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Primary liver cancer (PLC), including hepatocellular carcinoma (HCC) and

intrahepatic cholangiocarcinoma (ICC), and other rare tumours, is the

second leading cause of cancer-related mortality. It has been a major

contributor to the cancer burden worldwide. Of all primary liver cancer, HCC

is the most common type. Over the past few decades, chemotherapy,

immunotherapy and other therapies have been identified as applicable to the

treatment of HCC. However, evidence suggests that chemotherapy resistance

is associated with higher mortality rates in liver cancer. The tumour

microenvironment (TME), which includes molecular, cellular, extracellular

matrix(ECM), and vascular signalling pathways, is a complex ecosystem. It is

now increasingly recognized that the tumour microenvironment plays a pivotal

role in PLC prognosis, progression and treatment response. Cancer cells

reprogram the tumour microenvironment to develop resistance to

chemotherapy drugs distinct from normal differentiated tissues.

Chemotherapy resistance mechanisms are reshaped during TME

reprogramming. For this reason, TME reprogramming can provide a powerful

tool to understand better both cancer-fate processes and regenerative, with

the potential to develop a new treatment. This review discusses the recent

progress of tumour drug resistance, particularly tumour microenvironment

reprogramming in tumour chemotherapy resistance, and focuses on its

potential application prospects.
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Introduction

Over the past few years, cancer has always been a significant

public health problem worldwide. According to the data the

American Cancer Society reported in 2021, there are nearly 1.9

million new cancer cases and more than 600 thousand cancer

deaths in the United States (1). Of these, liver cancer is the most

common cause of cancer death worldwide and one of the fifth

most common cancers in the United States, with its incidence

rising yearly (2). The occurrence of PLC is mainly associated

with chronic hepatitis B virus (HBV) and hepatitis C virus

(HCV) infections. However, other factors have also been

implicated in the occurrence of HCC, including fatty liver

disease, dietary aflatoxin exposure, alcohol-related cirrhosis,

smoking, obesity, fatty liver disease, iron overload, Mellitus-

related non-alcoholic fatty liver disease and type 2 diabetes (3, 4).

Although ICC accounts for only a small proportion of primary

liver cancer in most parts of the world, it is the most common

subtype of primary liver cancer in Thailand due to the high

incidence of chronic liver fluke infection. Cirrhosis is also one of

its risk factors (5, 6).

The treatment of HCC has dramatically improved over the

past decades. The Barcelona Clinic Liver Cancer (BCLC) staging

system is the main basis for treatment. In principle, patients with

early-stage are suitable for surgical resection, l iver

transplantation, and local ablation, while TACE is the first

choice for patients with intermediate HCC. Due to the lack of

effective chemoprevention strategies and early diagnosis, most

patients are found at an advanced stage. However, the late

prognosis is poor, and only systemic therapy can prolong

survival time with a median survival time for advanced HCC

of ~6 months (7). Sorafenib was the only systemic therapy

approved for patients with advanced tumors in the last dozen

years (8). The results of a global open-label randomized Phase-

III trial (REFLECT) demonstrated that lenvatinib improved the

overall survival of patients with advanced HCC, the first new

drug to be approved in the first-line setting for advanced-stage

HCC in more than 10 years, which represented a breakthrough

in the clinical management of this cancer (7). Despite this, in

advanced liver cancer, the survival benefit of these drugs is

limited (9, 10). Despite this, in advanced liver cancer, the

survival benefit of these drugs is limited.

The environment in which HCC tumor cells grow is called

the liver tumor microenvironment, which is a complex mixture

of tumor cells and stromal cells and the proteins they secrete

(11). Normally, the stroma maintains the physiological

homeostasis of normal tissues, and some stromal components

act as a physical barrier to tumor formation (12, 13). However,

neoplastic cells cause various changes, and stroma is

inappropriately activated in cancer, transforming adjacent

TME into pathological entities to support cancer development

and make a contribution to the malignant characteristics of

tumor cells (14). The elements of a typical TME are made up of
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surrounding blood vessels, cancer-associated fibroblasts(CAFs),

immune and inflammatory cells, cytokines, chemokines or

enzymes, and extracellular matrix (ECM) (15). There is

increasing evidence that liver cancer progression and

metastasis are influenced by the tumor microenvironment.

An adverse tumor microenvironment in a single tumor is

recognized as common in most solid malignancies. It has been

found that the degree of heterogeneity in the tumor

microenvironment of normal and malignant cells is negatively

correlated with the prognosis of patients (16). Some of the

harmful features of the tumor microenvironment through

reprogramming can act alone or in combination with cancer

progression(via e.g. resistance to apoptosis, promotion of genetic

instability and mutation, continuous angiogenesis, and distant

metastasis), leading to chemotherapeutic resistance and

ultimately poor patient outcomes (17). In this review, we

mainly focus on the mechanism of tumor microenvironment

reprogramming on chemotherapy resistance in PLC to spark

new ideas for designing more specific therapies for cancer.
Cancer-associated fibroblasts

Among all the stromal cells that make up the tumor

microenvironment, CAFs are the most abundant tumor

stromal cell type and a key element of TME (18). CAFs

predominantly arise from tissue-resident fibroblasts and

mesenchymal stem cells (19–22). But studies have shown that

even under limited conditions. Transformation of adipocytes,

pericytes, and endothelial cells has also been observed (23).

Normally, fibroblasts are usually quiescent, but fibroblasts can be

activated under certain conditions, such as wound healing

response, tissue fibrosis acute and chronic inflammation (24–

26). Tumor cells recruit and secrete growth factors such as

transforming growth factor b (TGFb), platelet-derived growth

factor (PDGF), and interleukin-6 (IL-6) to stimulate fibroblasts

to convert to CAFs (23, 27). Although a-SMA, FAP, and PDGF

receptor-a (PDGFRa)can recognize activated fibroblasts, there

are still no comprehensive and specific biomarkers (23, 28, 29).

Numerous studies have suggested that CAFs are associated with

treatment resistance to colorectal cancer, ovarian cancer, breast

cancer, and stomach cancer (30–33). Cancer-associated

fibroblasts can mediate drug resistance by reprogramming the

metabolic process of tumor cells (34).

Metastasis and metabolic reprogramming are known as two

major features of cancer (35). The reason why liver

tumorigenesis or tumor progression inevitably leads to

metabolic reprogramming is that life is not only the largest

metabolic organ in the human body but also is associated with

almost all central metabolic processes. Tumor cells undergo

metabolic reprogramming to meet bioenergy and biosynthesis

requirements to maintain their abnormal proliferation and

adapt to the tumor microenvironment (36). Unlike normal
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cells, tumor cells rely on glycolysis to produce energy even under

aerobic conditions, also known as the Warburg effect (37). In

this process, the rate of glucose uptake dramatically increases

and produces more lactate. Cancer-associated fibroblasts have

been observed to influence cancer drug response and play a

positive metabolic role in tyrosine kinase inhibitor (TKIs)

resistance. Specifically, increased lactate secretion leads to

upregulation of hepatocyte growth factor (HGF) production by

cancer-associated fibroblasts in a nuclear factor KB-dependent

manner. MET-dependent signal transduction in cancer is

activated by increased HGF and endows sustained resistance

to TKIs (38). Studies have shown that in HCC patients with high

c-MET expression, HGF reduces the anti-proliferation, pro-

apoptotic and anti-invasion effects of lenvatinib on HCC cells.

In addition, the activation of the HGF/c−MET axis promotes

lenvatinib resistance in hepatocellular carcinoma cells (39).

Moreover, after long-term sorafenib treatment, HGF

upregulation induces the autocrine activation of the HGF ⁄c-

Met signaling pathway, increasing the anti-apoptotic and

invasion ability of HCC cells, and leading to resistance to

sorafenib (40). It can be seen that the HGF/c-Met axis plays

an important role in the chemotherapy resistance of liver cancer.

Several HGF/c-MET inhibitor drugs have been e assessed in

clinical trials (Table 1).

Although the Warburg effect has been widely accepted as a

distinctive character of tumor cells, accumulating evidence has

revealed that other metabolic features, particularly the reverse

Warburg effect (41), metabolic symbiosis, and glutamine

metabolism, create challenges to antitumor therapy due to

adaptive or acquired chemotherapy resistance (42). Lisanti et al.

proposed the “reverse Warburg effect” in 2009: cancer cells induce

glycolysis in cancer-associated fibroblasts which in turn produce

lactate and pyruvate that are used by adjacent epithelial cancer

cells as sources of the mitochondrial tricarboxylic acid cycle (TCA

cycle), oxidative phosphorylation, and ATP production (43, 44)

(Figure 1). The study of Migneco et al. showed that nutrients

derived from glycolytic cancer-associated fibroblasts can

effectively reduce the dependence of cancer cells on vascular

blood supply, thus promoting the escape of tumor cells during

antiangiogenic drugs (45).

In CAA, epidermal growth factor receptor (EGFR)

overexpression often indicates a poor prognosis (46). It can be
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activated by heparin-binding epidermal growth factor (HB-

EGF) secreted by CAFs. The HB-EGF/EGFR axis promotes

CCA cell proliferation, migration, and invasion by activating

the signal transducer and activator of transcription (STAT)-3.

Interestingly, TGF-b1 secreted by tumor cells can enhance HB-

EGF expression in CAFs, and TGF-b1 production is triggered by

EGFR activation. Thus forming a continuous signaling loop (47).

In addition, c-Met expressed by tumor cells in CCA can be

activated by HGF secreted by CAFs. After c-Met activation, its

downstream pathways including mitogen-activated protein

kinase (MAPK), extracellular signal-related kinase (ERK), and

phosphatidylinositol 3-kinase (PI3K) are activated, which is

conducive to tumor cells invasion and chemotherapy

resistance (48, 49).
Mesenchymal stem cell

Mesenchymal stem cells also called mesenchymal stromal

cells(MSCs), migrate to sites of inflammation, as well as migrate

and fuse with tumors (50). MSCs are originally isolated from

bone marrow. Besides, adipose tissue, peripheral blood, and

umbilical cord are also important sources of MSCs (51). MSCs

are a heterogeneous subpopulation of progenitor cells with the

capability of self-renewal and multidirectional differentiation,

which can transdifferentiate into osteocytes, chondrocytes,

adipocytes, astrocytes, fibroblasts, and pericytes (52). Studies

have shown that MSCs play a significant role in tumorigenesis

and development, and participate in many steps of

tumorigenesis, such as angiogenesis, invasion, metastasis,

epithelial-mesenchymal transformation, anti-apoptosis,

immunosuppression, and chemotherapeutic resistance (53).

There is growing evidence showing the important role of

MSCs in tumor resistance (54).

It has been proven that MSCs can secrete a variety of

cytokines or growth factors that participate in multiple

pathways and downstream mechanisms to activate a cascade

of reactions, leading to drug resistance (55, 56). Inflammatory

mediators are known to be an important part of the tumor

microenvironment (57). TGF-b expressed by mesenchymal stem

cells increased when exposed to tumor inflammatory

microenvironment (58). It has been proved that autophagy
TABLE 1 Clinical trials of some HGF/c-Met signaling inhibitors in hepatocellular carcinoma patients.

Drug Targets of inhibitor Phase Activity Status

Tivantinib c-Met III Failed Completed

Cabozantinib c-Met, VEGFRs, RET, KIT and AXL III Anti-tumor Completed

Foretinib c-Met, AXL, RON, VEGFR2 and TIE-2 II Anti-tumor Completed

Capmatinib c-Met II Anti-tumor Active, not recruiting

Tepotinib c-Met II Anti-tumor Completed

Golvatinib c-Met, VEGFR-2 II Anti-tumor Completed
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can enhance the resistance of HCC cells to chemical drugs by

affecting the apoptotic potential of HCC cells (59). Besides, Some

studies have indicated that TGF-b plays an important role in

inducing autophagy (60, 61). Taken together, MSCs promote the

development of chemotherapy resistance of HCC cells by up-

regulating the expression of TGF-b (62). MSCs, as mentioned

before, have the potential to differentiate into multicellular

lineages, so their transformation into CAFs may be another

mechanism for the development of therapeutic resistance

(Figure 2). Mishra et al. found that human bone marrow-
Frontiers in Oncology 04
derived mesenchymal stem cells (hMSCs) can transform into

SDF-1-expressing CAFs when exposed to a tumor-conditioned

medium (TCM) for a long time (63). As previously mentioned,

CAFs play a critical role in tumor drug resistance.
Tumor-associated macrophages

Massive macrophage infiltration is a common characteristic of

malignant tumors. Based on surface receptors and functional
FIGURE 1

Resistance mechanisms of CAFs. Metabolic reprogramming of tumor cells leads to increased lactate secretion, which stimulates CAFs to up-
regulate the production of HGF, leading to chemotherapy resistance of tumor cells.
FIGURE 2

Resistance mechanisms of MSCs. On the one hand, TGF-b secreted by MSCs can induce autophagy of HCC cells, leading to chemotherapy
resistance; on the other hand, MSCs can transform into CAFs to promote drug resistance.
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characteristics, macrophages can be divided into classical (M1) and

alternative (M2) activated phenotypes. The macrophages

surrounding the tumor area are called tumor-associated

macrophages (TAM). Increased TAMs are known to be associated

with poor prognosis after the surgical resection of hepatocellular

carcinoma (64). Themajority ofmacrophages located in intratumoral

and peritumoral regions exhibit the M2 phenotype, and several

studies have shown that cytokines found in peritumoral tissues,

including vascular endothelial growth factor, macrophage colony-

stimulating factor, and placental growth factor are significantly

associated withHCC recurrence and poor survival outcomes (65–67).
Cancer-associated adipocytes

Epidemiological evidence suggests that obesity is associated

with a combination of all cancers and a poor prognosis for

multiple location-specific cancers (68). Systemic and local

environmental changes caused by obesity can not only affect

the occurrence and development of tumors but also induce

chemotherapy resistance to tumors, especially in breast cancer,

prostate cancer, ovarian cancer, and leukemia (69, 70). All of this

suggests a potential role for adipocytes in tumor drug resistance.

Adipocytes are one of the most important components of

stromal cells in TME (71). It is noteworthy that co-cultured

with cancer cells, adipocytes are observed to exhibit remarkable

phenotypic changes and also exhibit an altered phenotype in

terms of delipidation, which are designated as cancer-associated

adipocytes (CAAs) (72). Bochet et al. demonstrated that tumor

cells can secrete Wnt3a to promote changes in adipocyte

phenotypes (73). In addition, the bidirectional cross-talk

established between cancer cells and mature adipocytes may

enhance the invasive capabilities of cancer cells by altering the

adipocyte phenotype (72, 74). Accumulating recent evidence

indicates that CAAs can induce chemoresistance through

different mechanisms such as metabolic reprogramming,

secretion of various factors, remodeling of the extracellular

matrix, and altering chemotherapy pharmacokinetics (75–78).

The “Warburg effect” and “reverse Warburg effect” have

been proved to be the cause of CAFs-mediated drug resistance,

and this concept can also be applied to other cells in the tumor

microenvironment, particularly adipocytes (79). For a long time,

adipocytes were identified as a tremendous passive energy

storage depot. Pérez de Heredia et al. showed that the release

of lactate from adipocytes increased under hypoxic conditions

(80). Previous studies have shown that lipids in adipocytes are

the main source of tumor cells. CAAs release exogenous free

fatty acids (FFAs) that can be taken up by CD36 on the surface of

cancer cells (81). FFAs could yield sufficient energy for cancer

cells through FAO (82), which contributes to therapy resistance.

It has been proved that CD36 promotes epithelial-mesenchymal

transition(EMT) in hepatocellular carcinoma by increased free

fatty acid uptake (83). Notably, EMT is closely associated with
Frontiers in Oncology 05
the development of liver cancer and likely affects therapeutic

responsiveness in HCC (84) (Figure 3).
Tumor-associated neutrophils

Traditionally, the recruitment mechanism and function of

neutrophils have been studied mainly in inflammation.

Neutrophils account for about 50-70% of myeloid-derived white

blood cells in patients with infection or inflammation (85). The

inflammatory cells in solid tumors are mainly neutrophils, and the

intratumoral high density is correlated with lymph node metastasis,

tumor stage axis, and tumor grade (86). Increasing clinical evidence

shows that the tumor and the tumor microenvironment control

neutrophil recruitment and in turn tumor-associated neutrophils

(TANs) regulate tumor progression or growth control (87).

Inflammatory neutrophils not only can phagocytose bacteria,

activate and enhance the immunosuppressive system, but TANs

also functions as immunosuppressive cells in tumors (88).

It has been well acknowledged that neutrophils have the

capability to secret cytokine and chemokine (89). These cytokines

enable them to interact directly with tumor cells as pro-tumor or

anti-tumor effectors or indirectly by regulating angiogenesis, tumor

growth, and anti-tumor immune responses (90). HGF, a heparin-

binding factor, binds to a specific proto-oncogene tyrosine kinase

receptor (C-MET) to stimulate hepatocytes by maintaining

proliferation, promoting epithelial-mesenchymal transformation

(EMT), and ultimately leading to invasion and metastasis during

the malignant transformation of HCC (91, 92). In addition, other

studies have shown that the HGF-Met axis plays an important role

in chemotherapy resistance by coordinating liver cancer

metabolism and autophagy. The combination of MET inhibitors

and autophagy inhibitors significantly improved the efficacy of

hepatocellular carcinoma therapy in mice (93). In liver cancer,

however, cancer cells stimulate neutrophils to release hepatocyte

growth factors, which in turn stimulates tumor cells to become

more aggressive (94). CCL2 and CCL17 secreted by TANs can

mediate intratumoral invasion of macrophages and Treg cells,

thereby stimulating angiogenesis, promoting liver cancer growth

and metastasis, and promoting sorafenib drug resistance. In

addition, sorafenib also blocks tumor angiogenesis through

targeted VEGF and PDGF receptor kinase activity, which also

contributes to TAN accumulation and accompanying

macrophage and Treg cell infiltration and promotes sorafenib

resistance (95) (Figure 4).
Extracellular matrix

Extracellular matrix (ECM), produced by stromal cells in the

microenvironment, provides biochemical and mechanical clues to

tumor cells and the surrounding tumor microenvironment. It is a

highly dynamic structure that exists in all tissues and is constantly
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undergoing controlled remodeling. ECM remodeling is essential for

regulating tissue morphogenesis (96). It has been demonstrated that

some ECM components, directly and indirectly, interact with HCC

and stromal cell types to alter the phenotype and function of HCC

and stromal cells (97). These mechanical stresses and associated

cellular strains could come from externally applied “outside-in”

mechanical stimuli. To coordinate with outside-in stimuli, anchored

cells also pull on the ECM by increasing ECM adhesions and focal

adhesions, i.e. “inside-out” mechanical stimulation (98). This

mutual stimulation results in a mechanically rigid

microenvironment. The mechanical properties (stiffness) of the

tumor cell niche affect both the differentiation of tumor cells and

the characteristics of cancer stem cells. It has been shown that

increased matrix hardness promotes tumor cell proliferation and

chemotherapy resistance (99, 100). Therefore, ECM remodeling

plays a crucial role in promoting tumor progression.
Hypoxia

Anti-angiogenic drugs can cause the tumor’s blood vessels to

constrict, resulting in reduced blood flow. Inadequate blood
Frontiers in Oncology 06
supply affects both the effective delivery of antitumor drugs and

the local concentration of oxygen and other nutrients (101).

Hypoxia is a common feature of solid tumors, which has been

demonstrated to be associated with chemotherapy failure and

plays an important role in the selection of more aggressive and

resistant clones, and poor clinical outcomes (102–104). The

viability of hypoxic cells in solid tumors is increased by the

adaptive response of cells to hypoxia, which is mainly controlled

by hypoxia-inducible factors (HIFs) (105, 106). HIFs are

transcription factors that mediate the adaptation of tumor cells

to hypoxia by regulating genes involved in cell proliferation,

angiogenesis, glucose metabolism, tumor invasion, and

metastasis (103, 106). The HIFs factor consists of the HIF-a
subunit and HIF-b subunit, where the a-subunit includes three
subtypes(HIF-1a, HIF-2a, and HIF-3a) (107). Overexpression
of HIF-1a and HIF-2a has been detected in nonalcoholic fatty

liver disease, HCC, alcoholic liver disease, and radioactive liver

injury (106). Studies have demonstrated that the multidrug

resistance 1(MDR1/ABCB1) gene is hypoxia reactive and that

HIF-1a can lead to the activation of the gene (108). Multidrug

resistance (MDR1) gene product P-glycoprotein can reduce the

intracellular concentration of sorafenib and other drugs, which

is related to chemotherapy resistance (109). In addition, the
FIGURE 3

Resistance mechanisms of CAAs and hypoxia. CAAs release exogenous free fatty acids, which are absorbed by CD36 on the surface of tumor
cells, to promote epithelial mesenchymal transformation and promote drug resistance of HCC. Tumor cells in anoxic environment lead to
upregulated EXPRESSION of HIF, thus promoting drug resistance to chemotherapy.
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stabilization of HIF1a can lead to metabolic reprogramming and

enhance tumor growth (110) (Figure 3).
Conclusion and future development

The overall treatment outcome for liver cancer is far from

satisfactory. The use of chemotherapeutic drugs has been

hampered by drug resistance mechanisms in which the tumor

microenvironment is an indispensable player. TME is a dynamic

and constantly changing complex biological network whose

diverse cellular and non-cellular components externally

influence hallmarks and fates of tumor cells, which in part

contributes to resistance to conventional therapeutic drugs.

Therefore, TME would be an attractive target, both to sensitize

tumors to traditional therapies and as a new option to fight the

disease. Anyway, our current insights into tumor therapy indicate

that the rapid elimination of therapeutic resistance in tumor cells

is critical to reducing the incidence of adverse events. Although
Frontiers in Oncology 07
different combinations of therapies promise to achieve this goal, it

is critical to find novel strategies to block primary crosstalk and

reshape the microenvironment. It’s believed that in the foreseeable

future, more and more preclinical and clinical research is expected

to translate into novel, effective and safe clinical treatment options.
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