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Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin,

have been widely used in clinical practice as mainstay treatments for various

types of cancer. Although there is firm evidence of notable achievements with

PBDs in the management of cancers, the acquisition of resistance to these

agents is still a major challenge to efforts at cure. The introduction of the

epithelial-mesenchymal transition (EMT) concept, a critical process during

embryonic morphogenesis and carcinoma progression, has offered a

mechanistic explanation for the phenotypic switch of cancer cells upon PBD

exposure. Accumulating evidence has suggested that carcinoma cells can

enter a resistant state via induction of the EMT. In this review, we discussed

the underlying mechanism of PBD-induced EMT and the current

understanding of its role in cancer drug resistance, with emphasis on how

this novel knowledge can be exploited to overcome PBD resistance via EMT-

targeted compounds, especially those under clinical trials.

KEYWORDS
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Introduction

Metallodrugs play essential roles in anticancer therapy, where platinum-based drugs

(PBDs) are most widely used. More than 40 years ago, the United States Food and Drug

Administration (FDA) approved the platinum (Pt) compound, cisplatin, to treat ovarian

cancer, bladder cancer, and metastatic testicular cancer (1). With the wide application of
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PBDs, these drugs have become the first-line agents in anticancer

therapy for other types of malignancies (2). Despite the

prospective effect, resistance to PBDs has become the main

reason for chemotherapy failure in clinical treatments.

Numerous studies have demonstrated that the epithelial-

mesenchymal transition (EMT) is a primary cause of PBD

resistance in cancer cells. The EMT is a process in which cells

lose the epithelial marker E-cadherin and express the

mesenchymal marker v iment in . I t i s invo lved in

embryogenesis, tissue morphogenesis, gastrulation, and wound

repair (3). Multiple studies have revealed that cancerous tissue

has both epithelial and mesenchymal characteristics (4). During

the EMT process, the connection between cells is weakened, cell

motility is enhanced, and the synthesis of multidrug-resistant

proteins is increased, which makes the tumor tissue show the

characteristics of high invasiveness and metastasis and high drug

resistance. Cancer stem cells (CSCs), a minor population of

cancer cells, are regulated by EMT, and these cells play an

important role in invasion, metastasis, drug resistance, and

phenotypic cell switching (5). With the current deeper

exploration of oncology and cancer-related problems,

researchers have found that the EMT is closely related to drug

resistance, tumor stemness and aggressiveness, and metastasis

(Figure 1) (6).

Development of the EMT phenotype is one of the

fundamental reasons that tumor cells transform from complete
Frontiers in Oncology 02
sensitivity to extreme resistance during PBD chemotherapy. In

this review, we attempt to synthetically illustrate the underlying

mechanism of EMT-induced resistance to metallodrugs. In

addition, we highlight novel, potentially effective strategies that

combine targeted molecular inhibitors to obstruct the EMT or

inhibit EMT-related cellular changes to overcome drug

resistance and improve the antitumor effects of Pt compounds

(Table 1 and 2).
Mechanisms involved in PBD-
induced EMT

When cancer cells receive signals from tumor-associated

reactive stroma (e.g., Wnt, TGF-b, and Notch signaling), the

expression of EMT-inducible transcription factors is elevated

and this can activate the EMT (37). When treating cancer

patients with chemotherapeutic drugs, some cancer cells

develop drug resistance, and the resistance of cancer cells is

negatively correlated with patient survival. Moreover, recent

findings have shown that drug-resistant tumor cells tend to

undergo EMT (38). This section summarizes developments in

the last five years regarding the signaling pathways associated

with the induction of EMT by PBDs (Figure 2). Other scholars

have demonstrated the effects of mitotic kinases such as Nek2

and Mps1 (TTK) on EMT, focusing on AuroraA, AuroraB, Bub1
FIGURE 1

EMT-related principles underlying cancer drug resistance. The epithelial-mesenchymal transition (EMT) is a dynamic process that consists of
three states: an epithelial state with epithelial phenotypes, a hybrid state with epithelial phenotypes and mesenchymal phenotypes, and a
mesenchymal state with mesenchymal phenotypes. In the latter two states, a small number of cancer stem cells and drug-tolerant persister
cells occur to inhibit anticancer treatments.
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TABLE 1 Classes of synthetic drugs targeting epithelial-mesenchymal transition.

Drug Mechanism of action Clinical trial for Ref

Thymoquinone b-catenin inhibitor Bladder cancer (7)

Luteolin Notch-1 inhibitor Gastric cancer (8)

b-catenin inhibitor Breast cancer

Curcumin Snail inhibitor Oral cancer (9)

CXCR4 inhibitor Colorectal cancer

Hedgehog inhibitor Pancreatic cancer

TGF-b inhibitor Hepatoma

retinal pigment epithelial cancer

ERK inhibitor Hepatocellular carcinoma

NF-kB inhibitor Breast cancer

STAT3 inhibitor Melanoma

ERK1/2 inhibitor Bladder cancer

JNK inhibitor

MAPK inhibitor

Smad2/3 inhibitor Thyroid cancer

Glucosamine NF-kB inhibitor Breast cancer (10)

Ginsenosides NF-kB inhibitor Breast cancer (11)

Combretastatin Akt inhibitor Thyroid papillary carcinoma (12)

Oxyresveratrol Snail inhibitor Colon cancer (13)

N‐arachidonoyl dopamine ERK1/2 inhibitor Breast cancer (14)

Kaempferol Snail inhibitor NSCLC (15)

Breast cancer

Doxycycline Snail1 inhibitor Breast cancer (16)

twist1 inhibitor

ZEB1 inhibitor

Slug inhibitor

Resveratrol Hedgehog inhibitor Gastric Cancer (17)

Genistein Twist1 inhibitor

Pantoprazole b-catenin inhibitor

Astragaloside TGF-b1 inhibitor

Kaempferol Akt inhibitor Cervical cancer (18)

Niclosamide b-catenin inhibitor Colon cancer (19)

Lipoic acid TGF-b inhibitor Breast cancer (20)

Piperlongumine Snail1 inhibitor Epithelial cancer (21)

Twist1 inhibitor

Manganese-12 acetate b-catenin inhibitor Breast cancer (22)

Akt inhibitor

Shikonin Akt inhibitor Glioblastoma (23)

Actinomycin V Snail inhibitor Breast cancer (24)

Slug inhibitor

Hydroxytyrosol b-catenin inhibitor Breast cancer (25)

Smad2/3 inhibitor

Antrodia camphorata Akt inhibitor Ovarian cancer (26)

b-catenin inhibitor Colon cancer

Quercetin b-catenin inhibitor Colon cancer (27)
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and Hec1 (high expression in cancer) as potential targets for

cancer therapeutic intervention through their impact on EMT.

The established relationships and interactions between these and

other mitotic kinases are highlighted, together with the impact of

classical signaling pathways and long RNAs on EMT. Recent

studies have found that microbial metabolism can increase the

intake of 5-fluorouracil (5FU) to counteract the drug resistance
Frontiers in Oncology 04
in CRC by modulating the FoxO3-FOXM1 axis to alter drug

transporter sensitivity. The researchers also found that this

process involved changes in the expression of EMT mediators

(39). There have been few studies on the relationship between

EMT and drug transporters, and regulating drug transporters

(drug import/export pumps) is expected to become a new

approach and research direction for anti-EMT treatment.
TABLE 2 Classes of natural drugs targeting epithelial-mesenchymal transition.

Drug Mechanism of action Clinical trial for Ref

Sulforaphane ERK5 activator Lung cancer (28)

Nitidine chloride JAK2/STAT3 inhibitor Glioblastoma (29)

Eribulin TGF-b/Smad2/3 inhibitor Triple-negative
breast cancer

(30)

Ursolic acid TGF-b1/smad3 inhibitor Renal fibrosis (31)

Curcumin TGF-b/Smad inhibitor Hepatic fibrosis (32)

Celastrol TGF-b1/smad2/3 inhibitor Pulmonary Fibrosis (33)

Baicalin ERK inhibitor Hepatocellular Carcinoma (34)

Isoviolanthin TGF-b/Smad inhibitor Hepatocellular Carcinoma (35)

PI3K/Akt/mTOR inhibitor

Astragaloside IV Akt/GSK-3b/b-catenin inhibitor Hepatocellular Carcinoma (36)
frontiersin
FIGURE 2

Mechanisms involved in PBD-induced EMT. TGF-b interacts with TGF-b receptors (TGF-br1/2) to induce phosphorylation of Smad2/3, which
binds to Smad4 to form a Smad2/3/4 complex. After platinum-based drugs (PBDs) enter tumor cells, they bind to the N-terminus of b-catenin
and upregulate BCL9. BCL9 can form a complex with b-catenin to create positive feedback that promotes b-catenin expression, and induces
the epithelial-mesenchymal transition (EMT). The pathways for Notch1 to induce EMT include: promoting melanoma cell adhesion molecule
(MCAM) expression and binding of the Notch1 internal domain (ICD) to the CBF1 site of the major vault protein (MVP) gene to upregulate MVP.
The binding of tumor necrosis factor (TNF) to membrane surface receptors drives IkB kinase (IKK) to phosphorylate IkB. Degradation of IkB
forms the p65/p50 dimeric complex that binds to EMT-related genes.
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Wnt

The Wnt signaling pathway is a complex regulatory network

that includes the Wnt/b-catenin signaling pathway, the Wnt/PCP

pathway (planner-cell polarity pathway), and the Wnt/Ca2+

pathway (40). PBDs induce EMT mainly by activating the

classical Wnt signaling pathway. The expression of c-MYB, a

proto-oncogene, is increased in drug-resistant cells, which directly

induces EMT by promoting miR-21 expression to increase the

mesenchymal marker zinc finger E-box binding homeobox 1

(ZEB1) and decrease E-cadherin expression. By activating the

Wnt pathway, c-MYB can also inhibit b-catenin phosphorylation

and thus indirectly induce EMT (41). It has been found that in non-

small cell lung cancer (NSCLC), PBDs can increase intracellular B-

cell CLL/lymphoma 9 (BCL9) expression and form the b-catenin/
BCL9 complex by selectively binding to the N-terminal structural

domain of b-catenin. This binding enhances the transcriptional

activity of Wnt signaling and promotes the transcription of b-
catenin, thus increasing nuclear translocation and inducing EMT

(42). It has also been shown that overexpression of BMAL1 (the

central positive loop element that initiates circadian oscillations)

and the PDZ-binding motif (TAZ) can induce the EMT by

promoting nuclear expression of b-catenin in chemo-resistant

colorectal cancer (CRC) cells (38, 43). Ectopic expression of

disheveled (DVL) was effective in activating the Wnt/b-catenin
signaling pathway even in the absence of Wnt ligand stimulation.

Indeed, the forkhead box M1 (FOXM1) induction of Snail

expression, metastasis, and chemoresistance requires DVL2,

whereas FOXM1 does not alter DVL2 expression (44).

In addition, miR-28-5p expression was also decreased in

drug-resistant CRC cells, thereby attenuating the inhibitory

effect on downstream structure-specific recognition protein-1

(SSRP1) and increasing its expression to promote EMT by

activating the Wnt/b-catenin pathway (45). The expression of

miR-302 was reduced in drug-resistant cells, which directly

targeted and upregulated ATPase family AAA domain

containing 2 (ATAD2). This alteration significantly

downregulated the tumor suppressor APC and upregulated

nuclear-catenin via activation of the Wnt/b-catenin signaling

pathway. The result was a decrease in expression of E-cadherin

and increase in expression of vimentin (46). In drug-resistant

NSCLC cells, miR-192 and miR-662 were overexpressed. MiR-

192 may activate the Wnt pathway by silencing its atypical

inhibitors (e.g., NOTUM) and upregulating FOXM1 expression.

In parallel, miR-662 may enhance Wnt by upregulating the

forkhead box N3 (FOXN3), forkhead box protein 1 (FOXP1),

and receptor tyrosine kinase-like orphan receptor 1 (ROR1), and

glioma-associated oncogene protein-2 (GLI2) signaling

pathways and thus promote EMT. Similarly, miR-192 and

miR-662 could upregulate the expression of the lncRNA,

CASC9, and promote EMT in gastric cancer cells (47). In

addition, BCL9 expression was also increased in drug-resistant
Frontiers in Oncology 05
NSCLC cells, activating the EMT mechanism by stimulating

nuclear translocation of b-catenin (48).
TGF-b

Tran s f o rm ing g row th f a c t o r -b (TGF-b ) i s a

multifunctional cytokine in mammals consisting of three

isoforms, TGF-b1, TGF-b2, and TGF-b3. TGF-b binds to the

TGF-b receptor type 1 complex (TGFb-R1 and TGFb-R2),
leading to phosphorylation of the Smad2/3 protein in the

cytoplasm. Smad2/3 interacts with Smad4 to form the

Smad2/3/4 complex, which is translocated to the nucleus

where it activates transcription of TGF-b-responsive
downstream genes. This leads to activation of the signaling

cascade that induces EMT (49). Cisplatin has been shown to

increase IL-6 release and TGF-b expression in cancer-

associated fibroblasts. IL-6 blocked apoptosis during

inflammation, which could also protect cancer cells from

apoptosis and chemotherapeutic agents. In addition, IL-6

enhanced the TGF-b-induced EMT in NSCLC. MiRNA-17,

20a, and 20b were expressed at low levels in cancer cells, and

could also activate the TGF-b pathway (50). In the following

section, we will describe the detailed mechanism of platinum-

induced activation of the TGF-b signaling pathway.

Following cisplatin treatment of lung cancer cells, the C-X-C

motif chemokine ligands/CXC chemokine receptor (CXCLs/

CXCR2) signaling pathway was altered in resistant cells,

resulting in increased expression of CXCR2-associated

chemokines (CXCL1, CXCL2, and CXCL5), increased

neutrophil infiltration and concomitant upregulation of the

immunosuppressive factors, TGF-b and arginase (Arg-1).

These factors induced neutrophil polarization toward the N2

type, which has a significantly reduced tumor-killing capacity.

These cells then produced more TGF-b and Arg-1, suppressing

the antitumor immune response, and thereby inducing EMT

and promoting tumor progression (51). In drug-resistant SCLC

cells, epithelial splicing regulatory protein 1 (ESRP1) expression

was significantly downregulated, which increased the proportion

of full-length CARM1 (CARM1FL) by regulating the selective

splicing of coactivator associated arginine methyltransferase 1

(CARM1). This inhibited arginine methylation of Smad7,

activated the TGF-b/Smad pathway, and increased Smad3

phosphorylation that promoted the EMT (52). Increased

expression of CD24 in drug-resistant ovarian cancer cells led

to enhanced TGF-b signaling. This TGF-b signaling cascade

enabled the activation of downstream PI3k/Akt and MAPK

signaling pathways, which further increased Snail expression

and decreased E-cadherin expression, leading to the

development of EMT (53). In patients with nasopharyngeal

carcinoma who were treated with cisplatin, overexpression of

miR-449b led to the degradation of TGF-b1 mRNA, resulting in
frontiersin.org
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a decrease in TGF-b1 expression. This led to downregulation of

miR-34c, which directly induced SRY-box transcription factor 2

(SOX2) upregulation and promoted EMT (54). Bone

morphogenetic protein 4 (BMP4), a member of the TGF-b
superfamily, was overexpressed in drug-resistant hepatocellular

carcinoma (HCC). This significantly reduced the expression of

Bax proapoptotic protein and caspase-3 and significantly

enhanced the expression of Bcl-2 antiapoptotic protein. BMP4

induced cyclin B1 and cyclin-dependent kinase 1 (CDK1)

expression in HCC cells, thereby promoting cell cycle

progression from G2 to M and resisting the oxaliplatin-

derived G2/M blockade. BMP4 also promoted EMT by

increasing the activity of matrix metalloproteinases (MMPs),

upregulating vimentin expression, and downregulating E-

cadherin (55). In drug-resistant oral squamous cell carcinoma

(OSCC), circANKS1B was overexpressed and attenuated the

direct inhibitory effect of miR-515-5p on TGF-1 by sequestering

miR-515-5p, leading to activation of the TGF-b pathway. TGF-b
pathway activation increased N-cadherin expression and

decreased E-cadherin expression, resulting in the development

of EMT (56). Notably, esophageal adenocarcinoma (EAC) cells

were capable of producing and secreting large amounts of active

TGF-b under the high therapeutic stress of chemotherapy,

thereby inducing EMT. The reversal of EMT in EAC cells

could not be achieved by short-term drug abstinence,

suggesting that the drug dormancy period (i.e., intermittent

radiotherapy) was insufficient to prevent radiotherapy-induced

EMT. The addition of the TGF-neutralizing antibody

fresolimumab during the second week of radiotherapy,

however, was able to block the EMT in EAC cells and improve

therapeutic efficacy (57).
Notch

The NOTCH pathway has been highly conserved during

evolution and is involved in controlling cell proliferation and

inhibiting apoptosis (58). In mammals, the NOTCH pathway

has four receptors (NOTCH1, 2, 3, and 4) and five ligands (JAG1

and 2, DLL1, 3, and 4), all of which are type 2 transmembrane

proteins (59). Following receptor-ligand binding in the NOTCH

pathway, the g-secretase complex releases the intracellular

structural domain of the NOTCH receptor, which translocates

into the nucleus and induces expression of target genes, such as

the HES/HEY family (60). A large body of evidence suggests that

the NOTCH pathway is involved in the induction of EMT in

normal and tumor tissues. In drug-resistant head and neck

squamous cell carcinoma (HNSCC), increased NOTCH4

expression and resulted in specific upregulation of the

downstream gene Hes-related family basic helix-loop-helix

transcription factor with YRPW motif 1 (HEY1) expression,

without affecting other NOTCH downstream genes. This

resulted in reduced E-cadherin expression and increased
Frontiers in Oncology 06
expression of vimentin, fibronectin, Twist-related protein

1 (TWIST1), and SOX2, which induced EMT. HEY1

inhibition also inversely reduced NOTCH4 expression in

HNSCC (60). In CR cells, TAZ overexpression increased the

activation of the downstream signaling molecule Notch1 (38). In

addition, Notch1 expression was increased in resistant cells after

carboplatin treatment of triple-negative breast cancer (TNBC).

On the one hand, Notch1 could promote melanoma cell

adhesion molecule (MCAM) expression through direct

activation of the MCAM promoter, thereby inducing EMT

(61). On the other hand, the Notch1 intracellular structural

domain (ICD) bound to the CBF1 binding site on the MVP

(major vault protein) promoter, thereby upregulating the

expression of MVP and activating the AKT pathway to

promote EMT (62). In addition, in high-grade serous ovarian

cancer, the Notch3 pathway was activated, with increased

expression of downstream SUSD2. This, in turn, induced the

EMT by reducing E-cadherin expression through increased

epithelial cell adhesion molecule (EpCAM) expression (63).

Low concentrations of cisplatin (DDP, CDDP) could induce

EMT in osteosarcoma cells via the Notch signaling pathway by

promoting the expression of NOTCH2 and its target gene

HEY1 (64).
NF-kB

NF-kB proteins commonly form homo/heterodimers with

p65 and p50 and are inactivated in the cytoplasm by binding to

the inhibitory protein IkB to form a trimeric complex (65).

When the upstream signaling factor, tumor necrosis factor

(TNF), binds to its cell membrane surface receptor, the

receptor conformation changes and signals IKK (IkB kinase)

kinase to phosphorylate IkB and dissociate it from the trimer.

The NF-kB dimer then exposes the nuclear localization sequence

(NLS) and rapidly moves from the cytoplasm into the nucleus,

where it binds to specific sequences on the nuclear DNA and

promotes the transcription of related genes, such as cyclinD1, c-

Myc , ma t r i x me ta l l op ro t e ina s e -9 (MMP-9 ) , and

vascular endothelial growth factor (VEGF), which are EMT-

related proteins (66). Studies have shown that aberrant

activation of NF-kB could induce the development of EMT in

drug-resistant cells. The expression of EGFR was increased in

drug-resistant head and neck squamous cell carcinoma

(HNSCC), resulting in increased IKKb expression and

activation of the downstream NF-kB signaling pathway. NF-

kB increased downstream signal transducer and activator

of transcription 3 (STAT3) by promoting IL-6 expression,

which induced overexpression of N-cadherin and decreased E-

cadherin expression, promoting EMT (67). In CRC cells,

increased DJ-1 expression promoted EMT by activating the

NF-kB/Snail signaling pathway and increasing Snail protein

expression (48). In triple-negative breast cancer (TNBC) cells,
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cisplatin-induced activation of the ERK1/2-p90RSK signaling

pathway led to NF-kB activation, which promoted the

expression of Snail Twist and ZEB-1 and induced EMT (68).
Hedgehog

The hedgehog signaling pathway is important for cellular

self-renewal, tissue maintenance, and cell regeneration. The GLI

family is a transcription factor for hedgehog signaling that

includes glioma-associated oncogene homolog 1 (GLI1), GLI2,

and GLI3. GLI1 usually acts as a potent target activator, while

GLI2 and 3 have dual functions as repressors or activators

depending on the situation (69). In cisplatin-resistant breast

cancer cells, elevated expression of ubiquitin-specific peptidase

37 (USP37) upregulated the expression of purmorphamine

(PM). Expression of the Hh targets (Smo and gli1) and the cell

proliferation marker Ki-67 were also elevated through the

hedgehog signaling pathway, resulting in significant

upregulat ion of Snai l1 , N-cadherin, and vimentin,

downregulation of E-cadherin, and induction of EMT (70). In

oral squamous cell carcinoma (OSCC), drug-resistant cells

enhanced CSC-associated features and increased CD10

expression, resulting in increased expression of Smo and gli1,

which activated the hedgehog signaling pathway and induced

EMT (71). In addition, cisplatin induced the expression of

prostaglandin E2 (PGE2) in osteoclast cells, which promoted

GLI1 expression by activating integrin b1. GLI1, in turn,

promoted expression of B cell-specific Moloney murine

leukemia virus integration site 1(BMI1) by activating the

hedgehog signal ing pathway, thereby a l ter ing the

microenvironment and inducing CSC-like features that

promoted EMT (69).
PI3K/AKT/mTOR

PI3K (phosphatidylinositol kinase) is a dimer consisting of

the regulatory subunit p85 and the catalytic subunit p110. When

it binds to growth factor receptors (EGFR), it alters the protein

structure of Akt and activates it, promoting or inhibiting the

activity of a range of downstream substrates such as the

apoptosis-associated proteins Bad and caspase9 by

phosphorylation, thereby regulating cell proliferation,

differentiation, apoptosis and migration phenotypes. In

addition, Akt also activated IKK, which interacted with the

NF-kB pathway. In this section, we describe the molecular

changes that activate the PI3K/AKT signaling pathway in

drug-resistant cells from different cancers.

After cisplatin treatment of non-small cell lung cancer

(NSCLC), the expression of FOXC2 was increased, inactivating

the pro-apoptotic factor GSK-3b by activating AKT. This leads
Frontiers in Oncology 07
to stabilization and nuclear localization of Snail, increasing the

expression of the mesenchymal markers vimentin and N-

cadherin, and decreasing the expression of the epithelial

marker E-cadherin, thereby promoting EMT (48, 72).

Increased expression of FAM83D, a mitosis-related gene,

activated the AKT/mTOR signaling pathway, resulting in

increased phosphorylation of p70s6k, downregulation of the

epithelial markers E-cadherin and a-catenin, and upregulation

of the mesenchymal markers N-cadherin and vimentin, thereby

inducing EMT (73). Increased expression of PAX6 activated the

downstream PI3K/AKT signaling pathway by directly binding to

the promoter region of ZEB2 and upregulating its expression

(74). Similarly, increased expression of the lncRNA, UCA1

induced EMT by activating the AKT/mTOR pathway (75).

In nasopharyngeal carcinoma cells, cisplatin treatment

caused specific overexpression of miR-205-5p in drug-resistant

cells, which promoted NPC cell proliferation and decreased

PTEN (a classical tumor suppressor) expression by targeting it

through phosphorylation of the PI3K/AKT signaling pathway.

Low expression of PTEN induced the absence or reduction of

epithelial markers (E-cadherin) and increased expression of

mesenchymal markers (vimentin and N-cadherin) through the

regulation of Snail/Slug, thereby promoting EMT and increasing

the migration and invasive capacity of NPC cells. MiR-205-5p

promoted cell metastasis by upregulating MMP-9 and MMP-2,

which caused ECM degradation (76). Furthermore, increased

expression of miR-BART22 increased MYH9 expression

through activation of the PI3K/AKT/c-Jun axis. MYH9 then

induced GSK-3b degradation and mediated nuclear

translocation of b-catenin, thereby stimulating the EMT

machinery (48). The PI3K/Akt pathway was activated in drug-

resistant gastric cancer cells, leading to an increase in

downstream Rac1 activity, which further activated the JNK

pathway and promoted self-renewal of GA CSCs and EMT

(EMT may be a mechanism for generating CSCs). At the same

time, Rac1 led to increased expression of N-cadherin and Slug.

In GA cells, inhibition of any component of the PI3K/Akt-Rac1/

JNK axis could block expression of the EMT transcription factor,

Slug, and inhibit EMT (77).
Long non-coding RNAs

Long non-coding RNAs (lncRNAs) are defined as RNA

transcripts longer than 200 nucleotides that do not encode

polypeptides. Studies have shown that lncRNAs and miRNAs

play a role in promoting the continuing proliferation of tumor

cells and drug resistance (78); therefore, they are considered key

regulators of cancer pathways and are widely studied as

biomarkers of disease (79). One of the important aspects is the

impact of miRNA and miRNA-lncRNA competition on tumor

EMT progression.
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MiR-574-3p has a tumor-suppressive effect on gastric

cancer cells. In cisplatin-resistant cancer cells, miR-574-3p

expression decreased and increased the expression of ZEB1

protein by attenuating the direct inhibition of ZEB1 protein,

which in turn inhibited the transcription of E-cadherin,

reduced its expression, increased the expression of vimentin,

and induced EMT (80). In addition, miR-492 overexpression

promoted CSCs by directly targeting the 3’ UTR of DNMT3B

and inhibiting its expression, thereby inducing EMT (81).

MiR-17 expression was also increased, which promoted EMT

by downregulating DEDD (82). In ovarian cancer (OC) cells,

decreased expression of miR-1294 allowed an increase in IGF1-

R expression, which induced the EMT (48). The expression of

miR-363 was also decreased, promoting EMT by attenuating

the direct inhibitory effect on Snail (83, 84). In contrast, the

expression of miR-149-3p was increased, promoting EMT by

downregulating TIMP2 and CDKN1A expression (85).

Notably, in OC cells, there is a miR-374b-5p-FOXP1

feedback loop in which miR-374b-5p can negatively regulate

FOXP1 by binding to the 3’UTR of FOXP1, which can also

repress miR-374b-5p transcription. In poor prognosis cells, the

expression of miR-374b-5p was downregulated, while FOXP1

expression was upregulated, thereby inducing EMT (86). The

competition between miRNA and lncRNA is also closely

related to EMT. lncRNA-ATB is a ceRNA that is a regulator

of the TGFb-ZEB1/ZEB2 axis. As a transcriptional target of

TGF-b, lncRNA-ATB competes with the miR-200 family,

which eliminates EMT, resulting in up-regulation of ZEB1/

ZEB2 expression. Our results are similar to those in other

studies. LncRNA ZFAS1 was amplified at the genomic DNA

level and competitively bound to miR-150, inhibiting ZEB1,

MMP14 and MMP16 gene expression (87). STAT3-activated

lncRNA HOXD-AS1 inhibited SOX4 mRNA expression by

competing with miR-130a-3p to promote HCC lymph node

metastasis (88).
EMT-mediated chemotherapeutic
resistance

EMT is characterized by the loss of tightly knit epithelial

cells and transdifferentiation into mesenchymal cells. In recent

years, meta-analysis of existing research data about the

connection between gene expression and curative cancer

effects showed that EMT-related genes were closely linked to

resistance to certain kinds of treatment. For instance, an analysis

of data from the clinical samples of breast cancer patients

demonstrated that resistance to chemotherapy was an

important cause of gene regulation of stromal cells, and the

expression of these genes was mediated by EMT program

activation (89). In addition, seventy-six EMT marker genes

were used to explore gene expression and the effect of PI3K
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inhibitors in non-small cell lung carcinoma (NSCLC), and to

predict resistance to these agents and assess prognosis (90). Gene

changes can induce the generation of specific cell types as well as

changes in phenotype, EMT-related cells, such as partial EMT

cells (named hybrid EMT cells), drug-tolerant persister cells, and

CSCs, which have a crucial function in creating drug resistance

(Table 3). Next, we will look at how these cells are related to

EMT and how to deal with PBD resistance (Figure 3).
Partial EMT cells

Under normal physiological conditions, the EMT program is

involved in embryonic development and wound repair, but

tumor cells often enhance their invasive and metastatic

capabilities by activating EMT, and especially to mount a

resistance to chemotherapy drugs that ensures their survival

(108). The EMT program involves the loss of junctional

tightness between epithelial cells and their gradual

differentiation into mesenchymal cells. Because mesenchymal

cells have motility and are capable of degrading extracellular

matrix (ECM) proteins, these cells can invade the surrounding

tissues and metastasize to distal sites (109). Therefore, EMT is

considered a sign that the tumor is progressing to a higher stage.

Researchers have found that there is an intermediate state in the

EMT process, in which cells have both epithelial and

mesenchymal phenotypes. These are called partial EMT cells,

and experimental and clinical results have shown that such cells

are more malignant and drug-resistant than completely

differentiated EMT cells (110).

Analysis of clinical data showed that most cancer rarely

undergoes adequate transformation (3, 111). Non-small-cell

lung cancers (NSCLC) patients were usually treated with

gefitinib and erlotinib, which are epidermal growth factor

receptor (EGFR) and tyrosine kinase inhibitors (112).

However, EGFR resistance was usually accompanied by a

partial EMT phenotype with co-expression of vimentin and E-

cadherin. Similar evidence emerged from another clinical trial,

where the epithelial cell subset and the mesenchymal cell subset

were more sensitive to cisplatin, paclitaxel, and salinomycin than

partial EMT cells (high CD44, high CD24, low EpCAM) in oral

squamous cell carcinoma (OSCC) (113). These results indicate

that, to some extent, partial EMT cells may have a greater chance

of developing drug resistance. To verify the correctness of this

view that partial EMT cells are more likely to develop drug

resistance than completed EMT cells, we selected docetaxel-

resistant PC-3 with complete EMT and DU145 with partial EMT

cell lines for comparative experiments. PC-3 appeared to

undergo apoptotic death and DU145 was resistant to

treatment with salinomycin (114). Similarly, this hypothesis

was validated by clinical results in which cancer cells altered

their metabolic program to meet changing nutrition and energy

requirements. This metabolic change began when tumor cells
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TABLE 3 Phenotypic differences of CSCs, DTP cells and pEMT cells.

Type of cell Markers Type of cancer Ref

CSCs CD44 and CD133 Breast cancer (91)

CD44 Gastric cancer (92)

CD51 Prostate cancer (93)

CD133 Lung cancer (94)

CD133, nestin, and A2B5 Glioblastoma (95)

CD34 AML (96)

DTP cells ABCB5 Melanoma (97)

CD133 (98)

CD133 Gastric cancer (99)

CD271 Osteosarcoma (100)

ALDHs Brain cancer (101)

pEMT cells L1CAM Colorectal cancer (102)

CD106, CD61 and CD51 Squamous cell carcinoma (103)

S100A6 Breast cancer (104)

NRF2 Non-small-cell lung carcinoma, Bladder cancer (105)

VEGF Esophageal squamous cell carcinoma (106)

Cathepsin B Salivary adenoid cystic carcinoma (107)
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FIGURE 3

PBDs induce drug resistance through EMT in cancer cells. Platinum-based drugs can induce EMT through multiple sites/pathways and are either
fully or partially transformed. In addition to the mesenchymal-like phenotype of tumor cells, a small number of other phenotypes appear during
this process. Other cell types include persistent drug-resistant cells, cancer stem cells, and circulating tumor cells. These EMT-related cells can
evade the deadly effect of PBDs, migrate to distant tissues and organs via the blood circulation and other routes, and cause in situ tumor relapse
and metastatic foci after stopping medication.
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started the EMT program and was most robust in the partial

EMT state. Autophagy is divided into protective autophagy and

lethal autophagy, and the condition is enhanced in the partial

EMT state. During chemotherapy or the loss of nutrients or

growth factors, the protective autophagy activity in tumor cells

was enhanced by AMPK expression to ensure lysosomal

function (115, 116). This conclusion was confirmed in clinical

studies as well as by in vitro research. For example, inhibiting

protective autophagy promoted the release of arginase 1 (Arg1)

from the liver, which promoted arginine synthesis and

stimulated cancer cell growth (117). In clinical practice,

enhanced autophagy promoted the occurrence and

development of autochthonous pancreatic cancer (118). In

addition, other experiments have shown that the presence of

an epithelial cell adhesion molecule (EpCAM) on the surface of

epithelial cells could induce the production of multidrug-

resistant proteins (MDRPs) (119); however, cells that have

completed the EMT lose this phenotype, leading to a

reduction in the production of MDRPs. Although we know

that partial EMT plays an important role in tumor resistance, an

interesting phenomenon provides us with new ideas about the

function of partial EMT. In the whole EMT lineage, partial EMT

cells located at intermediate sites showed greater plasticity than

fully transitioned EMT cells (120). We hypothesized that

different degrees of EMT and different physical and chemical

properties caused by differences in phenotype and

morphological structure had different degrees of influence on

tumor invasiveness, metastasis, and drug resistance.
Cancer stem cells

CSCs have been considered an important factor in the

sensitivity and tolerance to chemotherapy. Clinical practice

demonstrated that CSCs existed in various tumor tissues, and

the proportion of CSCs was significantly higher than that of the

tumor before chemotherapy (121). However, the mechanism of

how CSCs are produced is still unclear. With the introduction of

the EMT, it is easy to determine whether CSCs and EMT are

always found together in pathological tissue and to study the

interaction between EMT and CSCs, because EMT induces and

maintains CSCs and CSC phenotypes.

One of the possible explanations for the secreted proteins of

carcinoma cells is that EMT leads to autocrine signaling loops.

Multiple studies have revealed that autocrine signaling loops had

the necessary activity to induce and maintain the characteristics of

stem cells. EMT activation promoted the work of autocrine

signaling loops to maintain the stem cell phenotype via the TGF-

Smad and Wnt-catenin pathways in the secretome, which was

secreted by transformed HMLER human mammary epithelial cells

(122). Non-CSCs also had the plasticity necessary to promote

cancer cell dedifferentiation, and this process depended on the
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occurrence of EMT (123). For example, some secreted extracellular

vesicles and macromolecules such as microRNAs and cytokines,

were released by EMT to induce differentiated tumor cells to

dedifferentiate into CSCs (124). Intracellular signaling pathways

and cytokines participated in the EMT process to generate the CSC

phenotype. The tumor-suppressor protein, p53, is restrained by the

expression of Snai1, which is linked to the tumorigenic ability of

cancer cells via the Snai1-histone deacetylase 1 (HDAC1)-p53

complex. However, this ability could be uncovered by the

downregulation of Tp53, which encoded p53 (125). EMT was

first discovered during embryonic development and required

TGF-b pathway activation (126). Researchers also found that

TGF-b, IL-6, and hepatocyte growth factor (HGF) could induce

the EMT process and enhance the conversion of the differentiated

cell phenotype to CSC characteristics (127, 128). In addition, it has

been found that excessive EMT activation led to maximal tumor-

initiating ability and chemotherapy resistance (129). A partial EMT

programmay contribute to the frequent and substantial production

of CSCs. In a mouse model of breast cancer, CSCs had different

phenotypes, called epithelial-like CSCs and mesenchymal-like

CSCs. These cells had a greater ability to seed cancer cells to

distant tissues (130, 131). Moreover, the combination of epithelial

andmesenchymal phenotypes of CSCs enhanced the progression of

tumor drug resistance and metastasis (132). Although the

relationship between EMT and CSCs provided a partial

explanation, the hypothesis that the partial EMT could acquire

more stem phenotypes than the complete EMT, and induce CSCs

that were related to specific cell types and epigenetic abnormalities

deserves further exploration.

CSCs have some physical and biochemical properties that

influence sensitivity to clinical treatments, including

chemotherapy, radiotherapy, molecular targeting, and

immunotherapy. The first important feature is the ability to

self-update, which optimizes tumorigenesis and differentiation

in multiple types of cells, including drug-resistant cells. Recent

research discovered that many signaling pathways, such as Wnt

and Notch, engaged in self-renewal activation. for example, in

breast cancer (133). PBDs induced EMT via the Notch pathway,

and RO4929097, a Notch1 inhibitor, could repress N-cadherin

and CD44 to produce better patient outcomes (134). In the

tumor microenvironment (TME) after Notch pathway

activation, the CSCs were ‘self-updated’ compared to the non-

EMT environment. Signaling through Notch and PI3K/AKT/

mTOR stimulated quiescent CSCs to progress into the S-phase

of the cell cycle (135, 136) and tumor tissue exhibited higher

resistance to radiotherapy and chemotherapy in the presence of

active CSCs. The body of preclinical and clinical observations

shows that radio-chemotherapy effectively eliminated most non-

CSC cells but did not appreciably reduce the number of CSCs

(137–139), which was why CSCs could continue to enter the G0

phase and remain there for a long period. These dormant cancer

cells were not affected by the drugs, and CSC resistance to
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targeted treatment and immunotherapy was significantly higher

than that of non-CSCs (140).
Drug-tolerant persister cells

Research has determined that the entry into drug-tolerant

persister (DTP) states of cancer cells is an adaptive response to

chemotherapy with PBDs (141). The emergence of this state is

currently subject to several hypotheses, including that DTP

cancer cells are already present in tumor tissue and are

selected for proliferation after drug treatment (142). Another

likely reason is that the production of DTP cancer cells is

induced by activation of cell reprogramming rather than

through survival of the fittest by drug selection (143). This

transformation process has been widely observed in clinical

research and is most commonly considered to be EMT. For

example, cancer tissues had abundant DTP cancer cells when

treatment activated EMT (144). Therefore, the close relationship

between DTP cancer cells and EMT was an essential factor in the

multidrug resistance of these cells to tumor therapy.

DTP cancer cells have some characteristic phenotypes that

help them evade the killing effects of drugs, such as reversible

biological capacity, slow cell cycling, and proliferative activity

(143, 145, 146). For example, a slowly cycling cell population

that expressed high levels of the histone H3K4 demethylase,

JARID1B, was preserved after chemotherapy in melanoma

(147). In addition, several researchers reported that cancer

cells with DTPs exhibited a stem-like phenotype to reduce

drug influence; thus, EMT programs contributed to inducing

and maintaining the CSC phenotype. This DTP phenotype

allowed cancer cells to acquire plasticity, pluripotency, self-

renewal capacity, and transferability, and to enter the G0

phase or slow-cycling state, which protected them from

cytotoxic agents (148, 149). In addition, the activation of the

Wnt/b-catenin pathway was found in the DTP cancer cells

(150). These results also indirectly proved that the emergence

of DTPs was closely related to the EMT process. Osimertinib, an

EGFR tyrosine kinase inhibitor, upregulated the AXL gene-

inducing EMT program. AXL bound to its ligand (GAS6) and

promoted formation of DTP cancer cells by increasing the

expression of DNA repair proteins to reduce DNA damage

(151, 152). Mesenchymal EGFR mutant cancers survived

initial EGFR inhibitors because fibroblast growth factor

receptor 1 (FGFR1) was expressed on the cell surface (153).

MiR-99b was activated when tumor cells underwent EMT

reprogramming, and as FGFR3 was a target of miR-99b, it

participated in the induction of DTP cancer cells (153, 154).

In addition to FGFR1 and FGFR3, studies have shown that

insulin-like growth factor 1 (IGF-1) and the lipid

hydroperoxidase, GPX4, could activate the PI3K/AKT and
Frontiers in Oncology 11
ERK pathways to induce the EMT program, and IGF-1R

phosphorylation in cancer cells led to the production of DTPs

(145). TGFb2 linked the EMT program to fatty acid metabolism

in an acidic environment (155). In the EMT process, the

epithelial cells transformed into mesenchymal cells, gaining

motility and losing cell-cell adhesion, making them more

capable of entering the circulatory system. Recent research has

shown that persistent subsets of proliferative cells in CTCs—

cycling persister cells (CPCs)—not only survived cancer drugs

but also maintained their ability to grow and multiply with

continuing drug treatment. Moreover, single-cell RNA

sequencing and metabolic analysis demonstrated that CPCs

enhanced antioxidant gene capacity by increasing glutathione

metabolism. It was also found that CPCs were dependent on

fatty acid-based metabolism rather than glucose-based

metabolism (156). Therefore, CTCs with EMT activation are

more likely to transform into CPCs, resulting in drug resistance,

distant recurrent lesions, and metastasis.
Targeting the EMT for
cancer therapy

It has been proven that in the development of EMT, cancer

cells generated new phenotypes, enabling them to survive PBD

treatment. To eliminate drug resistance caused by EMT,

different strategies to target the EMT program, such as

preventing EMT initiation, targeting partial EMT cells, and

reversing the EMT process, have been pursued (Figure 4).
Preventing EMT initiation

Tumor cells develop EMT after chemotherapy due to

alterations in signaling pathways, circadian rhythms, and

epigenetic regulation, making the tumor cells more malignant

and eventually drug-resistant (157). For this reason, blocking the

induction of EMT in tumor cells is crucial. Chemotherapy

results in abnormal activation or inhibition of signaling

pathways in tumor cells, and these abnormal signaling

pathways can lead to EMT. We have previously described in

detail the signaling pathways involved in platinum-induced

EMT, including Wnt, TGF-b, Notch, NF-kB, and hedgehog.

Blocking any of the links in the signaling pathway of drug-

induced EMT can affect the development of EMT in tumor cells

to varying degrees. It was shown that the CXCL/CXCR2 axis was

activated in resistant cells after cisplatin treatment, allowing

CXCR2 to be highly expressed in human lung cancer tissues.

Overexpression of CXCR2 promoted EMT by activating the

p38/ERK MAPK pathway. SB225002, a selective CXCR2

inhibitor, blocked CXCR2 expression, thus preventing EMT
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formation (51). In addition, hematopoietic PBX interacting

protein (HPIP) was overexpressed in high-grade primary

ovarian tumors, which increased Snail stability by activating

the PI3K/AKT pathway and inhibiting the expression of E-

cadherin by phosphorylating glycogen synthase kinase-3b
(GSK-3b), thereby inducing EMT. Therefore, it is reasonable

to attempt to inhibit the formation of EMT by knocking down

HPIP using PI3K and AKT inhibitors (158). Reducing the

expression of Snail could also have an inhibitory effect on the

formation of EMT (159).

Epigenetic regulation plays an important role in cancer

progression. Ten-eleven translocation 1 (TET1), an important

DNA demethylase, was found to be overexpressed in cisplatin-

resistant ovarian cancer cells and could induce partial EMT by

increasing vimentin expression through demethylation of the

vimentin promoter. Thus, we could inhibit EMT formation by

downregulating TET1 expression using TET1 siRNA (160).

Another study found that cisplatin-resistant ovarian cancer

cells had increased expression of histone deacetylase (HDAC),

which resulted in histone hypoacetylation and suppression of

many genes, leading to EMT induction and subsequent PBD
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resistance. Consequently, the HDAC inhibitor sodium butyrate

(Nabu) could be used to restore histone acetylation, allowing

tumor cells to upregulate E-cadherin expression and thus inhibit

EMT formation. In addition, the combination of Nabu and

cisplatin enhanced the toxicity of cisplatin on tumor cells (161).

Hypoxic conditions can occur because of rapid tumor

growth and lack of blood vessel formation. Hypoxia drives

adaptive changes that can lead to malignant tumor

transformation. In NSCLC, hypoxia significantly upregulated

antizyme inhibitor 2 (AZIN2) expression by increasing the

binding of HIF-1a and AZIN2 promoters, resulting in

decreased E-cadherin expression and increased N-cadherin

and vimentin expression, thereby promoting EMT (162).

Therefore, maintaining oxygenation at the appropriate level

could be a viable strategy for preventing EMT initiation in

tumor cells. In treating cisplatin-resistant gastric cancer with

Danggui-Sayuk-Ga-Osuyu-Saenggang-tang (DSGOST), an

accumulation of GFP-LC3 puncta was induced, which

promoted the release of exosomes through activation of

autophagy, thereby inducing EMT. Consequently, the

activation of DSGOST-mediated EMT markers, including N-
FIGURE 4

Illustration representing several anti-EMT therapies to overcome drug resistance. In clinical applications, platinum-based drugs can cause the
induction and development of EMT by activating EMT-related signals, regulating circadian rhythms, regulating epigenetics, causing hypoxia,
inducing autophagy, and stimulating exosome secretion, thereby generating tumor cells’ resistance to PBDs. Use of modality-related inhibitors
can prevent and reverse EMT, enhancing the efficacy of PBDs. In addition, some small molecules can target EMT cells and prevent them from
entering a drug-resistant state.
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cadherin, Snail, Slug, vimentin, b-catenin, p-Smad2, and p-

Smad3, could be blocked by inhibiting autophagy, which in

turn inhibited EMT formation (163).

Traditional Chinese medicine (TCM) research on the EMT

process is only in the initial stages, but we can still identify new

potential drugs and strategies for inhibiting the formation of

EMT from existing TCM extracts and monomers. As a prime

example of the value of TCM, curcumin often appears in various

prescriptions. In recent years, studies have shown that curcumin

inhibited TGF-b-induced EMT through the PPARg pathway.

Other researchers found that curcumin could effectively inhibit

the NF-kB pathway to reduce the expression of EMT-related

genes (164–166). In addition, ginsenoside Rg3, triptolide, and

resveratrol had similar effects (167, 168). Therefore, analyzing

the TCM extracts for active compounds is a worthy effort that

could lead to new drugs for translation into clinical treatments.
Targeting partial EMT cells.

The intermediate state on the way to complete EMT is called

partial EMT, the essential feature of which is the simultaneous

expression of E-cadherin and vimentin. Multiple studies have

shown that cancer cells with coexpression of E-cadherin and

vimentin led to poorer prognosis compared with those that

expressed E-cadherin or vimentin alone, or neither (169).

Therefore, when the tumor tissue presents a partial EMT state

and is highly resistant to multiple drugs, the elimination of some

or all of them could increase the therapeutic effect and prolong the

survival of patients to a certain extent. In addition to these EMT

markers, a number of other markers were also found associated

with partial EMT, such as integrin beta 4 (ITGB4), interrogating

the grainyhead-like 2 (GRHL2), ferroptosis suppressor protein 1

(FSP1), and ZEB1. These markers were also associated with

shorter overall survival, poor relapse-free and disease-free

survival (132, 170, 171). Whole-genome CRISPR screening

revealed that mesenchymal EGFR mutant non-small cell lung

cancers highly express FGFR1, which promotes DTPs. Combining

EGFR and FGFR inhibitors could block the development of

persistent resistance and drug-tolerant cell survival (153). Some

molecules, such as recombinant AXL receptor tyrosine kinase

(AXL), TGF2, and FGFR1, could be targeted to inhibit cells in

EMT states from becoming DTPs, which could be a novel

approach for correcting EMT-induced drug resistance. In

addition, the cancer cells of the EMT process released

proinflammatory cytokines, inducing drug resistance. For

example, comprised of chemokine ligand 21 (CCL21)

stimulated the AKT/GSK3b/Snail pathway, which promoted the

expression of multidrug resistance proteins such as P-

glycoprotein1 (172). Therefore, we speculated that preventing

partial EMT cells from secreting small molecules might inhibit

the production of drug-resistant proteins. In addition, it is also
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interesting to see whether the protective molecules secreted by

these cells play a role in immune cell aggregation to engulf

chemotherapeutic drugs and prevent immune escape.
Reversing the EMT process.

The EMT program is positively correlated with poor cancer

prognosis. Therefore, taking the reversal of EMT as the starting

point for resistance to cancer should increase the success rate of

chemotherapy. For example, the ionophore antibiotic

salinomycin upregulates the E-cadherin gene while reducing

the expression of vimentin in CD133+ colorectal cancer cells and

restoring cancer cell sensitivity to chemotherapy. This research

also found that CD133 was a target of salinomycin (173).

Therefore, combining salinomycin and PBDs could reverse the

drug-induced EMT process and specifically target CD133+

CSCs. The specific signaling pathways play a role in both the

induction of EMT and the drug resistance induced by EMT;

thus, turning off the activated pathways should reverse EMT and

eliminate drug resistance (174). A combination of cisplatin and

BEZ235, an ATP-competitive dual inhibitor of PI3K and mTOR,

could reverse the EMT program, induce apoptosis, and decrease

the number of resistant cells (175).

Mesenchymal stem cells secrete exosomes that increase the

mRNA levels of CK-19 and E-cadherin and decrease the

expression of vimentin. In addition, exosomes reduce

phosphorylation of the upregulated proteins, vimentin, TGF-

b1, and Smad2 (176). Further studies suggest that miRNAs play

an essential role in this process. For example, exosomes derived

from mesenchymal cells can transfer miR-182-5p and miR-23a-

3p into EMT cells and target Ikbkb and ubiquitin specific

peptidase 5 (Usp5) to repress IKKb ubiquitination, leading to

the inhibition of NF-kB signaling and the reversal of EMT (177).

The secretion by mesenchymal cells of specific molecules that

reverse the EMT process could partly explain the presence of

partial EMT. It might be possible to enhance the secretion of

these substances and the formation of exosomes to eliminate

tumor tissue resistance to chemotherapy.
Conclusions and perspectives

Research in the field of EMT has evolved from promoting

normal development and wound repair to having a significant

and complex impact on tumor resistance. On the one hand,

EMT can induce the generation of cells with different

phenotypes, which are resistant to PDBs to different degrees.

On the other hand, the EMT process can induce tumor cells to

produce multidrug-resistant proteins to evade the killing effect

of drugs. It has been recognized that the induction of EMT

required the activation of multiple signaling pathways, offering
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several opportunities for therapeutic intervention to inhibit the

occurrence and development of the EMT process, and even to

reverse it. However, the combination of EMT inhibitors and

PBDs has not achieved the desired effect in clinical practice. This

may be related to the synergistic effect of multiple signaling

pathways, the constantly changing tumor microenvironment, or

stress-induced metabolic changes in the tumor. New research

findings together with advances in technology could better

promote the development of new drugs so that PBDs

combined with radiotherapy could be precisely targeted to

ensure a more substantial inhibitory effect on the EMT process

with fewer toxic side effects. Moreover, the application of new

technology and bioinformatics methods has led to a deeper

understanding of EMT, with the discovery of new proteins and

new pathways, checkpoints and bypasses, which play important

roles in resistance to chemotherapeutic drugs. Current research

on EMT has been focused on identifying and neutralizing the

EMT-related proteins involved in drug resistance. Highlights of

the recent research include the effects of CSCs, CTCs, and DTPs

on tumor recurrence, metastasis, and drug resistance, which

have promoted an in-depth exploration of the relationship

between these cells’ metabolism and EMT. Another fruitful

area of research has been the effects of the extracts and

individual components of traditional Chinese medicines on

EMT. The results of these studies are expected to be the keys

to breaking the bottleneck of EMT-induced tumor resistance. In

the coming decades, research on EMT and the mechanism of

drug resistance will deepen our understanding of how to solve

the resistance to PBDs and reveal ways to Kibbe make these

agents safer and more effective in clinical practice.
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