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Accumulating clinical data have demonstrated a clear positive association

between cancer and cardiac disorders, particularly chronic heart failure

(CHF). These two diseases can be mutual drivers of each other, and hence

frequently co-occur in patients. The immune system is the core mechanism

that eliminates transformed cells from our bodies. However, immune cells

often play distinct or even conflicting roles in cancer and CHF. Moreover, CHF

alters the properties of immune cells, particularly those of regulatory T cells.

Our previous study showed that the oxidative phosphorylation capacity of

peripheral bloodmononuclear cells is impaired in CHF, leading to the increased

production of reactive oxygen species. Therefore, the co-occurrence of

cancer and CHF becomes a serious problem, affecting the treatment of both

diseases, and consequently negatively affecting patient survival rates. To date,

few methods have been identified that effectively treat both diseases at the

same time. Mitochondria activity may change in immune cells during their

activation and exhaustion, and in CHF. Mitochondria activity is also largely

affected in myocardia in CHF. We here focus on the mitochondrial

abnormalities of immune cells in cancer and CHF, and discuss possible ways

to treat cancer and CHF at the same time by targeting mitochondrial

abnormalities. Many cancer cells are inevitably produced daily in our bodies,

mostly owing to enzymatic nucleotide errors of DNA replication and repair.

Therefore, the possibility of ways to prevent cancer by preventing the onset of

heart failure will also be discussed.

KEYWORDS
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Introduction

Cancer and cardiac disorders, including chronic heart failure

(CHF), represent two major causes of morbidity and mortality in

developed countries (1, 2). Epidemiological studies have shown

that the risk of developing cancer in patients with CHF is

approx. four times greater than in those without CHF (3–6).

Conversely, cancer patients can be at increased risk of cardiac

disease due to deterioration of their lifestyle behaviors (e.g.,

inactivity and an unbalanced diet) (7), and also due to treatment

toxicity, as many anticancer drugs are known to cause

cardiotoxic side effects (8–11). Therefore, cancer and

cardiovascular diseases can be mutual disease drivers, and

hence co-occur frequently in patients (Figure 1). Moreover,

immune cells, particularly regulatory T (Treg) cells, play

distinct or even conflicting roles in cancer and CHF (12, 13).

Hence, the co-occurrence of cancer and cardiovascular disease is

a serious problem, affecting the treatment of both diseases, and

consequently negatively affecting survival rates (14, 15). To date,

however, treatments exist only for each disease. Mitochondria

are central to ATP production by oxidative phosphorylation

(OXPHOS) and to metabolism. To address above problems, we

here focus on the mitochondrial abnormalities of immune cells

during CHF and cancer, and discuss possible methods to treat

cancer and CHF at the same time by targeting these

mitochondrial abnormalities; and, moreover, discuss possible

ways to prevent cancer by preventing the onset of CHF.
Immune system mediates the
crosstalk between cancer and CHF

T-cell dysfunction, particularly of tumor-infiltrating

lymphocytes (TILs), is highly detrimental to antitumor

immunity and immunotherapy (16). Recently, Koelwyn et al.

reported that the adjusted relative risk of death from breast

cancer is increased by approx. 60% in the presence of a

cardiovascular event (17). They also demonstrated by using

mouse models that myocardial infarction (MI), which leads to

HF, accelerates breast cancer development (17). Molecularly, it

was shown that MI epigenetically reprogrammed Ly6Chi

monocytes, which are macrophage precursors in the bone

marrow reservoir, to an immunosuppressive state, and

increased their circulation and infiltration into tumors,

whereas their depletion abrogated tumor growth (17).

Moreover, tumors of MI mice had fewer T lymphocytes than

control mice, in which Treg cells are predominant. These

changes that occur in MI mice may be beneficial to the heart,

but they all promote tumor growth and survival (17).

Therefore, certain populations of immune cells clearly play a

central role in cross-disease communication between cancer

and CHF.
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CHF affects mitochondrial OXPHOS
of immune cells

Mitochondrial OXPHOS plays a central role in lymphocyte

activity (18). Mitochondria are also fundamental to the

development and fate determination of peripheral lymphocytes

(19, 20). Suppressed glycolysis and OXPHOS were shown to be

early drivers of CD8+ T-cell exhaustion (21). Moreover, TILs are

constantly exposed to tumor antigens, and may also experience

metabolic stress, which is thought to occur frequently in the tumor

microenvironment. A recent report demonstrated that continuous

antigen stimulation together with hypoxia impairs the

mitochondrial functions of T cells, and hence promotes terminal

T-cell exhaustion (22). Molecularly, it was shown that continuous

antigen stimulation upregulates B lymphocyte–induced

maturation protein 1, and represses peroxisome proliferator-

activated receptor gamma coactivator-1 (PGC-1), resulting in the

suppression of mitochondrial biogenesis and T-cell functions (23).

Our group has found that mitochondrial respiratory

capacity of peripheral blood mononuclear cells (PBMCs),

which are predominantly lymphocytes, declines with the

progression of CHF, with class III (i.e., moderate to severe

CHF) patients by New York Heart Association (NYHA)

criteria having 10-24% lower mitochondrial respiratory

capacity than NYHA class I/II (i.e., mild CHF) patients, in

which mitochondrial ROS production of PBMCs was

increased by 13-24% in patients with NYHA class III

compared to those with NYHA class I/II (24). Such changes

were observed even in the early stages of HF, and were closely

associated with the severity of CHF. Wemoreover found that the

capacity of complex II, but not complex I, of the mitochondrial

OXPHOS of PBMCs was specifically decreased in CHF (24). It

has been reported in monkeys that there is a close association

among the mitochondrial OXPHOS activities of circulating

monocytes, cardiac cel ls , and skeletal muscle cel ls

(25).Therefore, ROS levels in PBMCs can be a marker

indicating the onset and the severity of HF. As PBMCs mostly

consist of unprimed lymphocytes, it awaits to be clarified

whether activated lymphocytes are also affected in CHF patients.
Activating mitochondria of
immune cells improves tumor
immune therapies

Mitochondrial function of CD8+ T cells in lung cancer patients

can be a marker for determining the efficacy of anti-PD-1 immune

checkpoint inhibition therapy (26). Scharping et al. have shown

that restoration of mitochondrial activity and T-cell function by

reversing the loss of PGC-1a in tumor-specific T cells resulted in

increased antitumor immune responses (23). Yu et al.

demonstrated that administering nicotinamide riboside (NR), a
frontiersin.org
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precursor of nicotinamide adenine dinucleotide, may be able to

restore mitochondrial activity, prevent T-cell exhaustion, and

sustain the antitumor responses of T cells in tumor-bearing

mice (27). NR supplementation was moreover found to facilitate

antitumor immune activity, when used in conjunction with the

anti-PD-1 antibody (27). Vardhana et al. demonstrated that N-

acetylcysteine (NAC), which is known to increase glutathione

synthesis and neutralize ROS, reverses the metabolic defects of

exhausted T cells, and promotes their antitumor immune activity,

to act synergistically with anti-PD-L1 immunotherapy in

lymphoma and melanoma (28). Therefore, activating immune

cell mitochondria may improve the efficacy of immune checkpoint

inhibition-based tumor immunotherapy. However, it should be

noted that the administration of molecules such as NR or NAC

may also activate cancer cells to more malignant states, and it is

hence unclear whether they will be effective in the treatment of

patients. It is also well documented that the reinvigoration of T

cells, once they are deeply exhausted, might be very difficult (29).

Another way to improve the efficacy of cancer immunotherapy

would be to enhance the new production of T cells, and diversify

the T-cell receptor repertoire, as has been demonstrated with

radiation (30), but this might also be difficult in patients with CHF

because of their poor health condition.
Future perspectives

When cancer and CHF coexist, the treatment of either disease

alone is inadequate. Normalization of mitochondrial activity and
Frontiers in Oncology 03
the function of immune cells, which are frequently impaired in

CHF, is a rational strategy to improve cancer therapeutics. For

example, identification of a molecular basis for the downregulation

of mitochondrial respiratory capacity in the PBMCs of CHF

patients, which we have shown previously (24), and if such a

mechanism occurs specifically in PBMCs but not in tumor cells,

improving mitochondrial respiratory capacity in PBMCs may be

promising for the treatment of cancer in patients who also have

CHF. Such a strategy targeting immune cells’ mitochondria may

also enhance tumor growth suppression in cancer treatment by

immune checkpoint inhibitors, although cardiac assessment with a

careful follow-up is necessary because immune checkpoint

inhibitors are known to have a cardiotoxicity with low incidence

rate (<1%) with single use of them (31). Furthermore, activation of

immune cells is beneficial for chemotherapy (32), and thus,

mitochondria-targeted treatment strategy may help

chemotherapy improve outcomes of cancer patients with or

without CHF, although robust clinical evidence is still lacking.

Lifestyle habits, such as a proper diet and daily exercise are

important preventive measures of cancer and CHF. Regarding

the molecular bases, skeletal muscles secrete various myokines,

which have positive effects on mitochondria in different organs

and tissues, and may also promote immunity (33–35). Proper

exercise by patients can also suppress tumor growth and

promote anti-tumor immunity, and may improve the

therapeutic effects of immune-checkpoint inhibitors, whereas

the types of myokines and immune cells therein involved have

been shown to differ depending on the types of cancer (36–38).

On the other hand, muscle dysfunction occurs not only in CHF
FIGURE 1

Cancer and HF mutually promote each other. An unhealthy lifestyle contributes to the development of cancer and CHF, and they are mutual
disease drivers. Anticancer drugs and regulatory T cells appear to have conflicting roles in cancer and HF. Mitochondrial function and reactive
oxygen species (ROS) production in immune cells are potential therapeutic targets in both diseases.
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(35, 39), but is also a widespread phenomenon of cancer patients

regardless of cancer type or stage (40). Therefore, the

identification of the singular point (41) before which exercise

can be effective in the treatment of cancer and CHF, along with

identification of effective exercise regimens and the related

drugs, will be the major challenge of medicine in the future.
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