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Analysis of cuproptosis in
hepatocellular carcinoma
using multi-omics reveals
a comprehensive HCC
landscape and the immune
patterns of cuproptosis

Xinqiang Li1,2†, Peng Jiang1,2†, Ruixia Li3†, Bin Wu1,2, Kai Zhao1,2,
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Cuproptosis represents a novel copper-dependent regulated cell death,

distinct from other known cell death processes. In this report, a

comprehensive analysis of cuproptosis in hepatocellular carcinoma (HCC)

was conducted using multi-omics including genomics, bulk RNA-seq, single

cell RNA-seq and proteomics. ATP7A, PDHA1 and DLST comprised the top 3

mutation genes in The Cancer Genome Atlas (TCGA)-LIHC; 9 cuproptosis-

related genes showed significant, independent prognostic values.

Cuproptosis-related hepatocytes were identified and their function were

evaluated in single cell assays. Based on cuproptosis-related gene

expressions, two immune patterns were found, with the cuproptosis-C1

subtype identified as a cytotoxic immune pattern, while the cuproptosis-C2

subtype was identified as a regulatory immune pattern. Cuproptosis-C2 was

associated with a number of pathways involving tumorigenesis. A prognosis

model based on differentially expressed genes (DEGs) of cuproptosis patterns

was constructed and validated. We established a cuproptosis index (CPI) and

further performed an analysis of its clinical relevance. High CPI values were

associated with increased levels of alpha-fetoprotein (AFP) and advanced

tumor stages. Taken together, this comprehensive analysis provides

important, new insights into cuproptosis mechanisms associated with

human HCC.
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Introduction

Hepatocellular carcinoma (HCC) represents the most

common type of primary liver cancer (1), ranking as the

fourth leading cause of tumor-related deaths worldwide (2).

Most HCC patients show poor outcomes due to the difficulties

of early diagnosis and treatment of advanced HCC (3).

Additional factors contributing to low survival rates as

associated with HCC include high probabilities for

recurrence and metastasis after surgical treatment (4), high

tumor heterogeneity of HCC resulting in drug resistance and

limited efficacy of systemic therapies (5). Therefore, identifying

novel and reliable methods to enhance the efficacy of diagnosis

and treatment is urgently needed to improve long-term

outcomes of HCC.

While there exist numerous studies on the mechanisms

involved with cell death from HCC, a principal conclusion

resulting from these reports is that these mechanisms are

complex. With HCC, as well as in other tumors, various types

of cell death are associated with the biological behavior of these

tumor cells (6, 7). Cuproptosis represents a novel, copper-

dependent regulated cell death (8, 9), which is distinct from

other known cell death processes such as apoptosis (10),

necroptosis (11), pyroptosis (12) and ferroptosis (13).

Cuproptosis was recently found to involve a direct binding of

copper to lipoylated components of the tricarboxylic acid (TCA)

cycle with the subsequent aggregation and loss of lipoylated

proteins leading to cell death (14). A number of genes associated

with cuproptosis have been identified including FDX1, LIPT1,

LIAS, DLD, DLAT, PDHA1, PDHB, DBT, GCSH, DLST,

SLC31A1, ATP7A and ATP7B. In particular, FDX1, which

encodes a reductase to transfer Cu2+ to Cu1+, is thought to be

a key regulator of cuproptosis and an upstream regulator of

protein lipoylation (8, 15).

The issue as to whether cuproptosis related genes

influence tumor microenvironments and the means through

which it may impact the prognosis of HCC remains unknown

(16). Given the severity of HCC, an urgent need exists to

achieve a comprehensive understanding of the relationship

between cuproptosis and HCC. Such information would be

critical in elucidating the immune patterns and identifying

potential treatment targets for HCC. In the present study,

detailed analysis of cuproptosis related genes was performed,

as achieved using genomics, bulk RNA-seq and single

cell RNA-seq to dissect a cluster of cuproptosis related

hepatocytes in HCC. Then, two immune clusters with

distinct gene patterns based on cuproptosis-related genes

were constructed. Lastly, we identified a prognostic gene

signature in the TCGA cohort and validated this gene

signature in the International Cancer Genome Consortium

(ICGC) cohort.
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Methods

HCC datasets and preprocessing

The workflow of this study is summarized in Figure S1A. For

bulk RNA-seq, gene expression data and clinical metadata from

HCC samples were downloaded from the GDC TCGA Liver

Cancer (LIHC, n=421) (https://xenabrowser.net/datapages/) and

ICGC Data Portal (https://dcc.icgc.org/releases/current/

Projects/) named LICA-FR Liver Cancer - FR (N=161). These

sites provide data on gene expression, clinical information and

survival phenotype, which were then used for further analysis.

For single cell RNA-seq, we downloaded data from the Gene

Expression Omnibus (GEO) repository (https://www.ncbi.nlm.

nih.gov/geo/) and the accession ID was GSE156625 (17), which

contains 14 pairs of tumor samples of human HCC with a 10X

genomics platform (Table S1).
Gene mutation analysis

Gene mutation data, including somatic mutations and copy

number variation (CNV) in HCC were downloaded from the

GDC TCGA Liver Cancer (https://xenabrowser.net/datapages/)

and cBioPortal for Cancer Genomics (http://www.cbioportal.

org/) sites. The maftools R package (version 2.6.05) (18) was

used to perform the analysis and visualize somatic variants of

HCC. In addition, the RCircos R package (version 1.2.2) (19)

was utilized to plot the CNV atlas of cuproptosis-related genes in

human chromosomes.
Pathway enrichment analysis

Metascape (20), a webtool for gene annotation and analysis,

was employed to perform pathway enrichment analysis and

protein-protein interaction (PPI). We also employed the

functional enrichment analysis using the clusterProfiler

package (version 3.17.0) (21) and org.Hs.eg.db package

(version 3.11.4) for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis to

highlight biological processes and potential functions of genes.

Both GO and KEGG used a p < 0.05 as their probability limit

value. Results were visualized using barplot or dotplot functions.
Correlation analysis

The ggcorrplot package (version 0.1.3) was used to calculate

and visualize potential correlations among cuproptosis-related

genes according to gene expressions present in HCC.
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Study subjects

A total of 20 pairs of tumor and adjacent tissue from HCC

patients were collected from the Affiliated Hospital of Qingdao

University. This study was approved by the ethics committee of

Affiliated Hospital of Qingdao University.
Immunohistochemical staining analysis

Paraffin sections are routinely dewaxed to hydration, and

washed with distilled water. Following incubation in 3%H2O2

for 10min, antibodies anti-DBT, DLD, FDX1 and SCL31A1 were

added and incubated at 4°C for overnight. The specimens were

incubated with secondary antibodies at 37°C for 1 h, followed by

diaminobenzidine staining.
Quantitative PCR

TRIzol reagent (Invitrogen, USA) was used to extract the

total RNAs of tissues. RNA samples were reversely transcribed

into cDNA by using the ABScript III RT Master Mix for qPCR

with gDNA Remover (ABclonal). All results were processed with

GAPDH for standardization. Relative quantification analysis

was performed using the comparative CT (2−DDCT) method.
Western blot

Tissue specimens were ground with a tissue grinder and

lysed using RIPA lysis buffer on ice for 1 h.Proteins were

electrophoresed on 12% SDS-PAGE gels and blocked with 5%

nonfat dry milk in TBST configuration for 1 h at room

temperature after membrane transfer.Antibodies used were

DLD (Abclonal, A5220), DBT(Abclonal,A20381).Final

membranes were developed with ECL luminescent liquid.
Survival analysis

Survival analysis was conducted as based on the survival data

of TCGA LIHC using the survival (version 3.2.3) and survminer

(version 0.4.8) R package with default parameters, regarding

levels of gene expression.
Preprocessing of scRNA-seq data

Single cell analysis was carried out following the previous

study (22). The Seurat R package (version 3.2.0) (23), a tool for

single cell genomics, was utilized to process single cell RNA
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sequencing data. Cells with < 5% mitochondrial counts were

filtered, with a total of 73,589 high quality cells then available for

use in downstream analysis. Cells were normalized and scaled

with the default parameters. Highly variable features were

identified using FindVariableFeatures function and we then

performed principal components analysis (PCA) analysis with

the determined variable features. Dimension reduction and

clustering were conducted using FindNeighbors (dims = 1:10)

and FindClusters (resolution = 0.5) functions. A non-linear

dimensional reduction (UMAP) was then run to assess and

visualize the data.
Differentially expressed genes as
identified from scRNA-seq data

We found 29 clusters in the single cell landscape of HCC. To

identify differentially expressed features according to clusters,

cell types and tissue locations, we performed analyses using

FindMarkers and FindAllMarkers functions. The threshold of

logFC was 0.25 while the minimum fraction of genes detected in

cells was 0.1, with default.
Cell type annotation

Canonical marker genes (Table S2) were used to annotate

cell types of the 29 clusters. For the entire atlas, cells were

annotated as Hepatocytes, Endothelial cells, Fibroblasts, CD4+ T

cells, CD8+ T cells, regulatory T (Treg) cells, B cells, Myeloid

cells, natural killer (NK) cells, Mast cells and Bi-potent cells. We

also combined the original annotation results and used the

SingleR package (version 1.2.4) (24) to help identify the

cell types.
Pseudotime analysis

To identify the potential evolution process of hepatocytes, we

performed a trajectory analysis using the monocle package (version

2.17.0) (25)with the followingparameters: lowerDetectionLimit=0.5,

min_expr=0.1 and num_cells_expressed>= 10. Results were

visualized with use of a plot_cell_trajectory function according to

pseudotime and seurat clusters.
Consensus molecular clustering and PCA

We established the existence of 13 cuproptosis-related genes

within our latest study (8) and performed consensus clustering

using the ConsensusClusterPlus package (version 1.54.0) (26) as

based on the expression of these 13 cuproptosis-related genes in

GDC TCGA Liver Cancer (LIHC, N=421). After a
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comprehensive assessment of these results, including consensus

matrices, consensus cumulative distribution function (CDF) plot

and item-consensus plot, two clusters were finally identified. In

addition, we performed PCA to visualize the discrepancy

between the two clusters using the ggord function.
Gene set variation analysis

Gene set variation analysis (GSVA) provides an indication

for use of a particular technique for gene set enrichment.

Accordingly, the GSVA package (version 1.38.2) (27) and

GSVAdata package (version 1.26.0) were employed to evaluate

potential differences in pathway activity between the two

different patterns. The reference gene set was downloaded

from the Molecular Signatures Database (MSigDB) (version 7.4).
Estimation of immune infiltration

To estimate the immune infiltration of samples, we used a

single sample gene set enrichment analysis (ssGSEA). With this

analysis it is possible to profile immune cell infiltration patterns

and evaluate specific cell types between the two clusters. Another

deconvolution approach, CIBERSORT (http://cibersort.

stanford.edu/) (28), was applied to estimate the abundance of

22 distinct cell subsets according to the gene expression. We also

used the estimate package (version 1.0.13) to infer immune and

stromal cell admixture for bulk RNA-seq data.
TIDE and immune checkpoint analysis

Tumor immune dysfunction and exclusion (TIDE) score

was first developed by Jiang et al (29), which has been proven to

have remarkable power for predicting the prognosis of cancer

patients. We acquired TIDE score, merck18 (T-cell-inflamed

signature) score, CD8 score, dysfunction score, and exclusion

score from the TIDE web (http://tide.dfci.harvard.edu).
Establishment and validation of the
prognostic model

DEGs between two immune clusters of TCGA-LIHC samples

were identified using the limma package (version 3.45.9) with a cut

off criteria of adj.p.value < 0.05 and |logFC| > 1.5. Univariate Cox

regression was carried out to evaluate the prognostic effect of DEGs

in the TCGA-LIHC cohort with a passing criteria requiring a

p value < 0.05 and Hazard ratio > 1. A stepwise multiple

regression analysis was then applied for the DEGs using the

survival (version 3.2.3) and survminer (version 0.4.8) packages.
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The ICGC-LIHC datasets were used to validate the power of the

prognostic model. The risk score was calculated in the training and

testing sets with use of the following formula:

Survival risk score  SRSð Þ  =o
i=n

i=1
Ci · ni

Where n indicates the number of mRNAs in the prognostic

model, ci the coefficient of the mRNA included and vi their

expression level.

The high-risk groups and low-risk groups in various cohorts

were divided by the optimal cutoff point which was calculated by

the “surv_cutpoint” function in the “survminer” package

(version 0.4.8).
Construction of cuproptosis scores

A cuproptosis scoring scheme was developed to evaluate

cuproptosis levels within each patient using PCA. DEGs

identified from two immune clusters of TCGA-LIHC samples

were used to perform the univariate Cox regression. Genes with

significant survival value were then chosen for further selection

using the rfe function with random forest and the 10-fold cross

validation technique in the caret R package (version 6.0-91).

Next, PCA was performed as based on the expression level of

selected genes and principal components 1 and 2 were extracted

to serve as the signature score. Similar to previous studies (30,

31), we defined the cuproptosis score as = S(PC1i+PC2i).
Drug sensitivity prediction

Based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database (32), we carried out drug sensitivity

prediction using the pRRophetic package (version 0.5), where

the half-maximum inhibitory concentration (IC50) of each

patient was estimated using Ridge’s regression. The accuracy

of the prediction was estimated by 10-fold cross validation.
Statistical analysis

Student t-tests were utilized to compare gene expression

levels between tumor and normal tissue samples. Mann-

Whitney U-tests with P values adjusted by the BH method

were used to compare the ssGSEA score of immune cells or

pathways between groups. A Kaplan-Meier analysis with the log-

rank test was performed to evaluate the OS of each group.

Univariate Cox regression analyses were employed to assess the

hazard ratio (HR) of cuproptosis subtype-related genes.

Multivariable cox regression analysis was conducted to
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determine the independent prognostic factors and construct the

prognostic signature. The efficacy of the prognostic signature

was evaluated by the area under the curve (AUC) calculated by

the R package “pROC”. To compare the gene expression of pan-

cancer, we used the TIMER2.0 tool (33) to calculate and visualize

the TCGA database. All statistical analyses were performed

using R software (version 4.0.2) and its appropriate packages.

P values <0.05 were considered as statistically significant.
Results

Landscape of genetic and transcriptional
alterations of cuproptosis-related genes
in HCC

The roles of 13 cuproptosis-related genes (FDX1, LIPT1,

LIAS, DLD, DLAT, PDHA1, PDHB, DBT, GCSH, DLST,

SLC31A1, ATP7A, ATP7B) in HCC were investigated (Table

S3). Figure 1A contains a summary of additional genes, other

than FDX1, that are essential to the lipoic acid pathway and

critical mediators of copper ionophore–induced cell death.
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We first assessed the prevalence of somatic mutations of

these 13 cuproptosis-related genes in HCC. The overall mutation

of all cuproptosis-related genes is relatively low in the HCC

genome. A total of 24 of 364 samples (6.59%) demonstrated

genetic alterations in cuproptosis-related genes, primarily

consisting of missense variants, 5’ UTR variants and

synonymous variants (Figure 1B). ATP7A showed the greatest

amount of variant frequency, followed by PDHA1 and DLST.

Moreover, analysis of these 13 cuproptosis-related genes

revealed that CNV alterations were prevalent. DBT, DLD,

LIAS, PDHB and SLC31A1 showed widespread CNV

amplification while ATP7B, DLST, GCSH and PDHA1

showed prevalent CNV deletions (Figure 1C). Locations of

CNV alterations in cuproptosis-related genes in HCC are

presented in Figure 1D.

A transcriptional profile of cuproptosis-related genes in HCC

was then constructed. PPI enrichment analysis showed that DBT,

GCSH, LIPT1, DLAT, PDHA1, PDHB, DLD and DLST comprised

the main components of MCODE, which involved glyoxylate

metabolism and glycine degradation, Metabolism of amino acids

and derivatives along with acetyl-CoA metabolic processes are

summarized in Figure 1E. Results of the pathway enrichment
G

A B

D E F

H

C

FIGURE 1

Overview of the multi-omics analysis for cuproptosis. (A) Schematic diagram for the lipoic acid pathway involving cuproptosis. (B) Of the 364
patients with HCC, 24 (6.59%) showed gene mutations in 13 cuproptosis-related genes, primarily including missense variants, 5’ UTR variants
and synonymous variants. (C) The CNV mutation was prevalent in cuproptosis-related genes. Columns represent the alteration frequency, blue
dots the amplification frequency and red dots the deletion frequency. (D) Location of the CNV alteration in cuproptosis-related genes on the
chromosome. (E) Protein-protein interactions of cuproptosis-related genes. (F) Metascape network visualization showing enrichment pathway
terms. Cluster annotations are color coded. (G) Differences in gene expression levels for each cuproptosis-related gene between normal and
tumor tissues. (H) Visualization of the gene correlation matrix. “X” represents a lack of statistical significance.
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analysis indicated that cuproptosis-related genes were also

significantly enriched in biological pathways involved with copper

ion import and protein lipoylation (Figure 1F). Moreover, gene

expression analysis in bulk RNA-seq showed that the majority of

cuproptosis-related genes, including ATP7B, DBT, DLD, DLST,

FDX1, GCSH, LIAS, PDHA1, PDHB and SLC31A1, exhibited a

relative lower expression level in HCC samples compared with the

normal liver samples. ATP7A was the only signature which was

expressed at significantly higher levels in HCC samples as

compared with that observed in normal control samples

(Figure 1G). We further explored the expression level of FDX1 in

Pan-cancer, which showed that HCC tissues expressed higher

FDX1 than the majority of cancer types (Figure S1B). Spearman

correlation analysis was also included to reveal correlations among

the expressions of these cuproptosis-related genes, as presented

below and in Figure 1H. In addition, immunohistochemical

technique was applied to explore the expression level of

cuproptosis-related genes in HCC tissues (Figures 2A–D). We

further verified the expression level of hubgene in clinical tissues.

qRT-PCR showed that compared with the adjacent normal tissues,

FDX1, DBT, DLD, SLC31A1 was significantly expressed lower in

HCC tissues (Figures 2A–D; S2A). Subsequently, we validated the

expression of DLD, DBT by Western blot in 16 paired tissue

samples, with differences between HCC and normal tissues

(Figures 2E; S2C).
Cuproptosis-related genes greatly
influence the prognosis of HCC

When evaluating the prognostic value of these 13

cuproptosis-related genes, expression levels of 9 genes,

including FDX1, LIPT1, LIAS, DLD, DLAT, DBT, SLC31A1,

ATP7A and ATP7B, were significantly associated with the

prognosis of human HCC based on TCGA-LIHC data (Figures

2A-D; S2B). Specifically, high expressions of FDX1, LIAS, DLD,

DBT, SLC31A1 and ATP7B suggested a better prognosis while

high expressions of LIPT1, DLAT and ATP7B suggested poor

outcomes. Expression levels of the remaining four genes,

PDHA1, PDHB, GCSH and DLST appeared to have no

significant effect on prognosis (Figure S2B).
Single cell analysis identified
cuproptosis-related hepatocytes

To better understand cuproptosis at the single cell level, we

retrieved and performed a single cell analysis of a human HCC

dataset, which contained 14 pairs of human HCC tumor samples

using the 10X genomics platform (Table S1).

After filtering low-quality cells, we obtained 73,589 cells and

performed a downstream analysis including normalization,
Frontiers in Oncology 06
scaling, dimension reduction and clustering. Following detailed

annotations using canonical markers, we constructed a cellular

landscape of human HCC (Figure 3A). Those cells (numbers,

percent) exhibiting a distinct distribution between tumor and

normal tissues are contained in Figure 3B, consisting of

Hepatocytes (12,646, 17.18%), Endothelial cells (11,207, 15.22

cells), Fibroblasts (1,891, 2.56%), CD4+ T cells (14,136, 19.21%),

CD8+ T cells (9,316, 12.66%), Treg (2,866, 3.89%), B cells (1,376,

1.87%), Myeloid cells (6,726, 9.14%), NK cells (12,970, 17.62%),

Mast cells (119, 0.2%) and Bi-potent cells (336, 0.5%).

A total of 12,646 hepatocytes across 7 clusters were

identified. As based on the expression of cuproptosis-related

genes, we found cluster 25 was distinct and labeled it as a

cuproptosis-related hepatocyte. This cuproptosis-related

hepatocyte highly expressed a number of cuproptosis-related

genes including FDX1, DLD, DLAT, PDHA1, PDHB, DBT,

GCSH and SLC31A1 (Figure 3C), which were mostly located

in tumor tissues (Figure 3B). To better understand and describe

the characterization of cuproptosis-related hepatocytes, we

performed a differentially expressed analysis and identified a

list of gene signatures (Table S4). The top 20 marker genes are

shown in Figure 3D, and include PLA2G2A, CYP2E1, HPD,

C4BPA, A1BG, A2M, SERPINA6, INSIG1, PCK1, SERPINA7,

NNMT, MT1G, SCD, MAT1A, TDO2, ANGPTL3, TAT,

GNMT, CST3 and MSMO1. 319 DEGs satisfying the criteria

for filtration (|logFC| > 1.5 and adj.p.value < 0.5) were further

subjected to GO and KEGG enrichment analysis (Table S5).

Results of this analysis indicated that these DEGs were involved

in pathways of RNA catabolic process, translational initiation,

protein targeting and localization to endoplasmic reticulum

(Figures S3A, B). To further assess the evolution process of

cuproptosis-related hepatocytes, a pseudotime analysis for a

typical sample named P28 was performed, with the findings

that cuproptosis-related hepatocytes were located at an

advanced stage of evolution (Figure 3E).
Identification of cuproptosis patterns
mediated by the 13 identified
gene signatures

We noted that cuproptosis could play an important role in

HCC, via aspects involving genomics, transcriptomics and

proteomics. Accordingly, we performed a consensus clustering

analysis using the ConsensusClusterPlus function to classify

samples with differing cuproptosis patterns based on expressions

of the 13 gene signatures identified. Two distinct pattern clusters

were found, consisting of 144 samples in cluster1 (cuproptosis-

C1) and 221 samples in cluster2 (cuproptosis-C2) (Figures 4A, B).

We also observed a significant difference in the expression of

cuproptosis-related genes between these two cuproptosis patterns.

Specifically, all genes were significantly elevated in the
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cuproptosis-C2 subtype (Figure S4A), which suggested its

potential impact as a prognosis marker. Although the results of

our KM survival analysis failed to achieve statistical significance,

the direction of these results showed a trend for cuproptosis-C2 to

be associated with a poor prognosis (Figure S4B).

To examine the potential for biological differences between

these two cuproptosis patterns, we conducted a pathway

enrichment analysis using GSVA and GO functions. Results

from GSVA indicated that cuproptosis-C2 was significantly

enriched in more pathways than cuproptosis-C1 (Figure 4C;
Frontiers in Oncology 07
Table S6). Moreover, cuproptosis-C2 was found to be associated

with pathways involved with tumorigenesis and development

(MYC targets v1 , mTORC1 signal ing , PI3K/AKT/

mTOR signaling and Wnt/b-catenin signaling) as well as

pathways involved with metabolism (adipogenesis, fatty acid

metabolism, bile acid metabolism and PEROXISOME). In

contrast, cuproptosis-C1 was substantially less involved with

such pathways, only showing high levels of KRAS signaling

related knockdown genes. Top 3 GO terms enriched in DEGs

between these two patterns were cellular adhesion via plasma
A

B

D

E

C

FIGURE 2

Validation of cuproptosis-related genes in HCC. (A–D) Immunohistology of DBT, DLD, FDX1 and SLC31A1 in normal and tumor tissues; qRT-
PCR showed that compared with the adjacent normal tissues, FDX1, DBT, DLD and SLC31A1 were significantly expressed lower in tumor tissues;
results of the KM analysis showing expressions of each cuproptosis-related gene that significantly influenced the survival of TCGA. Red line
represents the high-risk group and dark line the low-risk group. (E) the expression of DLD, DBT by Western blot in 8 paired tissue samples, with
differences between HCC and normal tissues.
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membrane adhesion molecules, responses to xenobiotic stimuli

and UDP glycosyltransferase activity (Figure 4D).

We also compared the mutation profilers of these two

cuproptosis patterns. Cuproptosis-C1 showed 108 alterations

within 138 samples (78.26%) and cuproptosis-C2 169 alterations

within 215 samples (78.6%) (Figures 4E, F). Two cuproptosis

patterns shared identical mutation genes for the top genes

including TTN, CTNNB1, TP53, MUC16, PCLO and OBSCN.

Top unique gene mutations observed between these two patterns

consisted of FLG, MUC5B, USH2A and XIRP2 for cuproptosis-

C1 and ABCA13, CSMD3, RYR2 and FUT9 for cuproptosis-C2.

The same top 5 mutation effects present in these two patterns

included missense variant, synonymous variant, 3’ UTR variant,

intron variant and frameshift variant.
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Cuproptosis patterns as characterized by
different immune profilers

A landscape was generated using heatmap with the ssGSEA

technique. In this way, it was possible to visualize and describe

differences in relative immune infiltration of the 24 immune cell

types between cuproptosis patterns showing distinct immune

patterns (Figure 5A). CD8+ T, Tgd, iDC and pDC cells were

mainly enriched in the cuproptosis-C1 subtype, identified as the

cytotoxic immune patterns (Figure 5B), whereas, T helper and

Tcm cells showed relatively higher proportions in the

cuproptosis-C2 subtype, labeled as the regulatory immune

patterns. CIBERSORT, a deconvolution method to indicate

immune cells in TME, was also used to evaluate immune
A B

D

E

C

FIGURE 3

Single cell analysis identifying cuproptosis-related hepatocytes. (A) UMAP visualization showing the hepatocellular carcinoma landscape of
73,589 cells containing 29 clusters across 28 HCC samples using dotplot. Each dot represents a single cell and hepatocyte subgroups are
encircled with dotted lines. (B) UMAP visualization showing the distribution of the single cell HCC landscape between tumor and normal tissues.
(C) Violin plots showing expression levels of 8 cuproptosis-related genes among 7 hepatocyte clusters, including FDX1, DLD, DLAT, PDHA1,
PDHB, DBT, GCSH and SLC31A1. (D) Violin plots showing expression levels of the top 20 marker genes in cuproptosis-related hepatocytes.
(E) Pseudotime analysis showing the predicted evolution of hepatocytes. UMAP visualization showing the distribution of hepatocytes and gene
expression of FDX1.
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infiltration profilers with the results of this assay demonstrating

relatively consistent results as described above (Figure 5C).

When assessing the results of immune and stromal scores in

these two patterns, cluster 1 showed higher immune score than

cluster2 (Figure 5D), which was in accord with the results of

immune infiltration (Figure 5B).

Next, we examined the expressions of immune checkpoint

genes between these two patterns. Interestingly, expression levels
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of all significantly different immune checkpoints were mainly

higher in the cuproptosis-C2 subtypes (Figure 5E). Results when

evaluating the prognosis value of these 30 immune checkpoint

genes revealed that 13 immune checkpoint genes significantly

influenced the prognosis of HCC patients. In specific, high

expressions of BTLA, CD28, CD40LG, CD244, ICOSLG,

IL23A, PDCD1LG2 and TNFRSF8 were associated with a

better prognosis (Figure S5A), while high expressions of CD40,
A B

D

E F

C

FIGURE 4

Cuproptosis patterns in the TCGA-LIHC cohort and relevant biological pathways. (A) Similarity matrix of TCGA-LIHC patients derived from
consensus clustering assays. (B) Principal component analysis results for the two distinct patterns in the TCGA-LIHC cohort. (C) GSVA scores of
representative Hallmark pathways in cuproptosis-C1 and cuproptosis-C2 patterns as shown in the heatmap. (D) Dotplot showing GO term
enrichment analysis of DEGs between patterns. (E) Of the 138 patients in cuproptosis-C1, 108 (78.26%) showed gene mutations. The right bar
plot shows the mutation frequency of each gene and each column represents an individual patient. (F) Of the 215 patients in cuproptosis-C2,
169 (78. 6%) showed gene mutations.
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LAIR1, LDHA, TNFSF4 and YTHDF1 indicated poor outcomes

(Figure S5B). To further predict the efficacy of immune

checkpoint therapy, we applied TIDE analysis to two patterns,

which showed that cuproptosis-C1 indicated relative higher

score of CD8 and Merck18 (Figure S5C), in which the later

can contribute to T-cell dysfunction. And cuproptosis-C1

significantly exhibited dysfunction for immune checkpoint

therapy (Figure S5C).
Cuproptosis and phenotype-related
DEGs in HCC

We further evaluated the potential for cuproptosis-related

transcriptional changes between these two cuproptosis patterns

in HCC. A total of 169 DEGs were identified as based on the
Frontiers in Oncology 10
criteria consisting of adj.P.Val<0.05 and abs(logFC)>1.5 (Table

S7). Top 3 GO terms enriched in DEGs between the two patterns

were cellular adhesion via plasma membrane adhesion

molecules, responses to xenobiotic stimuli and UDP

glycosyltransferase activity (Figure 4D).
Construction and validation of a
prognosis model as based on DEGs
in HCC

A univariate Cox regression analysis was conducted by

combining expression levels of the 169 intersecting genes and

survival data from 421 samples. 13 genes proven to be closely

related to prognosis, including RECQL, SOX6, RAB23, SMC4,

APAF1, IGF2BP3, VGLL4, ITGB1, DLG5, ADAM17, UGT1A6,
A B
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C

FIGURE 5

Cuproptosis patterns as characterized by different immune profilers. (A) Enrichment levels of 24 immune-related cells in the cuproptosis-C1 and
cuproptosis-C2 subtypes using ssGSEA. (B) Boxplots showing differences in cell type percent between immune patterns. (C) Histograms
displaying the proportion of 22 different types of immune cells in patterns as based on CIBERSORT. (D) Boxplots showing estimated differences
in immune scores. (E) Gene expression levels of 20 immune checkpoints between the two patterns.
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NCR3LG1 and GATSL2 (Figure S6). A multivariate regression

analysis was subsequently performed which identified 4 gene

signatures, VGLL4, DLG5, NCR3LG1 and GATSL2, with

VGLL4 and DLG5 demonstrating relatively higher levels of

expression than NCR3LG1 and GATSL2 in the TCGA-LIHC

data (Figure 6A). Based on the expression profiles and

coefficients of the four genes, the cuproptosis score = (0.3343)

*VGLL4 + (-0.1598)*DLG5 + (-0.0808) *NCR3LG1 and +

(-0.1649)* GATSL2. Then, based on these risk score, we

divided LIHC patients into either a high- or low-risk group.

Results from the Kaplan-Meier survival analysis substantiated

that the low-risk group showed a significantly better prognosis

(P=0.0081; Figures 6B, C). When validating the 4 gene signature

prognosis-model using an independent cohort, ICGC LICA-FR

(Figures 6D–F), significantly better outcomes were obtained

with the low-risk group (p=0.018). The above findings

substantiated the robust prognostic ability of the cuproptosis

score in HCC.
Establishment of a cuproptosis index and
evaluation of its clinical relevance

We developed a score scheme termed the cuproptosis index

(CPI). The CPI was based on cuproptosis pattern related genes,

which could then be used to quantify cuproptosis patterns
Frontiers in Oncology 11
within HCC patients (Table S8). A randomforest algorithm

was used to identify 11 gene signatures to generate a high

accuracy index system (Figure S7A). Among 365 tumor

samples within TCGA-LIHC, we isolated 156 samples with

high CPI values and 209 samples with low CPI values. Results

from the survival analysis indicated that the high CPI group

exhibited significantly poorer outcomes (Figure 7A). To further

clarify whether CPI is an independent risk factor for the

prognosis of HCC patients, we conducted multivariate

analyses. The results indicated that CPI acts as an independent

factor in the prediction of prognosis of HCC patients (p < 0.05,

HR > 1, Figure 7B). When assessing the relationship between

CPI and cuproptosis immune patterns, we found that the

cuproptosis-C2 subtype was linked with higher CPI score,

whereas the cuproptosis-C1 subtype exhibited lower CPI score

(Figure 7C). We then evaluated the clinical relevance of CPI,

with the results of these analyses indicating no gender differences

in CPI scores (Figure 7D) however, higher CPI scores were

associated with significantly increased levels of AFP (Figure 7E)

and were correlated with an advanced tumor status (Figures 7F,

G) in HCC patients. CPI performance was subsequently

validated in an independent ICGC cohort (Figure S7).

To explore the therapeutic potential drugs based on high-

and low-CPI groups, we compiled 26 drugs from prior studies

that had been tested and reported to have therapeutic promise

for HCC, especially including All-trans retinoic acid (ATRA),
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FIGURE 6

Construction and validation of a cuproptosis prognosis model. (A) Heatmap showing gene expressions in the cuproptosis prognosis model
including, VGLL4, DLG5, NCR3LG1 and GATSL2 in TCGA-LIHC. (B) Distribution of risk scores and survival status of TCGA-LIHC. (C) Results of
KM analysis indicating that the prognosis model significantly influenced survival of patients in TCGA. Dark line represents the high-risk group
and red line the low-risk group. (D) Heatmap showing gene expressions of the cuproptosis prognosis model in ICGC. (E) Distribution of risk
scores and survival status of ICGC. (F) Results of KM analysis indicating that the prognosis model significantly influenced survival of patients in
TCGA. Dark line represents the high-risk group and red line the low-risk group.
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Axitinib, AZD.2281 (Olaparib), AZD8055, Camptothecin,

Doxorubicin, Gemcitabine, Rapamycin, Cisplatin, Bleomycin,

Methotrexate and Mitomycin.C (MMC). The sensitivity to the

aforementioned 26 drugs in high- or low-risk groups was

predicted using the “pRRophetic” algorithm. The low-CPI

group got higher estimated IC50 values than the high-CPI

group, and this finding suggested that a greater CPI could

predict increased sensitivity to these therapeutic drugs in HCC

patients (Figure 8).
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Discussion

As a novel mean of cell death, copper-triggered cuproptosis,

was found to involve mitochondrial cell death, and is

independent of other known cell death processes, including

apoptosis (10), necroptosis (11), pyroptosis (12) and

ferroptosis (13). The novelty, uniqueness and relatively limited

information on cuproptosis in the literature stimulated our

interests into investigating its mechanisms and potential value
G
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FIGURE 7

Establishment and evaluation of the cuproptosis index (CPI). (A) Results of KM analysis indicating that the CPI significantly influenced the survival
of patients in TCGA. Red line represents the high-risk group and dark line the low-risk group. (B) Results of the multivariate analysis based on
TCGA-LIHC. (C) Boxplots showing cuproptosis-C2 was associated with high CPI scores. (D) CPI scores failed to show a statistically significant
difference between genders. (E) High CPI scores were associated with high levels of alpha fetoprotein. (F) Boxplots showing that TNM stage was
associated with distinct CPI scores. (G) Advanced tumor stage was related with high CPI scores.
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for the diagnosis and treatment of HCC. Therefore, we

integrated the available multi-omics data to elucidate the

potential function of cuproptosis in HCC.

The most significant contribution of this study was the

characterization and evaluation of cuproptosis as related to

HCC. Three key points were generated from this study: 1) We

depicted the genomic and transcriptome patterns of cuproptosis

in HCC and found cuproptosis-related hepatocytes at the single

cell level, 2) We identified two immune patterns as based on the

expressions of cuproptosis-related genes and 3) We constructed

and validated a prognosis model and cuproptosis index based on

DEGs of cuproptosis patterns.

To achieve these findings, we first assessed the mutations in

cuproptosis-related genes in HCC. Missense variants, 5’ UTR

variants and synonymous variants were the top 3 mutation

phenotypes, with the highest frequency variant being ATP7A,

followed by PDHA1 and DLST. As a copper exporter, a

mutation of ATP7A results in Wilson’s disease, however
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studies relating ATP7A mutations with HCC are rare (34).

Moreover, CNV alterations were also prevalent in the 13

cuproptosis-related genes we identified. We then established

the transcriptomic profilers for these 13 cuproptosis-related

genes. Results of our pathway enrichment analysis showed that

high levels of copper ion import, protein lipoylation and cellular

amino acid metabolic process were present, which was in line

with findings of a previous report indicating that cuproptosis

functions by binding of copper in the TCA cycle and produces

lipoylated protein aggregation and protein loss (8). While the

potential value of these cuproptosis-related genes for the

prognosis of HCC patients remains largely unknown, we were

somewhat surprised to find that most of these genes (76.92%)

showed differential expressions between tumor versus normal

tissues, and more than half were prevalent in normal tissues.

Nine genes, including FDX1, LIPT1, LIAS, DLD, DLAT, DBT,

SLC31A1, ATP7A and ATP7B, were significantly corelated with

overall survival, which indicated that cuproptosis clearly
FIGURE 8

A total of 26 potential therapeutic drugs in HCC with differential IC50 based high- and low-CPI groups.
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impacted the survival of hepatocytes in HCC. Compared with

bulk RNA-seq, single cell RNA-seq exhibited a higher resolution

which then enabled the generation of more detailed information

and the identification of novel cell clusters (35). As a result, it

was now possible to evaluate the single cell data within the HCC

cohort. After delineating the HCC landscape and detailing cell

annotations, we identified a cluster which was strongly related

with cuproptosis. We named this cluster, cuproptosis-related

hepatocytes based on the expression of the cuproptosis-related

genes. We found that the unique genes present in this cluster

were involved with a number of pathways, such as RNA

catabolic process, protein targeting and localization to

endoplasmic reticulum. Further, pseudotime analysis revealed

that this cluster was present at the advanced stages of HCC

evolution. Accordingly, these results strongly implicated a

potential role for cuproptosis in HCC.

We identified two distinct cuproptosis patterns

characterized by different immune phenotypes. Cuproptosis-

C1 was characterized as a cytotoxic immune phenotype while

cuproptosis-C2 as a regulatory immune pattern, which was

corelated with diverse pathways involving tumorigenesis,

tumor development and molecular metabolism. It has been

reported that tumor immune infiltration plays a major role in

tumor progression and immunotherapeutic efficacy for HCC

(36, 37). Baseline levels of tumor-infiltrating CD4+ T cells,

inflammatory cytokines and immune checkpoints have all

been turned out to be correlated with the likelihood of an

immune response. We also found that cuproptosis-C2 showed

high expression levels associated with immune checkpoints,

including PD-L1, PD-L2 and PVR. To further predict the

efficacy of immune checkpoint therapy, we applied TIDE

analysis to two patterns, which showed that cuproptosis-C2

indicated prevalent efficacy of immune checkpoint inhibitors

therapy. Those findings suggest a potential response value for an

immunotherapeutic benefit.

Functional pathways enriched by DEGs, as identified

between the two immune patterns, implicated pathways that

included cellular adhesion via plasma membrane adhesion

molecules, responses to xenobiotic stimuli and UDP

glycosyltransferase activity. Based on these DEGs, we

established a prognostic model containing VGLL4, DLG5,

NCR3LG1 and GATSL2, which was further validated in an

independent cohort. VGLL4 can inhibit cell proliferation and

tumor growth in HCC (38), which was attributable to an arrest

of the G2/M phase and apoptosis promotion by adenovirus (39).

DLG5 was recently identified to be a novel tumor related gene in

pituitary tumors as based on single cell data (40), and has also

been shown to be associated with overall survival in HCC (41).

NCR3LG1 functions to encode the ligand of the natural

cytotoxicity receptor NKp30 and knockdown of NCR3LG1

protects against cell death in the human chronic-myelogenous-
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leukemia (CML) cell line (42). Finally, GATSL2 has been

reported to be involved with gene fusions in the malignant

progression of spinal cord gliomas (43).

The importance of establishing cell death models and scores

as a means to guide tumor treatments has been described in

previous studies (44, 45). Therefore, we developed a score

scheme termed the cuproptosis index (CPI) to quantify

cuproptosis patterns. Survival analysis results showed that high

CPI scores were associated significantly poorer outcomes. These

findings suggest that cuproptosis plays an important role in cell

death related to HCC and was linked to the cuproptosis-C2

subtype, which exhibits better immune responses. Intriguingly, a

positive correlation exists between CPI and AFP, and the latter is

a biomarker for tumor genesis and cancer progression in HCC

(46). To the best of our knowledge, this CPI represents the first

cuproptosis-related score scheme to quantify HCC, and

warrants further investigation to substantiate its value.

Our study has limitations. Although we reviewed studies

associated with cuproptosis and curated a list of 13 cuproptosis-

related genes, a series of newly identified gene signatures will

need to be evaluated and integrated into the model to

corroborate the value of these cuproptosis patterns. The

cuproptosis-related hepatocytes found in HCC were based on

single cell data, therefore their function and performance need to

examine using in vivo models. Finally, the value of the CPI will

need to be evaluated in additional cohorts.

Taken together, in this study we have performed a

comprehensive evaluation of cuproptosis as related to HCC

using multi-Omics. Further clinical and basic studies with

HCC using multiple techniques will be required to substantiate

our findings regarding the importance and role of cuproptosis

in HCC.
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SUPPLEMENTARY FIGURE 1

Workflow of the study. (A) Route diagram showing the main flow of the

study, including multi-omics characterizations of cuproptosis-related
genes, construction of immune patterns based on cuproptosis-related

genes, identification of prognostic gene signatures as based on DEGs and
establishment and evaluation of the cuproptosis index. (B) Expression

patterns of FDX1 in pan-cancer. (* p < 0.05; ** p < 0.01; *** p < 0.001).

SUPPLEMENTARY FIGURE 2

QRT-PCR and survival analysis of cuproptosis-related genes in HCC. (A)
qRT-PCR showed that compared with the adjacent normal tissues, FDX1,

DBT, DLD and SLC31A1 were lowly expressed in tumor tissues. (B) Results
of the KM analysis showing expressions of each cuproptosis-related gene

that influenced the survival of TCGA. Red line represents the high-risk
group and dark line the low-risk group. (C) the expression of DLD, DBT by

Western blot in other 8 paired tissue samples, with differences between

HCC and normal tissues.

SUPPLEMENTARY FIGURE 3

Functional enrichment of cuproptosis-related hepatocytes. (A) Dot plots
showing the top 10 GO terms enriched by DEGs in cuproptosis-related
hepatocytes. (B) Dot plots showing the top 10 KEGG pathways enriched

by DEGs in cuproptosis-related hepatocytes.

SUPPLEMENTARY FIGURE 4

Gene expression and survival analysis of cuproptosis patterns. (A)
Boxplots showing the gene expression of 13 cuproptosis-related genes

between the two cuproptosis patterns. (* p < 0.05; ** p < 0.01; *** p <
0.001). (B) Results of KM analysis showing survival probabilities for patients

in cuproptosis-C1 and cuproptosis-C2 groups. Yellow line represents the

Cuproptosis-C1 group and blue line the Cuproptosis-C2 group.

SUPPLEMENTARY FIGURE 5

Survival analysis of immune checkpoint genes. (A) Results of KM analysis

showing high expressions of genes that were associated with a better
prognosis: BTLA, CD28, CD40LG, CD244, ICOSLG, IL23A, PDCD1LG2 and

TNFRSF8. Red line represents the high-risk group and dark line the low-

risk group. (B) Results of KM analysis showing high expressions of genes
associated with poor outcomes: CD40, LAIR1, LDHA, TNFSF4, YTHDF1.

Red line represents the high-risk group and dark line the low-risk group.
(C) Boxplots showing Merck18, CD8 and Dysfunction scores between

two patterns.

SUPPLEMENTARY FIGURE 6

Univariate cox analysis of DEGs by patterns. Forest plot showing results of
univariate Cox regression of the 13 genes. The 95% confidence interval for

each group was indicated by the length of the horizontal line. Hazard ratio
(HR) of all patients was indicated by the vertical dotted line.

SUPPLEMENTARY FIGURE 7

Validation and evaluation of the cuproptosis index (CPI). (A) Line chart

showing 11 genes exhibiting top accuracy for CPI using cross validation.
(B) Results of KM analysis showing that CPI scores significantly influenced

the survival of patients in ICGC. Red line represents the high-risk group
and dark line the low-risk group. (C) CPI scores failed to indicate a

statistically significant difference between genders. (D) Advanced tumor
stage was related with high CPI scores.
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