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Recent studies showed that lipid metabolism reprogramming contributes to

tumorigenicity and malignancy by interfering energy production, membrane

formation, and signal transduction in cancers. HNSCCs are highly reliant on

aerobic glycolysis and glutamine metabolism. However, the mechanisms

underlying lipid metabolism reprogramming in HNSCCs remains obscure.

The present review summarizes and discusses the “vital” cellular signaling

roles of the lipid metabolism reprogramming in HNSCCs. We also address

the differences between HNSCCs regions caused by anatomical heterogeneity.

We enumerate these recent findings into our current understanding of lipid

metabolism reprogramming in HNSCCs and introduce the new and exciting

therapeutic implications of targeting the lipid metabolism.

KEYWORDS

lipid metabolism reprogramming, lipid catabolism, lipid synthesis, lipid
uptake, HNSCCs
Introduction

Over 850,000 people are diagnosed with head and neck squamous cell carcinomas

(HNSCCs) worldwide, and 440,000 people die of it (1, 2). Although human

papillomavirus (HPV)-positive HNSCCs patients have better outcomes with overall

survival (OS) rate of 70% (3, 4), patients with stage III–IV disease still suffer from local

invasion and therapeutic failure, with a poor prognosis and OS of approximately 40% at 5

years (5). The treatment for HNSCCs is individualized, with either surgery or combined

with radiotherapy, chemotherapy, target therapy or immunotherapy, as indicated by the

pathological or clinical features and anatomical regions (6). Extensive tissue resection,
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reconstruction, and side effects of radiotherapy and

chemotherapy seriously affect the life quality and survival rate

of HNSCCs patients, primarily due to impaired swallowing,

speaking and breathing functions (7). Because of inadequate

nutrient intake, half of the HNSCCs patients are malnourished

and about 80% of them lose weight during treatment (8, 9),

whereas some lose up to 20% of body weight (10). After exposure

to treatments, several metabolic changes occur because of wound

repairing and immune response (7), accompanied with other

existed metabolism reprogramming in tumors (11).

It’s well known that HNSCCs are highly reliant on glucose

metabolism, known as Warburg effect (12, 13). However,

nutritional limitation of the total calorie intake in HNSCCs

patients promote cancer cell proliferation (14, 15), indicating

that not only glucose metabolism, but also other metabolic

processes, such as glutamine and lipid metabolism, are vital.

As a newly discovered cancer characteristic (16), studies have

found that lipid metabolism is reprogrammed in cancers, too

(17). Lipid metabolism could support survival, proliferation,

invasion, and metastasis in cancer cells by contributing to

membrane formation, energy production and signal

transduction, and even mediate drug resistance (18, 19). Due

to the rapid proliferation rates and high metabolic energy

requirements, cancer cells have tremendous demand of lipids

(20, 21). Moreover, a variety of intermediate substrates produced

by glucose and glutamine metabolism could participate in lipid

metabolism, forming a “shortcut” cycling (22). Thus, lipid

metabolism reprogramming plays a “vital” role in HNSCCs.

However, it should be noted that the anatomical HNSCCs

regions, especially in the neck and supraclavicular regions,

mainly contain brown adipose tissue and beige adipose cells

(23), which promote energy consumption and help improve the

glucose and lipid metabolic disorders (24). And this could

partially explain the marked heterogeneity among different

head and neck regions (25), especially nasopharyngeal

carcinoma (NPC). In NPC, the most common manifestation is

cervical lymph node metastasis, which is riches in brown adipose

tissue (23). Distant metastasis occurs in about 20% of NPC cases,

and half of them are bone/bone marrow metastasis (26), a region

where adipocytes predominate (27). Latest studies found that

activated brown adipose tissue can reduce glucose around

cancers and inhibit cancer growth (28). Because of these

differences in adipose tissue distribution, the mechanisms

underlying lipid metabolism in different HNSCCs, and other

solid carcinomas may vary.

Up to date, most studies were working on the key enzymes

involved in lipid uptake and synthesis in HNSCCs, and the

upregulation of these enzymes indicates the therapeutic

potentials of lipid uptake and synthesis inhibitors in HNSCCs.

In this review, we summarize the current studies working on

lipid metabolism enzymes and signal transduction molecules

and introduce the advancements for lipid metabolism disruption

in HNSCCs. Lipids are composed of fat (triglyceride, TG) and
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lipoid (phospholipid, cholesterol, and cholesterol esters) and

both are involved in lipid uptake, synthesis, storage, and

catabol ism (20) . Thus, this review introduces the

reprogramming of lipid metabolism in HNSCCs by FA and

cholesterol, which are the main substrate for fat and lipoid.
Lipid uptake in HNSCCs

Cholesterol uptake

Cholesterol, which plays a crucial role in membrane

structure, is absorbed by intestinal enterocytes (29) and used

to synthesize very low-density lipoprotein (VLDL) in the liver

(30). VLDL is released into the blood and processed into low-

density lipoprotein (LDL), which is taken up by low-density

lipoprotein receptors (LDLR) on peripheral cells (31). Nicotine

in tobacco can induce an increase in LDLR expression in oral

epithelial cells, while smoking is an important risk factor for

HNSCCS (32). But the blood cholesterol and LDL levels are

significantly decreased in oral carcinoma patients (33, 34). These

results indicate that HNSCCs require more cholesterol and LDL

than normal cells. Daker et al. also found that Epstein-Barr virus

encoded RNA (EBERs) up-regulated LDLR and FA synthase

(FASN) in NPC cells (35). Besides, experiments on head and

neck cancer (HNC) cell lines revealed that the expression of

CD36 and LOX-1, another two LDL membrane receptors, were

significantly upregulated after exposure to oxidized LDL

(oxLDL) (36), which also suggested that the uptake of

cholesterol increased in HNSCCSs. However, lipid metabolism

varies according to different tumor microenvironment (TME)

and progression stages (37, 38). When oxLDL upregulated CD36

in HNC cell lines, the migration of cancer cells were reduced

after oxLDL exposure (36). Thus, the regulation of LDL

receptors needs further exploration in order to guide the

administration of cholesterol uptake inhibitor. The

mechanisms underlying cholesterol efflux proteins, such as

LXR or ABCA1, in HNSCCs are still lacking, which worth

more attention since they affect the total concentration of

cholesterol inside the cells, too.
FA uptake

FA is another essential molecule involved in lipid

biosynthesis and serves as a substrate for energy production

metabolism. Mammals produce only a few endogenous FAs,

which carry a double bond at d 9 in the hydrocarbon chain.

Other necessary FAs, especially polyunsaturated FAs, need to be

obtained from food (20, 39). FA are taken up by simple diffusion

through the lipid bilayer or by FA transporters on the membrane

(22). The currently known FA transporters include differentiated

cluster 36 (CD36, also known as FA translocation enzyme), FA
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transporter family (FATPs, also known as SLC27), and FA

binding proteins on the plasma membrane (also known as

FABPs). Abnormal elevation of these three proteins occurs in

a variety of cancers (20, 40). Among them, CD36 has been

studied most comprehensively in HNSCCs. In oral squamous

cell carcinoma (SCC), CD36 upregulation promotes tumor

metastasis, while its inhibition leads to complete remission or

elimination of lymph node and lung metastases in in vivo oral

carcinoma models (40). These findings suggest the therapeutical

use of CD36 inhibitors in advanced HNSCCs patients. What’s

more, CD36 inhibitors could reduce the growth of oral SCC cells

and inhibited lipid droplet (LD) formation, tumor progression,

and metastasis (41–43). And it is important to know that our

daily dietary intake may affect the expression of CD36 as Pascual

et al. found that dietary palmitic acid (PA) activated CD36 in

oropharyngeal carcinoma and stimulated metastasis of cancer

cells, which was promoted by a specialized proregenerative

extracellular matrix secreted from cancer-associated Schwann

cells (44). Thus, nutritional interventions should be considered

together with lipid metabolism inhibitors for cancer treatment.

Similar to CD36, Rauch et al. found that FABP protein

expression was significantly increased in HNSCCs compared

to normal tissues (45). Then, Ohyama et al. further found

abnormal expressions of FABP4 and FABP5 in tongue

carcinoma, whereas only FABP5 was expressed in normal

tongue epithelial cells, which showed a higher expression level

in injured and cancer tissues (46). Although few studies have

evaluated the role of FA transporter family in HNSCCs, these

studies revealed that HNSCCs require more FAs than normal

cells. However, the killing efficiency of the FA uptake inhibitors
Frontiers in Oncology 03
should be researched more specifically, along with the optimal

duration of use, usefulness and efficiency of nutritional

interventions, and long-term side effects.
Lipid synthesis and storage in
HNSCCs

Citric acid, produced by the citric acid cycle or glutamine

metabolism, is the starting molecule involved in intracellular

lipid synthesis. ATP-citric acid lyase (ACLY) converts citric acid

to acetyl-CoA and oxaloacetate, which are used to synthesize

different lipids in the cells (Figure 1). Although there is no direct

evidence of ACLY expression in HNSCCs, Zheng et al. found

that the long non-coding RNA TINCR could bind to ACLY and

protect it from degradation in NPC, which maintained the total

acetyl-CoA level in cells (47). In addition, Sur et al. reported that

bitter gourd extract could significantly reduce the expression of

ACLY, acetyl-CoA carboxylase (ACC), and FASN genes in oral

carcinoma, and promote cell apoptosis (48). These results

suggest that the ACLY expression is increased in HNSCCs,

which may contribute to the survival of cancer cells and ACLY

inhibition may be used as a new anticancer treatment

in HNSCCs.
Cholesterol synthesis

Cholesterol biosynthesis begins with the conversion of two

molecules of acetyl-CoA to acetoacetyl-CoA by acetyl-CoA
FIGURE 1

Lipid synthesis and storage in HNSCCs. Lipid synthesis begins with citric acid, produced from the TCA cycle, which is used to synthesize
different lipids in the cytoplasm. There are two main pathways involved: FA de novo synthesis and cholesterol synthesis. The produced lipids are
stored as LDs. Most enzymes involved in lipid synthesis are upregulated in HNSCCs.
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acetyltransferase (ACAT). Subsequently, a third acetyl-CoA

molecule is synthesized into HMG-CoA by HMG-CoA

synthase (HMGCS). HMG-COA reductase (HMGCR) is the

next rate-limiting step in cholesterol synthesis and produces

mevalonate (Figure 1). Mevalonate can be modified to produce

different cholesterols with various physiological functions, such

as lipid raft in cell membrane (29). Using genetic variation

assessment, Gormley et al. reported that there was limited

evidence regarding LDL reduction by HMGCR, Niemann-Pick

type C1-like 1 (NPC1L1), CETP, or other circulating lipid trait

genes on the risk of oral or oropharyngeal carcinoma (49).

However, ACAT1 was reported to be associated with poor

prognosis of oral SCC (50). This may be explained by the lack

of consideration of cholesterol efflux in the previous study,

which affects the total quantity of cholesterol inside the cancer

cells. Although previous findings related to cholesterol synthesis

are controversial and there are limited reports about the

expression and prognostic role of cholesterol synthesis-related

enzymes in HNSCCs, statins, which are the cholesterol-lowering

drugs that act by HMGCR inhibition (51), could induce

apoptosis of cancer cells by consuming non-steroidal

mevalanoic acid metabolites in HNSCCs (52). Furthermore,

statins could enhance the effects of cisplatin with concomitant

use and potentiate the efficacy of immunotherapy in HNSCCs

(53). These results highlight the potential therapeutic use of

statins in HNSCCs, which should be further studied to clarify the

mechanisms behind.
FA de novo synthesis

FA de novo synthesis begins with the conversion of acetyl-

CoA to malonyl-CoA by ACC. Then, acetyl-CoA and malonyl-

CoA are catalyzed by FASN to form palmitate, which is further

modified by elongase of very long chain fatty acids (ELOVL)

enzymes to elongate the length of FA chains. Finally,

polysaturated FAs, such as palmitic acid, are desaturated to

produce unsaturated FAs by stearoyl-CoA desaturase (SCD)

and/or other fatty acyl-CoA desaturases (Figure 1). The

expression of various rate-limiting enzymes involved in FA de

novo synthesis was increased in HNSCCs. In HNSCCs with

lymph node metastasis, highly phosphorylated ACC expression

was found to be associated with poor survival outcomes (54).

And ACC2 serves as a vital prognostic indicator and potential

therapeutic target in HNSCCs (55). As another key rate-limiting

enzyme in FA synthesis, FASN expression was found to be

increased in HNSCCs, too. Epstein-Barr virus could promote

FASN expression in NPC cells (35, 56) and FASN transcription

was increased in cisplatin-resistant SCCs and played a role in

cisplatin resistance (57). Furthermore, FASN siRNA inhibited

the growth of in vivo oral SCC and lymph node metastasis (58),

and FASN inhibitors increased the sensitivity to radiotherapy

(59). The aforementioned results suggest that inhibition of FA
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synthesis would be a novel and exciting treatment for HNSCCs.

Clinical trials evaluating the efficiency of the FASN inhibitors are

currently ongoing on variety of cancers, including oral cancers

(NCT02223247) (www.clinicaltrails.gov). Besides, SCD

inhibitors could hinder cancer cell proliferation and invasion

in oral carcinoma (60, 61), but need more in-depth and long-

term studies.
Total lipid synthesis and storage

After synthesis, FAs bind to different backbones to produce

different classes of fat in the body, such as phospholipids and

TGs with glycerol is the most common backbone, except

phospholipids. FAs produce TGs through several enzymes,

including Gly3P phosphate acyltransferase (GPAT), 1-acyl-sn-

Gly3P acyltransferase (AGPAT), PA phosphatase (PAP), and

DAG acyltransferase (DGAT). TGs are then encapsulated in

LDs, which is the main storage form of lipids (Figure 1). LD

accumulation serves as a phenotype for metastasis initiation,

energy storage, and regulatory mechanism of reactive oxygen

species in carcinomas (62). HNSCCs show increased LD

accumulation, too (63, 64). However, the distribution and

mechanism of key enzymes and molecules, such as lipins, in

HNSCCs have not been reported previously, and merit

further exploration.
Lipid catabolism in HNSCCs

Lipolysis

In response to the requirements of rapid growth and

invasion, intracellular lipolytic enzyme activity is also

increased (65). In mitochondria, long chain FAs are

transformed into acetyl-CoA through lipid catabolism (20),

thereby providing ATP and substrates for lipid synthesis (66).

The initial step of lipolysis is the hydrolysis of TG into

diacylglycerol (DAG) by lipases. Two main lipases are

involved in this process, namely, hormone-sensitive lipase

(HSL) and fatty triglyceride lipase (ATGL, also known as

phospholipase A2, PNPLA2, or PLA2). Rather than TG, HSL

hydrolyzes DAG to monoacylglycerol (MAG), while ATGL

almost completely hydrolyzes TGs to release DAG (67, 68).

DAG is derived from TGs via ATGL, and DAG is hydrolyzed by

HSL to 2-MAG. Then, 2-MAG is hydrolyzed by MAG lipase

(MGL) to free FAs and glycerol, which is then secreted

extracellularly (22) (Figure 2).

In 2012, Tripathi et al. found that, along with the Warburg

effect, the phosphatidylcholin/lysophosphatidylcholine and

phosphatidylcholine/glycerophosphatidylcholine ratios were

significantly increased and the activity of ATGL in HNSCCs

(oral, tongue, and larynx) was enhanced (69). However, Zhou
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et al. found that in NPC, ATGL expression was inhibited,

lipolysis was reduced, and LD accumulation was increased

(63). In addition, they found that low ATGL expression was

associated with poor prognosis of patients and ATGL inhibition

was regulated by Epstein-Barr virus-encoded membrane latent

protein 2A (LMP2A). LMP2A not only promoted lipid

accumulation by inhibiting ATGL, but also enhanced

migration in vitro (64). Thus, the expression and mechanisms

of ATGL varied according to the anatomical regions of HNSCCs.

As we mentioned above, this gene heterogeneity may be related

with the different adipose tissue distribution and lipid

metabolism in HNSCCs.
FA catabolism

In addition to being a metabolic intermediate in lipid

anabolism, FAs are an important energy source. FAs are

catabolized by fatty acid oxidation (FAO), also known as b
oxidation. FA-CoA was transformed into FA-carnitine by

carnitine palmityl transferase (CPT) and transported from the

cytosol across the outer mitochondrial membrane. Within the

mitochondria, FAs are repeatedly cleaved to produce acetyl-

CoA, which is recycled into the citric acid cycle to produce the

reductive equivalent of oxidative phosphorylation (Figure 2). Du

et al. found that increased CPT1A-mediated FAO was

significantly associated with radiotherapy resistance in NPC

(70), suggesting the potential use of combination treatment of

FAO inhibitors and radiotherapy. However, the mechanism
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underlying the role of CPT1/2 in other HNSCCs as well as its

other functions require further evaluation.
Regulation pathways of lipid
metabolism reprogramming in
HNSCCs

In addition to the key lipid metabolic steps mentioned

previously, there are also many important signaling pathways

involved in lipid metabolism regulation, such as PI3K/AKT,

mTOR, and AMPK pathways, which have been discussed

previously and are not included in this review (22, 71). In

addition to the above pathways, there is a star lipid regulation

pathway, which is involved in the regulation of synthesis of

multiple lipids, namely, INSIG/SCAP/SREBPs, and requires

further attention. The INSIG/SCAP/SREBPs complex is

located on the endoplasmic reticulum but does not have any

regulatory activity. After cholesterol or glucose stimulates

INSIG, the SCAP/SREBPs complex is transported to the Golgi

and cleaved into the activated form. Then, SREBP-1c is released

into the cell nucleus and regulates the downstream genes as a

transcriptional factor. SREBPs has three main forms, namely,

SREBP1a, SREBP1c, and SREBP2. SREBP1 mainly regulates the

expression of FA synthesis genes and LDLR, while SREBP2

preferentially regulates the expression of cholesterol biosynthesis

genes (20). In NPC, SREBP1 activation mediated lipid synthesis

and promoted tumor proliferation and progression (72).

However, the distributions, expression levels, and specific
FIGURE 2

Lipid catabolism in HNSCCs. Enzymes involved in lipid catabolism are shown in the figure. After release from the LD, triacylglycerol is broken
into FA-CoA by lipolysis-related enzymes and catabolized by FAO to produce energy and substrates for the mitochondrial TCA cycle. b-
oxidization are reported to be upregulated in HNSCCs, however, the expression of ATGL in HNSCCs is still controversial.
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mechanisms of INSIG/SCAP/SREBPs in different HNSCCs are

still unclear.
Effects of high-risk factors on lipid
metabolism reprogramming in
HNSCCs tumor microenvironment

Tobacco and alcohol

Compared with non-smoker who never drank, those who

drank and smoked every day had a 14-fold higher risk for head

and neck squamous cell carcinoma (73). Alcohol consumption

alone increases the risk for head and neck squamous cell

carcinoma (74, 75). Ethanol is oxidized into acetaldehyde after

absorption, which forms various proteins and DNA adducts that

promote DNA repair failure, lipid peroxidation and metabolism

(76). In HNSCCs, there is a significant positive dose-response

relationship between prediagnosis alcohol intake and worse OS,

especially associated with the fast ADH1B and the slow/

nonfunctional ALDH2 genotype combination (77), two

dehydrogenase for alcohol and aldehyde. Chronic alcohol

exposure decreases the DNA binding ability of PPARa, a
nuclear hormone receptor involved in mitochondrial b-
oxidation regulation (78, 79), and impairs cholesterol synthesis

(80, 81), which may promote cancer progression, and may also

occur in head and neck epithelial cells. Another risk factor that

HNSCCs patients are frequently exposed to is tobacco.

Difference in lipidome signatures can be found between

smokers and non-smokers across a number of lipid species

(82, 83). Compared with unexposed, active or passive smokers

have higher LDL (84–87) and lower HDL (88). Nicotine in

tobacco can induce up-regulation of LDLR expression in oral

epithelial cells (32). However, the serum levels of total lipids,

cholesterol and HDL in patients with oral cancer are

significantly reduced, while triglycerides and VLDL are

increased (33, 34). Above results support that lipid metabolism

reprogramming has a significant relationship with HNSCCs

development, although the specific mechanisms of alcohol and

tobacco regulation is still unclear.
Virus infection

As a part of the upper aerodigestive tract, HNSCCs are often

affected by viral or bacterial microbes, such as HPV and EBV.

Viruses require lipid-mediated endocytosis to enter the cell and

HPV proteins L1 and L2 could activate lipid-raft mediated

endocytosis to increase its infection (89). The HPV16 E5

protein even can change the lipid composition in cells to help

establishing an immune suppressed TME that favors HPV long-

term infection (90). HPV16 E6 and E7 could up-regulate lipid
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synthesis by activating PI3K/AKT/mTOR (91) and SREBPs lipid

synthesis signaling pathways (92–94). HPV-positive HNSCCs

patients had higher levels of gene expression in TCA cycle,

oxidative phosphorylation and b-oxidation, compared with

HPV-negative patients (95). However, due to the different

adipose tissue distribution, the lipid metabolism regulated by

HPV may also varied in different cancers. For example, although

HPV is involved in the regulation of cell metabolism in both

cervical cancer and HNSCCs, its functions varied. In HPV-

associated HNSCCs, i t mainly promotes oxidat ive

phosphorylation to obtain energy (96, 97), while in cervical

cancer, HPV E6 protein up-regulates lipolysis and down-

regulates oxidative phosphorylation (98).

Another well-known virus risk factor in HNSCCs is Epstein-

Barr virus, which is also involved in lipid metabolism

reprogramming in HNSCCs TME. EBV encoded LMP1 has

been reported to regulate glycolysis and lipogenesis in NPC

(56, 99, 100). EBV-mediated reprogramming of lipid

biosynthesis promotes B-cell activation and differentiation

surrounding TME (101, 102), which help shaping a tumor

favored TME. At the same time, EBV can also release

inflammatory factors, such as IL6, IL-10 and leptin, which

promote fat consumption (103–105) and help cancer cells to

evade immune surveillance (106). Therefore, virus associated

HNSCCs show differences in lipid metabolism compared with

non-infectious HNSCCs, which worth more study in the future.
Dietary interventions

Dietary interventions alter the metabolic substrates

concentrations in the TME, which will reprogram the cancer

cell metabolism and induce cancer development and progression

(107–111). Caloric restriction inhibits the growth of pancreatic

cancers and helps limit cancer progression (112). However, the

total calory intake restriction intervention does not improve the

survival prognosis in HNSCCs, but improves the cancer cells

proliferation (14, 15). Whether a hypoglycemic diet will inhibit

cancer growth may be determined by the mismatch between the

fatty acid desaturation degree and the available specific fatty acid

types in the cancer (112). Therefore, the role of lipid metabolism

in HNSCCs deserves further investigation.

Ferroptosis is an iron-mediated lipid peroxidation that

causes non-apoptotic cell death, which is associated with

cancer development and therapy response. Inhibition of

GPX4, an important ferroptosis regulation molecule, can

sensitize drug-resistant cancer cells in HNSCCs (113). During

ferroptosis, polyunsaturated fatty acids (PUFAs) are most

susceptible to peroxidation, which can cause the destruction of

the lipid bilayer and affect membrane function (114). In oral

cancer, glutathione can regulate lipid oxidation by binding to

PTGS2 which promotes ferroptosis (115). What’s more, high

fat-soluble vitamins, such as Vitamin D is associated with lower
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risk of cancer (116). Thus essential nutrients such as glutathione

(GSH), fat-soluble vitamins A, D and K, which help remove ROS

(98) and regulate lipid peroxidation and ferroptosis (117), have

po t en t i a l an t i c ance r app l i c a t i on in HNSCCs by

promoting ferroptosis.

In addition to essential nutrients, there are many exogenous

lipid nutrients with potential cancer killing effects in HNSCCs.

Reports have shown that docosahexaenoic acid, a w-3 fatty acid,
can induce the degradation of HPV E6/E7 oncoprotein and

promote apoptosis (118). Ergosterol Peroxide extracted from

mushroom can increase radiotherapy sensitization in cervical

cancer cells (119). Salvianolic acid B extracted from salvia

miltiorrhiza, which could can also inhibit the malignant

transformation of oral premalignant lesion (120), which has

been reported had the protective effect on metabolic homeostasis

by regulating PPARg, FASN, SCD1 and CD36 (121). These

results suggest that exogenous unsaturated fatty acids and lipid

nutrients extracted from plants may have therapeutical potential

in HNSCCs.
Regulation of lipid metabolism in
HNSCCs by cancer associated cells
in TME

Apart from cancer cells, cancer-associated cells in the TME

also play an important role in the occurrence and development

in cancers. Among them, the one that has been studied the most

is cancer-associated fibroblasts (CAFs), which can be derived

from normal fibroblasts around cancers, mesenchymal stem cells

and cancer cells undergoing EMT transformation (27). It

interacts with cancer cells and other components in the TME

which help forming a tumor-supporting TME (122–124). HPV-

negative oropharyngeal cancer cells can stimulate normal

fibroblasts to produce HGF and IL-6 (125), and senescent

CAFs will secrete more IL-6, COX2 and PGE2 (126). And

then, IL-6 further promotes cancer cell invasion, lipid
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depletion and immunosuppression (103–106). Although there

is evidence that CAFs in HNSCCs exhibit similar metabolic

characteristics with cancer cells (127, 128), studies on lipid

metabolism in CAFs are still lacking. What’s more, Pascual

et al. found that dietary PA could induce the cancer associated

Schwann cells to secrete a specialized extracellular matrix to

promote metastasis (44). All these results support that cancer

associated cells help reprogramming the lipid metabolism in

HNSCCs TME.

Adipocytes also can differentiate into CAFs (27). Cancer

cells could regulate lipid metabolism of adipocytes to produce

cancer-associated adipocytes, which are morphologically and

functionally different from normal adipocytes (129). Cancer-

associated adipocytes then further release fatty acids, mitogens

and proinflammatory adipokines to promote the occurrence and

development of cancers (130–134). Adipokines such as leptin

and adiponectin are lower in HNSCCs patients (135–138),

whereas visfatin and chemerinze are higher (28, 139).However,

adipocytes distribution in different regions of HNSCCs varies,

which may be the reason for the distinct metabolism CAFs

subtypes in HNSCCs (128, 140). All these evidences support that

cancer associated adipocytes and CAFs play a vital role in lipid

metabolism in HNSCCs, but needs more exploration.
Summary and future prospects

The mask of lipid metabolic reprogramming in HNSCCs is

gradually being revealed. Previous studies reported that a variety

of lipid metabolic enzymes are upregulated in HNSCCs, but

heterogeneous was also existed according to different TME and

anatomical regions. Cancer cells are constantly reprogramming

their lipid metabolisms in response to the TME and/or

metastasis/colonization needs in HNSCCs. In this article, we

summarized the previous research on lipid metabolism

reprogramming in HNSCCs. However, as shown in Table 1,

only few lipid metabolism enzymes have been researched and

there are still a lot of vacancy in this area which need further
TABLE 1 Expression of key lipid metabolism enzymes in HNSCCs.

Lipid metabolism type Enzymes Expression Subsites References

Lipid transportation Cholesterol uptake LDLR Overexpression Oral epithelial (32)

Nasopharyngeal carcinoma (35)

CD36 Overexpression Head and neck carcinoma (36)

LOX-1 Overexpression

FA uptake CD36 Overexpression Oral squamous cell carcinoma (40)

Oropharyngeal carcinoma (44)

FABPs Overexpression Head and neck carcinoma (45)

Tongue carcinoma (46)

Lipid anabolism ACLY Overexpression Nasopharyngeal carcinoma (47)

(Continued)
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exploration in the future. Importantly, HNSCCs comprise a

diverse group of cancers that affect the upper aerodigestive tract.

The differences in reprogramming of lipid metabolism under

different TMEs in HNSCCs require additional studies. Lipid

metabolism reprogramming not only shows extensive

interaction with other metabolic mechanisms, but also has

various crosstalk with surrounding cells, cytokines, growth

factors, and even nutrient molecules within the malignant

cancer cells. Therefore, the role of lipid metabolism

reprogramming in HNSCCs needs additional studies,

including, but not limited to, its effects on the immune

microenvironment and angiogenesis. Further understanding of

the lipid metabolism reprogramming mechanisms, key rate-

limiting enzyme functions, and regulatory pathways in

HNSCCs may help to develop the potential use of lipid

metabolism pathways as targets for anti-tumor therapy, as well

as the use of dietary/nutritional interventions to improve the

prognosis and life quality of HNSCCs patients.
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TABLE 1 Continued

Lipid metabolism type Enzymes Expression Subsites References

Oral carcinoma (48)

Cholesterol synthesis ACAT1 Overexpression Oral carcinoma (50)

HMGCR Overexpression Head and neck carcinoma (51)

Head and neck carcinoma (52)

Head and neck carcinoma (53)

FA de novo synthesis FASN Overexpression Nasopharyngeal carcinoma (35)

Nasopharyngeal carcinoma (56)

Nasopharyngeal carcinoma (57)

Oral carcinoma (58)

Head and neck carcinoma (59)

ACCs Overexpression Head and neck carcinoma (54)

Head and neck carcinoma (55)

SCD Overexpression Oral carcinoma (60)

Oral carcinoma (61)

Lipid catabolism Lipolysis ATGL Overexpression Head and neck carcinoma (69)

Low expression Nasopharyngeal carcinoma (63)

FA catabolism CPT1 Overexpression Nasopharyngeal carcinoma (70)
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ABCA1 ATP Binding Cassette Subfamily A Member 1

ACAT acetyl-CoA acetyltransferase

ACC acetyl-CoA carboxylase

ACLY ATP-citric acid lyase

AGPAT 1-acyl-sn-Gly3P acyltransferase

ATGL adipose triglyceride lipase

CD36 differentiated cluster 36

CETP Cholesteryl Ester Transfer Protein

CPT carnitine palmityl transferase

DAG diacylglycerol

DGAT DAG acyltransferase

EBERs Epstein Barr virus encoded RNA

ELOVL elongase of very long chain fatty acids

FA fatty acid

FABPs FA binding proteins

FA CoA fatty acyl coenzyme A

FAO fatty acid oxidation

FASN fatty acid synthase

FDG-PET fluorodeoxyglucose-positron emission tomography

GPAT Gly3P phosphate acyltransferase

HMGCR HMG-COA reductase

HMGCS HMG-CoA synthase

HNSCC Head and neck squamous cell carcinomas

HPV human papilloma virus

HSL hormone-sensitive lipase

LD lipid droplets

LDL low-density lipoprotein

LDLR low-density lipoprotein receptors

LMP2A membrane latent protein 2A

LXR liver X receptor

MAG monoacylglycerol

MGL MAG lipase

NPC nasopharyngeal carcinoma

NPC1L1 Niemann-Pick type C1-like 1

OS overall survival

PA palmitic acid

PAP PA phosphatase

SCD stearoyl-CoA desaturase

SUV standard uptake values

TG triacylglycerol

TME tumor microenvironment

VLDL very low-density lipoprotein
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