, MA). The antibody to LC3 (Sigma,

L7543) was purchased from Sigma-Aldrich (St. Louis, USA). The

corresponding HRP-conjugated secondary antibody was

purchased from Beyotime (Shanghai, China). DDP and 2′,7′-
dichlorofluore scin diacetate (DCF-DA) were obtained from

Sigma-Aldrich (St. Louis, USA). Bafilomycin A1 (BafA1), 3-

Methyladenine (3MA), and Chloroquine (CQ) were purchased

from Medchem Express (MCE, United States). Hoechst 33342

was purchased from Solarbio (Beijing, China). Cell Count

Kit-8 (CCK-8) Assay Kit was obtained from Meilunbio

(Dalian, China).
Cell viability assay

Cell viability was detected by CCK-8 kit assay. AGS cells (1 ×

104 per well) were seeded in 96-well plates (NEST

Biotechnology) and cultured overnight until completely

adherent. In the drug combination experiments, the cells were

pretreated with autophagy inhibitors including BafA1(10μM),

3MA(3mM), and CQ (20μM) for 4 hours. Then DDP (40μM)

was co-treated with them for 24 hours in the incubator.

Subsequently, the CCK-8 solution (10μL) was added to each

well for another 1.5 hours at 37°C. The absorbance of

corresponding wells was measured at 450 nm on the

microplate reader (Thermo, United States).
ROS production measurement

The intracellular ROS level was detected using DCF-DA as

previously described (27). Briefly, AGS cells were placed in a

chamber confocal dish and cultured overnight. After drug

treatments, AGS cells were washed with PBS. Then DCF-DA

(4 mM) was co-staining with Hoechst 33342 for 30 min at 37°C

away from light. Cells were finally washed with PBS again and

representative images were captured under confocal microscope.
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Western blot

Following drug treatments, cells were lysed in RIPA buffer

with protease and phosphorylation inhibitor cocktail (Thermo,

Waltham, MA, United States) for 10 min. The protein

concentration was measured by BCA Protein Assay Kit

(Beyotime, China). The western blot assay was detected as

previously described (27). The protein bands were visualized

by an ECL-Plus chemiluminescence detection kit (Thermo

Fisher Scientific), and images were visualized by Gel Imager

(Bio-Rad) (28).
Statistical analysis

R software version 4.1.2 and the R packages described

previously were used to conduct the statistical analysis.

Differences were judged statistically significant at p<0.05.

Wilcoxon test was performed to assess the gene expression

levels between the subgroups and the immune infiltration

levels between the risk groups. The Pearson chi-square test

was applied to compare categorical variables. K–M method

and a two-sided log-rank test were applied for survival analysis.
Results

Discrepant expression of ATGs between
normal and tumor tissues

To detect the expression of ATGs, 373 total GC cases were

acquired from TCGA database, of which, 30 cases were adjacent

noncancerous samples. We initially analyzed the expression

abundance of 232 ATGs that had been reported in previous

studies. Of these, 148 genes were significantly differentially

expressed between GC and normal tissues. The gene

expression levels were visualized using a heatmap, which

illustrated that most ATGs are highly expressed in GC tissues

(Figure 1A). Expressional correlation networks (Figure 1B) and

PPI analysis (Figure 1C) were performed to probe the potential

pathways associated with the identified genes. After constructing

the PPI network with the highest confidence interaction score

level at 0.9, we identified 10 hub genes (ARNT, ATF6, ATG10,

ATG12, ATG16L1, ATG16L2, ATG3, ATG4B, ATG4B, ATG7,

and BAG3) that could be key genes in the autophagy process.
Tumor cluster classification through
consensus clustering of ATGs

Focusing on the gene expression profiles of 148 ATGs, we

identified different clusters through consensus clustering
frontiersin.org

https://doi.org/10.3389/fonc.2022.1006278
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1006278
analysis based on 343 GC cases extracted from TCGA cohort. To

obtain the clearest distinguished and the most robust clustering

result, we clustered and ordered the patients using the clustering

variable (k) from two to nine. The optimal k-value was

determined by the Cumulative Distribution Function (CDF)

and CDF Delta area curve (Figures 2A, B). Finally, an obvious

trend of intergroup separation and intragroup aggregation

emerged simultaneously when k = 2, which would represent

the optimal selection for sorting (Figure 2C). Heatmaps of
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clustering results with other k-values are shown in the

Supplementary Materials (Figure S1). A higher survival

advantage was also observed for cluster 1 (Figure 2D).

Subsequently, a heatmap was generated to further evaluate the

clinicopathological features of the two clusters. Most genes

showed a high expression level in cluster 2. There were also

significant differences between the clusters in terms of

age, tumor stage, tumor T stage, and tumor grade

(p< 0.05; Figure 2E).
B C

A

FIGURE 1

Expression of the ATGs and the interactions among these genes. (A) The heatmap displayed the variations in the gene expression levels of the
differentially expressed ATGs between GC and normal tissues (red dot: high expression level; blue dot: low expression level). (B) Correlations of
the ATGs were visualized through the expressional correlation networks (red line: positive correlations; blue line: negative correlations. The
strength of the relevance was reflected in the depth of the colors). (C) PPI network exhibited potential interactions among these ATGs
(interaction score = 0.9).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1006278
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1006278
Risk model based on prognosis-
related ATGs

Then, univariate Cox regression analysis was used to screen

the differentially expressed genes related to prognosis. We

discovered that 17 genes were significantly correlated with the
Frontiers in Oncology 06
prognosis of GC patients and acted as risk factors (hazard ratio >

1; Figure 3A). LASSO regression was then implemented to

narrow down the candidate genes and eliminate the risk of

overfitting with the aforementioned genes. Ultimately, nine

genes (CYTL1, PLCL1, SNCG, APOD, RGS2, GPX3, MATN3,

SLC7A2, and SERPINE1) were retained to construct the
B

C D

E

A

FIGURE 2

Clusters of GC patients based on ATGs in TCGA cohort. (A) CDF curves of different consensus k-values. The horizontal axis stood for the
consensus index, and the vertical axis reflected CDF. (B) Delta area under the CDF curve. It was defined as the relative change in area under the
CDF curve for each clustering number (k). (C) Heatmap of clustering at Consensus k = 2. (D) K–M curves showed survival differences between
the clusters. (E) Differences in clinicopathologic characteristics and gene expression levels between the clusters were exhibited in the heatmap.
(T, N, and M indicated the tumor-node-metastasis classification; *p< 0.05; **p< 0.01).
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prediction model following the optimum value (Figures 3B, C).

The risk score was calculated using the following formula: risk

score = (0.0763 × expression quantity of CYTL1) + (0.0625 ×

expression quantity of PLCL1) + (0.0630 × expression quantity

of SNCG) + (0.0252 × expression quantity of APOD) + (0.0590 ×

expression quantity of RGS2) + (0.0077 × expression quantity of

GPX3) + (0.1508 × expression quantity of MATN3) + (0.0989 ×

expression quantity of SLC7A2) + (0.1515 × expression quantity

of SERPINE1). Employing the median cut-off value of the risk

score, patients with GC were stratified into two risk subgroups in

the training set. PCA and t-SNE analysis confirmed that patients

with different risks were sorted well into different categories

(Figures 3D, E). Additionally, the risk curve and scatter chart

depicted the risk score distributions and survival statuses of all

patients with GC. High-risk patients had a shorter survival time

and higher fatality rate than low-risk individuals (Figures 3F, G).

Consistently, K–M analysis illustrated that individuals in the

high-risk group generally had worse survival rates than those in

the low-risk group (p< 0.001, Figure 3H). To further assess the

predictive efficacy of the prognostic model, time-dependent

ROC analysis was structured with an AUC of 0.659 at 1 year,

0.680 at 3 years, and 0.747 at 5 years, indicating the good

performance of our risk model in predicting overall survival

(Figure 3I). Collectively, these analyses confirmed that the nine

identified ATGs could compose a prognostic model for GC.

Risk model validation using the GEO
testing cohort

To verify that the ATG prognostic model established from

TCGA cohort harbored similar prognostic values among

different populations, the dataset GSE84437, which contains

the clinical information of 433 patients with GC, was utilized

as the validation dataset. Patients in the GEO cohort were

divided into two risk groups by applying the same median risk

score used for TCGA cohort. Both the PCA and t-SNE analysis

resulted in a sufficient separation between the groups, which was

in line with TCGA cohort findings (Figures 4A, B). The

distribution of the risk scores and patient survival status was

generally consistent with that of the training cohort (Figures 4C,

D). The K–M curves also showed a difference in survival rates

between the groups in the GEO testing cohort (p< 0.001,

Figure 4E). In addition, ROC analysis of the validation cohort

suggested the forecasting performance of the established model

(Figure 4F). Overall, the prognostic model proved to have the

favorable discriminative ability. Furthermore, the HPA database

was applied to validate the expression of genes used in this

model at the protein level. The results revealed that compared

with those in normal tissues, SNCG and APOD were expressed

at higher levels in GC tissues (Figure S2-A). The GEO datasets

were employed for additional validation. The results suggested

that the expression levels of CYTL1, MATN3, and SERPINE1

were elevated in GC tissues (Figure S2-B).
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Assessment of the independent
prognostic value of the model

Cox regression analysis was used to test whether the risk

score generated from the model was an independent prognostic

factor for GC. The risk score was related to unfavorable

outcomes in both the training and testing cohorts, as

demonstrated by univariate Cox analysis (Figures 5A, C).

Moreover, the multivariate Cox analysis implied that the risk

score was still a critical forecaster, even when combined with

confounding variables (Figures 5B, D). Furthermore, we

surveyed the relationship between different risk categories and

their clinical traits in TCGA cohort, as depicted in the heatmap

in Figure 5E. We noticed prominent elevations in the levels of all

nine ATGs in the high-risk group, and the grade was divided

differently between the risk groups (p< 0.01). These results

demonstrate that the nine-ATG signature can be viewed as an

independent prognostic factor for assessing the risk of GC.
Functional enrichment analysis of the
DEGs

To further determine whether there was variation in gene

functions and pathways between the risk groups, 139

differentially expressed genes (DEGs) were identified. GO and

KEGG analyses were performed based on the DEGs. Many of

these DEGs were found to be involved in biological processes,

such as extracellular matrix organization, extracellular structure

organization, and external encapsulating structure organization

(p< 0.05, Figures 6A, B). KEGG analysis revealed that the DEGs

were mostly involved in vascular smooth muscle contraction and

focal adhesion (p< 0.05; Figures 6C, D).
Comparison of immune status
between subgroups

Following functional analysis, we further explored the

correlation between immune infiltration and risk scores. We

first assessed the levels of 22 distinct immune cell functions and

13 different immune-related pathways in TCGA cohort using

ssGSEA. Compared to those in the low-risk subgroup, we

noticed that the high-risk subgroup generally had higher

infiltration levels of immune cells, especially activated B cells

(aBCs), Eosinophil, immature B cells (iBCs), immature dendritic

C cells (iDCs), Myeloid-derived suppressor cells (MDSCs),

macrophages, mast cells, natural killer T cells (NKT), natural

killer cells (NK), Plasmacytoid dendritic cells (pDCs), regulatory

T cells (Tregs), T follicular helper cells (Tfh), and type-I T-helper

cells (Th1) (Figure 7A). Moreover, the majority of immune-

related pathways showed increased activity in the high-risk

group, except for APC co-inhibition and MHC class I

pathways (Figure 7B). Similar outcomes were observed with
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B

C D E

F G

H I

A

FIGURE 3

Construction of the prognostic risk model in TCGA cohort. (A) 17 survival-related genes were screened by univariate Cox regression analysis
(p< 0.05). (B, C) By applying the tenfold cross-validation, optimal parameter l was obtained in the LASSO regression. The final model was
constructed with nine prognostic genes. (D, E) PCA and t-SNE analysis confirmed the good separation of the two risk categories. (F, G) Line and
scatter charts revealed the distribution of each patient’s risk score and survival status. (H) K–M curves displayed the outcome of patients in the
two risk subgroups. (I) A time-dependent ROC curve was drawn to assess the survival rates in 1, 3, and 5 years.
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the GEO cohort (Figures 7C, D). Furthermore, we estimated the

immune cell populations between the risk groups in TCGA

cohort by employing different algorithms, such as TIMER,

CIBERSORT, CIBERSORT-Absolute, quanTIseq, MCPcounter,

xCell, and EPIC. A heatmap was drawn to show the combined

results (Figure 7E), which showed a significant difference in the

immune infiltration levels between the risk groups. Thus, we

conjectured that this might be one of the reasons for the

differences in prognoses between high- and low-risk patients.
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Construction and assessment of the
nomogram using TCGA cohort

Based on the results of univariate and multivariate Cox

analysis, a nomogram predicting the overall survival of GC

patients was established with TCGA cohort (Figure 8A). The

risk score was observed to have a significant impact on survival

prediction, indicating that the risk model was truly a good

predictor of survival. We then compared the AUC of ROC
B

C D

E F

A

FIGURE 4

Validation of the prognostic risk model in the GEO dataset. (A, B) Scatter plot of PCA and t-SNE analysis in the GEO dataset. (C, D) Distribution
of patients and their survival statuses in the GEO dataset. (E) K–M curves were drawn to compare the survival time of the two groups in the
GEO dataset. (F) Time-dependent ROC analysis was conducted to confirm the prediction accuracy of the risk score in the GEO dataset.
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FIGURE 5

The model’s prognostic significance was determined by Cox regression analysis in GC patients. (A, B) Univariate and multivariate Cox regression
analysis of risk score and relevant clinical features in TCGA dataset. (C, D) Univariate and multivariate Cox regression analysis of risk score and
relevant clinical features in the GEO dataset. (E) Heatmap of gene expression levels and clinicopathological characteristics variations in the two
risk groups. (**p< 0.01).
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curves of all significant factors (risk score, age, gender, grade,

and stage) at 1 year. The results showed that the ROC AUC value

for the risk score was higher than those for the other factors

(Figure 8B), which demonstrated that the risk score of the model

had better clinical predictive power. Additionally, the DCA

curve revealed that the risk score showed better prognostic

capacity than other significant variables (Figure 8C). These

results indicated the good predictive performance of our model.
Frontiers in Oncology 11
A combination of autophagy inhibitors
and DDP inhibits growth and increases
ROS in GC cells

It is well known that autophagy has a dual role in the tumor.

Our current results suggested that the upregulation of

autophagy-related gene expression is closely related to the

poor prognosis of GC. Previous studies have shown that the
frontiersin.org
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FIGURE 6

Functional analysis performed in the two risk groups in TCGA cohort. (A, B) Bar plot and bubble graph for GO enrichment of DEGs in the two
risk groups. (C, D) Bar plot and bubble graph for KEGG analysis of DEGs in the two risk groups.
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FIGURE 7

Immune status among the two risk groups was compared in TCGA and GEO cohorts. (A, B) The ssGSEA scores of 22 immune cells and 13
immune-associated pathways between the risk groups were exhibited as boxplots in TCGA cohort. (C, D) The ssGSEA scores of 22 immune
cells and 13 immune-associated pathways between the risk groups were presented as boxplots in the GEO cohort. (E) A heatmap of immune
cell types enrichment combining all 7 immune score algorithms in TCGA cohort. (*p< 0.05; **p< 0.01; ***p< 0.001).
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activation of autophagy might lead to chemotherapeutic drug

resistance and result in a poor prognosis for GC patients

(29). Our earlier work found that the combination of

dihydroartemisinin and DDP could effectively improve the

sensitivity of tumor cells to DDP and significantly decrease its

effective concentrations (30). Therefore, we reasoned that it

would be of interest to further investigate whether suppressing

autophagy could enhance the cytotoxicity of DDP in GC cells.

CCK-8 assays showed that compared to that with DDP or

autophagy inhibitors (3MA, BafA1, or CQ) alone, autophagy

inhibitors combined with DDP significantly decreased cell

viability (Figure 9A). We further measured the levels of

autophagy-related proteins by western blotting in GC cells

administered these treatments. The results revealed that the
Frontiers in Oncology 13
conversion of LC3, from LC3-I to LC3-II, was significantly

increased after applying the combination of DDP and CQ.

Further, the accumulation of LC3-II was a consequence of

blocking autophagic flux (Figure S3). This demonstrated that

the autophagic flow was blocked by autophagy inhibitors. These

results confirmed that the inhibition of autophagy could restore

sensitivity to DDP and improve the prognosis of GC. In

addition, it was reported that the suppression of autophagy

could lead to ROS accumulation and DNA damage and result in

cell death (31). Therefore, cellular ROS levels were detected

using the DCF-DA probe. Confocal fluorescence images

revealed that compared with those in the DDP and CQ alone

groups, ROS levels were significantly increased in the combined

treatment group (Figure 9B). These results were consistent with
B C

A

FIGURE 8

Construction and validation of the nomogram. (A) The nomogram was constructed with different factors (risk score, age, gender, grade, and
stage). (B) The comparison of ROC curves of different factors at 1 year. (C) The DCA curve of the significant variables and the nomogram.
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FIGURE 9

Inhibition of autophagy increased sensitivity to DDP and exacerbated ROS accumulation (A) AGS cells were treated with DDP, autophagy
inhibitors, or autophagy inhibitors combined with DDP. CCK-8 assay was utilized to examine the cell viability (***p< 0.001). (B) ROS production
was measured by the DCF-DA probe through confocal imaging with indicated treatment.
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our analysis and provided evidence that our model could predict

the prognosis of GC patients at the cellular functional level.
Discussion

Approximately 50% of GC cases occur in China, the vast

majority of which are frequently diagnosed at an advanced stage

(32). Despite advances in the application of multimodal

treatments for GC, the overall survival rate of patients remains

far from satisfactory (2). Currently, prevention and personalized

treatment are proposed as the optimum solutions to lower GC

mortality rates (33). Therefore, the identification of novel and

feasible prognostic biomarkers and therapeutic targets could

lead to a potential breakthrough in ameliorating the poor

outcomes and improving the survival of patients with GC.

Early studies have confirmed that autophagy participates in

tumorigenesis and development, and the dysregulation of

autophagy might contribute to a variety of diseases, including

GC (34–36). Researchers have uncovered a wide expression

range for the beclin-1 protein (the master regulator of

autophagy) in GC but barely any expression in the normal

gastric mucosa (37–39). Autophagy-related gene 5 (ATG5), an

indispensable constituent of autophagosomes, was found to be

overexpressed in GC and associated with an unfavorable clinical

outcome owing to its association with chemoresistance (40).

Although some ATGs have been investigated in GC, few studies

have focused on how holistic ATGs regulate GC progression and

prognosis. Accordingly, our work was aimed at exploring the

mechanism underlying the effect of ATGs in GC and developing

a new molecular-based risk model to improve prognostication

for GC.

We first identified differentially expressed ATGs from GC

samples in TCGA cohort. Consensus clustering analysis was

performed to classify samples into two clusters. We initially

screened the DEGs associated with clinical features, including

prognosis. To further evaluate the prognostic value of these

ATGs, we combined univariate Cox regression analysis and

LASSO regression analysis to establish a prognostic risk model

for risk and outcome prediction. Among the nine genes, we

found that all of them were risk factors for GC. Cytokine-like 1

(CYTL1) has been identified as a new type of chemotactic

cytokine involved in regulating tumorigenesis (41–43).

Moreover, CYTL1 might serve as a tumor suppressor with

broad inhibitory effects on tumor metastasis and the

phosphorylation of STAT3 in multiple tumor models (44).

Phospholipase C‐like 1 (PLCL1), which is homologous to the

PLC family, is associated with tumor growth suppression (45)

and metastasis (46). The downregulation of PLCL1 expression in

clear cell renal carcinoma and neuroblastoma was found to be

predictive of poor prognosis (47, 48). The expression of gamma-
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synuclein (SNCG), a member of the synuclein family, was found

to be upregulated in GC (49) and was also thought to enhance

the growth of cervical cancer by activating the AKT pathway

(50). Known as an inhibitor of G-protein signaling, the

dysregulation of RGS2 has been implicated in tumor initiation

and progression in breast cancer (51), acute myeloid leukemia

(52), and prostate cancer (53). In a recent study, it was shown

that GPX3 not only suppresses stomach cancer tumor growth

but also prevents metastasis (54). Particularly in GC, GPX3

can block the NFкB/Wnt/JNK signaling pathway, thereby

suppressing cell migration and invasion (55). Elevated

SERPINE1 expression in GC has been associated with poor

outcomes (56). Collectively, these findings are evidence that

the nine-gene signature is an indicator of poor prognosis in

various cancer types, especially GC; thus, a model based on this

signature could improve, to some extent, the prediction of

disease risk and outcomes in GC.

We subsequently corroborated the prognostic accuracy and

specificity of our model using both the testing and training

cohorts, and the results were visualized using K–M and ROC

curves. The risk score derived from the model was determined

to be an independent prognostic factor for patients with GC.

As a key part of the tumor microenvironment, the extracellular

matrix (ECM) is reported to be associated with drug resistance

and immune suppression (57, 58) and can form a physical

barrier to reduce infiltration (59). Previous studies have

demonstrated that ECM degradation could facilitate the

migration and dissemination of malignant cells (60, 61). It is

reasonable to speculate that genes comprising the established

model could influence the composition of the tumor

microenvironment. Accordingly, we compared immune

infiltration between the low- and high-risk groups. The

results revealed that patients in the high-risk group were

associated with an immune-activated state. Studies have

shown that Treg cells and infiltrating B cells are associated

with decreased survival rates and unfavorable prognosis in

patients with GC (62, 63). Consistent with this funding, our

study showed the obvious enrichment of Treg cells and B cells

in the high-risk group. The tumor immune microenvironment

is indicative of the immune status of the patient, which

probably explains the survival differences between the

risk groups.

Although DDP and other platinum drugs have been proven

to dramatically improve the prognosis of GC, drug resistance

remains a great challenge for GC treatment (3). Previous studies

have reported that DDP induces cellular protective autophagy

and that inhibiting autophagy could improve DDP

chemotherapy (64). It has been shown that autophagy

inhibitors can reverse chemotherapy resistance in GC (65).

Our studies found that the combination of autophagy

inhibitors and DDP could markedly inhibit cell viability and
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induce ROS production. These results will provide a fresh idea

for solving GC drug resistance.

In summary, we have developed a reliable prognostic model

based on ATGs in GC. Even though the risk model exhibited

remarkable predictive power, it needs to be optimized. Owing to

the retrospective nature of the present study, some degree of bias

was likely introduced. Further, the potential interactions among

these model genes should be explored via in vitro and in vivo

experiments to better understand the exact molecular

mechanisms underlying their effects on the GC process. Above

all, this study represents the application of consensus clustering

to stratify patients with GC based on the expression profile of

ATGs, which was found to be relevant to the tumor immune

microenvironment. Moreover, our work might help to

understand how autophagy affects the prognosis of GC and is

expected to help clinicians develop new treatment strategies.
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SUPPLEMENTARY TABLE 1

232 autophagy-related genes.

SUPPLEMENTARY TABLE 2

148 differentially expressed genes.

SUPPLEMENTARY FIGURE 1

Heatmaps of Consensus clustering results for different k-values (k= 3
to 9).

SUPPLEMENTARY FIGURE 2

The modeling genes showed a higher expression level in GC tissues

compared with normal tissues. (A) Representative images of
immunohistochemical (IHC) staining of SNCG and APOD in GC and

normal tissues (Human Protein Atlas). (B) The GEO data analysis
revealed that the expression levels of CYTL1, MATN3, and SERPINE1

were elevated in GC tissues. (*p< 0.05; **p< 0.01; ***p< 0.001).

SUPPLEMENTARY FIGURE 3

AGS cells were treated with DDP, CQ, or the combination of DDP and CQ
for 5 h, and the expression level of LC3 was detected by western blot.
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