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Cancer patients experience a number of co-occurring side- and late-effects

due to cancer and its treatment including fatigue, sleep difficulties, depressive

symptoms, and cognitive impairment. These symptoms can impair quality of

life and may persist long after treatment completion. Furthermore, they may

exacerbate each other’s intensity and development over time. The co-

occurrence and interdependent nature of these symptoms suggests a

possible shared underlying mechanism. Thus far, hypothesized mechanisms

that have been purported to underlie these symptoms include disruptions to

the immune and endocrine systems. Recently circadian rhythm disruption has

emerged as a related pathophysiological mechanism underlying cancer- and

cancer-treatment related symptoms. Circadian rhythms are endogenous

biobehavioral cycles lasting approximately 24 hours in humans and

generated by the circadian master clock – the hypothalamic suprachiasmatic

nucleus. The suprachiasmatic nucleus orchestrates rhythmicity in a wide range

of bodily functions including hormone levels, body temperature, immune

response, and rest-activity behaviors. In this review, we describe four

common approaches to the measurement of circadian rhythms, highlight

key research findings on the presence of circadian disruption in cancer

patients, and provide a review of the literature on associations between

circadian rhythm disruption and cancer- and treatment-related symptoms.

Implications for future research and interventions will be discussed.
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1 Introduction

Cancer patients suffer from a range of co-occurring side- and

late-effects associated with cancer and/or its treatment including

fatigue (1), sleep difficulties (2), depressive symptoms (3, 4) and

cognitive impairment (5). These cancer- and treatment-related

symptoms (CTRS), sometimes described as the “cancer

symptom cluster” (6), have a range of negative implications

for patients such as delaying cancer treatments, impacting

treatment adherence, and detrimental effects on quality of life

(7) and daily life functioning (8). Symptoms can be present prior

to treatment (9–13), may often worsen during treatment (9, 14–

16), and for a large subset, may persist well beyond treatment

completion (4, 7, 17–21). Furthermore, CTRS may exacerbate

each other’s intensity and development over time (22). The co-

occurrence and interdependent nature of these symptoms

suggests a possible shared underlying mechanism (23, 24), and

while the importance of investigating these symptoms together

has been emphasized (25), most research has had a single-

symptom focus. Hence, mechanisms underlying CTRS

remain unclear.

To date, the predominant hypothesis of a shared underlying

mechanism for CTRS has been based on an immune system

response (24, 26, 27) as presented in the “sickness behavior

model” (6, 28). Sickness behaviors are physiological and

behavioral changes, such as fatigue, disturbed sleep and mood,

and impaired cognition (6, 27–29) that occur in reaction to an

immune response and the release of proinflammatory cytokines

such as tumor necrosis factor–a (TNF-a), interleukin (IL)-6 and

IL-1b (30). It is generally accepted that inflammation plays an

important role in tumorigenesis and that tumor development leads

to an intrinsic inflammatory immune response (31). Evidence also

suggests that cancer is associated with both immunostimulation and

immunosuppression with increased concentrations of various

cytokines including TNF-a and IL-6 (32). During the course of

treatment, a strong additional inflammatory response may be

triggered by both local and systemic therapies such as surgery,

radiotherapy and chemotherapies (31, 33, 34). Cancer and

treatment-induced immune responses and the release of

peripheral proinflammatory cytokines may induce central

inflammation mediated by microglial activation within the brain,

which can lead to behavioral and cognitive deficits (35). While a

meta-analysis supports the sickness behavior model, the strength of

association between markers of inflammatory responses and the

CTRS varies (30). Furthermore, this model does not generally

account for why and how CTRS may persist well beyond the

disease and treatment completion, nor does it readily translate into

targeted interventions.

Another proposed mechanism of CTRS relates to disruption

of the endocrine system and most notably that of the

hypothalamic-pituitary-adrenal (HPA) axis. Heightened and

chronic stress associated with the cancer disease and its
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treatment may impact the HPA axis resulting in altered

cortisol secretion patterns, which have been associated with

CTRS (12, 36, 37). In particular, studies have shown diurnal

variations to be altered with evidence of associations between

flatter diurnal cortisol slope and more severe CTRS (36, 38, 39).

While these lines of evidence underscore the importance of HPA

dysregulation as an underlying mechanism of CTRS, these

findings may also be closely linked with dysfunction of

another fundamental system – the circadian system. Diurnal

variations in cortisol reciprocally interact with circadian

mechanisms within the brain (40), and thus, disrupted diurnal

variations in cortisol may reflect underlying disruptions to this

biological timing system.
2 Circadian disruption in
cancer survivors

Recently, circadian rhythm disruption has emerged as an

important and related pathophysiological mechanism

underlying CTRS (41–44). Circadian rhythms are endogenous

biobehavioral cycles lasting slightly longer than 24 hours in

humans and generated by the circadian master clock (45) – the

hypothalamic suprachiasmatic nucleus (SCN) (46). The SCN

orchestrates rhythmicity in a wide range of bodily functions

including rest-activity behaviors, body temperature, immune

response, and hormone levels (46, 47). The unique role of

circadian rhythms in CTRS is perhaps best demonstrated in

animal models in which disturbance of the master clock has

resulted in sleep disturbance (48–50), altered mood-related

behaviors (51–53) and cognitive impairment (54, 55). In

cancer patients, several lines of evidence also support the

possible role of circadian disruption in the development of

CTRS as will be highlighted in further detail below.

A major appeal of a circadian disruption hypothesis of CTRS

is that the expression and regulation of the previously proposed

mechanisms of CTRS are reciprocally related to the circadian

system. For example, research points to a bidirectional link

between circadian rhythms and inflammatory processes (56,

57). On the one hand, the inflammatory immune response

may be caused by disrupted circadian rhythms (58). Higher

circulating levels of proinflammatory cytokines have been

observed in cancer patients with disrupted activity rhythms

(59). On the other hand, circadian disruption may occur due

to the impact of cytokines on the SCN. Animal studies have

shown that proinflammatory cytokines can produce phase shifts

in activity rhythms (60), and that TNF-a has a suppressing effect

on clock genes with detrimental effects on the circadian system

(61). More than a decade ago, there was a call for studies to

examine inflammatory responses and circadian rhythms in

relation to CTRS to clarify associations and identify points of

therapeutic intervention (27).
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A bidirectional link between the endocrine and the circadian

system is also supported by research. Various endocrine factors

are shown to be under direct circadian control (62), including

hormones produced by the HPA axis (40, 63), and there’s

accumulating evidence to show that chronic disruption of the

circadian system may lead to disorders of metabolic,

reproductive and mood systems (64). Emerging evidence also

suggests that endocrine feedback may play a role in the

entrainment of the circadian system. In this regard, altered

endocrine functioning has been implicated in the disruption of

circadian rhythms likely mediated by altered glucocorticoids and

metabolic hormones (65).

Behavioral and psychological alterations following cancer

diagnosis and treatment may also independently impact the

circadian system either directly through behavioral changes,

such as reduced exposure to light (66) or indirectly through the

aforementioned pathophysiological mechanisms. There are also

well-known bidirectional links between sleep and the immune

system (67) with evidence suggesting that both disrupted sleep

and long sleep duration is associated with increased systemic

inflammation (68). Other psychosocial factors, including stress,

anxiety, and depression, are also known to have bidirectional

associations with the immune system (69, 70).
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Taken together, a circadian disruption hypothesis of CTRS is

not only compatible with other predominant pathophysiological

models but adds to them by highlighting the potentially key

modulatory role of the circadian system in the manifestation of

CTRS (see Figure 1). Furthermore, the appeal of the circadian

system as an underlying mechanism lies in its modifiability, as it

can be targeted in both pharmacological (e.g., melatonin

administration) (71) and non-pharmacological interventions

(e.g. light therapy) (72, 73) with the potential to stabilize

multiple biobehavioral systems and ultimately lead to

symptom reduction and improved quality of life.

In the present review, we aim to highlight key research

findings of the presence of circadian disruption in cancer

patients and provide a detailed review of associations between

circadian rhythm disruption and CTRS. Methods of assessment

related to CTRS, including patient-reported outcome measures,

as well as behavioral and performance-based approaches will be

briefly described below. Furthermore, assessment of circadian

rhythms through measurement of secretion patterns of

melatonin and cortisol, rest-wake activity, and 24-hour body

temperature, will be described. Finally, implications for future

research and potential interventions to strengthen the circadian

system will be discussed.
A

B

D

C

FIGURE 1

The circadian disruption hypothesis of cancer- and cancer treatment-related symptoms. Cancer and its treatment, as well as associated
behavioral and psychological changes may (A) directly impact the circadian system resulting in circadian disruption in both biological and
behavioral rhythms, and (B) lead to a dysregulated immune response and endocrine disruption, which are themselves bidirectionally linked and
may both impact the circadian system. Circadian disruption may result in cancer- and treatment-related symptoms (CTRS) or exacerbate pre-
existing symptoms (C). Finally, it is important to note that once manifested, chronic CTRS burden may further alter both behavioral and
pathophysiological factors creating a self-perpetuating negative loop (D). Created with BioRender.com.
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3 Cancer- and treatment-
related symptoms

In this section, each of the CTRS will be described and the

main methodologies discussed.
3.1 Fatigue

Fatigue is among the most prevalent symptoms of cancer

and cancer treatment and refers to a “distressing, persistent,

subjective sense of physical, emotional, and/or cognitive

tiredness related to cancer treatment that is not proportional

to recent activity and interferes with usual functioning” (74). It is

estimated that between 70 – 90% of cancer patients undergoing

radio- or chemotherapy will experience fatigue, and although the

number decreases over time, long-term fatigue is prevalent in

approximately 30% (75).

The vast majority of studies measuring cancer-related fatigue

use patient-reported outcome measures. Although research has

identified several biomarkers of fatigue including immune,

metabolic, and neuroendocrine markers (76), fatigue is inherently

subjective and, thus, most appropriately captured by self-reported

measures. Measures of fatigue can be either one- or multi-

dimensional. An example of a one-dimensional measure is the

widely used Functional Assessment of Chronic Illness Therapy –

Fatigue (FACIT-F) (77). An example of an often-used multi-

dimensional measure of fatigue is the Multidimensional Fatigue

Symptom Inventory (MFSI) (78), which distinguishes between

general, emotional, physical, and mental fatigue, as well as vigor.
3.2 Sleep problems

Sleep problems are also highly prevalent both during and

years after cancer treatments with estimates ranging from 30-

50% (79). A variety of methods exist for the assessment of sleep

outcomes spanning from patient-reported to actigraphy-based

to EEG-defined sleep with polysomnography (PSG). Although

the latter method is considered the gold standard to measure

objective sleep, PSG is both costly and time-consuming, and

therefore less frequently applied in CTRS research.

Because insomnia is subjectively defined, patient-reported

measures of sleep quality and insomnia severity have been

extensively used in the literature with established cut-offs for

determining clinical levels of sleep disturbances. The most widely

used measures of patient-reported insomnia severity and sleep

quality are the Insomnia Severity index (ISI) and the Pittsburgh

Sleep Quality Index (PSQI), which have both been shown to be

valid and reliable measures in cancer populations (80, 81).

Another patient-reported measure of sleep behavior can be

collected through sleep diaries that require patients to fill out
Frontiers in Oncology 04
details about the timing and duration of various sleep-related

behaviors such as time spent trying to fall asleep, early- and

night-time awakenings, and overall time spent in bed. Diaries

allow for the extraction of common sleep metrics including sleep

onset latency (SOL), wake after sleep onset (WASO), early

awakenings (EA), time in bed (TIB), total sleep time (TST),

and sleep efficiency (SE).

Actigraphy is yet another measure of sleep behavior often

used in cancer populations as it is relatively cost-effective and

easy to use, allowing for continuous measurement across longer

time periods (82, 83). While actigraphy does not allow for the

direct measurement of sleep, rest-activity patterns are good

indicators of the timing and duration of sleep (84) and allow

for the calculation of common sleep metrics such as SE, WASO

and TST. Sleep diaries are often concomitantly collected with

actigraphy to edit the rest-activity data.
3.3 Depression symptoms

Both during and after cancer treatment, many patients suffer

from high psychological distress including symptoms of

depression, which may last for years (85). Depending on the

method of assessment, prevalence rates across cancer types have

been reported to range between 8 – 24% (86). While individual

clinical interviews are considered the gold standard for

diagnosing depression, due to time- and resource limits,

symptoms of depression are most commonly assessed by using

validated and reliable self-report scales. Examples of these

include the Hospital Anxiety and Depression Scale (HADS)

(87) and the Center for Epidemiologic Studies Depression

Scale (CES-D) (88), but many more exist (89).
3.4 Cognitive impairment

Cognitive impairment refers to changes in mental functions

and abilities such as memory decline, and impaired attention

and executive functioning. Impairments to cognition are highly

prevalent and distressing, and often associated with treatments

such as chemotherapy and antihormonal treatment (90), as well

as with the cancer disease itself (91), although the underlying

mechanisms are still poorly understood.

A neuropsychological test battery is considered the “gold

standard” measure of domain-specific cognitive functions. The

test battery consists of a range of different standardized and

performance-based cognitive tests to assess a patient’s strengths

and cognitive weaknesses. Guidelines have been published by the

International Cancer & Cognition Task Force with recommended

tests to be used in the field of cancer (92).

Although neuropsychological tests are considered to be robust

measures of cognitive function, their use is often limited as they

are time-consuming and their proper administration requires
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specialized training. Therefore, self-report measures of cognitive

functions are widely used in the research literature using various

instruments. A review from 2018 reported considerable diversity

in cognitive measures used and found that the two items from the

European Organisation for Research and Treatment of Cancer

QLQ-C30 (EORTC QLQ-C30) were the most often used items

(93). Other common measures included the Functional

Assessment of Cancer Therapy-Cognitive Function (FACT-Cog)

(94) and the Cognitive Failures Questionnaire (CFQ) (95).

One major limitation of self-report measures of cognitive

function is that they are often poor correlates of performance-

based neuropsychological tests (96) and instead tend to be more

indicative of psychological distress (93). In order to strengthen

the scientific rigor of the use of self-report measures of cognitive

function, recent recommendations of their use have also been

published (97).
4 Assessment of circadian rhythms
in cancer patients

Circadian rhythm research in cancer patients has typically

focused on the measurement of four key markers of circadian

rhythms: melatonin, cortisol, activity, and body temperature.

Their measurement is described in detail below.
4.1 Measurement of melatonin rhythms

Melatonin (5-methoxy-N-acetyltryptamine) is a circadian

hormone synthesized in the corpus pineale and regulated by the

SCN in response to light information received directly through

the retinohypothalamic tract (98, 99). As a result of direct

anatomical connections between the SCN and the pineal

gland, the circadian rhythm of melatonin is considered the

best peripheral estimator of the timing of the internal

circadian pacemaker (100). In normally entrained individuals,

melatonin secretion has a clear circadian rhythm characterized

by low levels secreted during the day and a peak in the early

morning. Levels typically rise between 8 p.m. and 11 p.m.

reaching acrophase between 2 a.m. and 4 a.m. and returning

to baseline levels between 8 a.m. and 10 a.m. (101).

The measurement of melatonin concentrations can be

undertaken in plasma, serum, urine and/or saliva. For the

assessment of circadian phase, plasma is considered the

method of choice due to higher values compared with saliva

(101). In order to accurately capture the circadian rhythm, it is

important to collect samples at regular intervals (e.g., every

hour) during the 24-hour day. High frequency blood

sampling, thus, requires indwelling canulla in a hospital or

laboratory setting. Saliva sampling, on the other hand, is non-

invasive and can be undertaken at home, but the drawback is
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that patients need to be awake during normal sleeping hours for

night samples. Alternatively, routine urine sampling in 2 to 8

hour intervals can be used for the measurement of the major

metabolite of melatonin, 6-sulphatoxymelatonine. However,

given the longer sampling intervals, this method is less

accurate when measuring the circadian phase of melatonin

secretion (101, 102). The dim light melatonin onset (DLMO)

protocol is widely used to assess the melatonin phase. DLMO

requires repeated melatonin assessment usually from saliva

samples taken every 30 to 60 minutes during evening hours to

capture the phase of the evening rise. Although melatonin levels

in saliva are generally stable, enabling individuals to store

samples at home until delivery to a laboratory, rather strict

conditions for collection of samples need to be adhered to that

can affect sample quality. For example, while research suggests

that 1 hour sampling may be as accurate as 30 minute sampling

schemes (103), it is important to initiate sampling several hours

before the expected rise. In addition, saliva collection typically

needs to occur under dim light conditions or wearing blue light

blocking glasses in order to avoid photic melatonin suppression.

Individuals also need to avoid food and water 10-15 minutes

before sampling times (102, 104, 105), and certain foods,

products and drugs ideally ought to be avoided during, at

minimum, the sampling period, due to interactions with

melatonin levels (including caffeine, alcohol, bananas,

chocolate, toothpaste, beta-blockers and non-steroidal anti-

inflammatory drugs) (106–111).
4.2 Measurement of cortisol rhythms

Cortisol is a glucocorticoid circadian hormone regulated by

the HPA axis (112). Cortisol rhythms tend to be diurnal with

levels rising early in the morning, then decreasing over the

course of the day (113).

The measurement of circadian rhythms in cortisol can be

obtained by frequent 24 hour blood serum and plasma sampling

(114, 115). However, given the invasive nature of this sampling

method, salivary cortisol is the most common method of

measuring the amount of unbound, biologically active cortisol

in the blood. Most studies use repeated daytime measurements

to assess diurnal cortisol rhythms, and thus, possible HPA

dysregulation (38). Depending on the variable of interest,

different sampling schemes have been recommended. Most

commonly used variables include the cortisol awakening

response (CAR) (116), diurnal slope (117) and area under the

curve (AUC) (118). Irrespective of the variable of interest, it is

recommended to collect daily samples on two consecutive days

at each time point to increase reliability. For the measurement of

CAR specifically, a minimum of three morning samples has been

recommended with the first sample being collected at personal

awakening time and then 30 and 45 minutes later (119). For
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diurnal cortisol rhythms, there are unfortunately, as yet, no

published consensus guidelines, but the literature recommends

the collection of three to six samples across the day for diurnal

variables including AUC (117).
4.3 Measurement of activity rhythms

In cancer patients, circadian rhythms have mainly been

investigated through examination of rest-wake activity

rhythms (120). The analysis of inactivity/activity is translated

into rest/wake and is based on the observation that there is less

movement during rest (or sleep) periods and more movement

during wake periods. The rhythm of locomotor activity across

the 24 hour day has been described as the circadian activity

rhythm (121).

Rest-wake activity is typically measured using an actigraph, a

device similar in size to a watch and worn on the wrist. It

provides a convenient way to approximate rest versus wake

states continuously for 24-hours a day for days, weeks, or even

longer (82). A number of circadian parameters can be derived

from rest-wake spans including mesor, amplitude, acrophase,

rhythm quotient, circadian quotient, peak activity, R-squared, F-

statistics, circadian quotient, interdaily stability, intradaily

variability, 24-h autocorrelation (r24), and a dichotomy index

(I<O, which is the percentage of activity in-bed that is less than

the median activity out-of-bed) (44, 120, 122). See section 4.5 for

further details.
4.4 Measurement of body
temperature rhythms

Core body temperature is another robust marker of the

circadian system (123). Core body temperature in

homeothermic organisms is regulated around a narrow

temperature range with its own distinct rhythm and with an

amplitude plateauing between 2 p.m. and 8 p.m. and a minimum

temperature in the early morning (124, 125). While the core

body temperature rhythm is tightly controlled by the SCN and

plays an important role in the coordination of peripheral clocks,

the SCN itself has been shown to be resistant to temperature

entrainment (126). Research has also shown that the sleep-wake

cycle is closely associated with circadian body temperature

rhythms (127). In healthy individuals, the sleep period usually

occurs when the core temperature curve is decreasing and ends

with the rising phase of the curve.

It has been argued that there is no gold standard for the

measurement of core body temperature (128). Nevertheless, core

body temperature has traditionally been measured in a variety of

different sites such as the rectum, the mouth, and the tympanic

membrane (128). Continuous measurement of temperature in

these sites requires patients to be awake, making it less optimal
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for 24-hour rhythm assessments. Recently, the development of

wireless data loggers has facilitated noninvasive and continuous

assessment of both proximal and distal skin temperature without

the active involvement of participants (129). While proximal

skin temperature (e.g. forehead, thigh, stomach) is positively

correlated with core body temperature, distal skin temperature

(e.g. hands, feet) is inversely associated with core body

temperature (130). It is also known that distal skin

temperature is phase advanced with respect to core body

temperature (129), suggesting that heat loss from extremities

may drive the circadian rhythm of core body temperature.
4.5 Methodological considerations for
the analysis of circadian markers

Depending on the methods of assessment and sampling rate

frequencies, various methods and statistical approaches exist for

analyzing rhythmic data to determine important rhythm

parameters and circadian rhythm disruption. While it is

beyond the scope of the present paper to review all

approaches, a few key approaches will be highlighted here.

Both parametric and non-parametric approaches have been

developed to analyze circadian rhythm markers (131). An

example of the former is cosinor analyses, which use the

method of least squares to fit a cosine curve to periodic 24

hour data. Common metrics derived from this method to

analyze markers of circadian rhythms (e.g. melatonin, cortisol,

rest-activity, and temperature) include the mesor, the rhythm-

adjusted mean; the amplitude, the difference between the peak

and the wave mean; the period, the duration of one cycle; and the

acrophase, the time of day of peak activity. Another variable

sometimes reported and that represents overall circadian

rhythm robustness is the pseudo F-statistic, which is based on

the residuals from cosine fitting models (132, 133).

A limitation of the above methods to assess circadian

rhythms, however, is that there are no established cut-offs or

thresholds to readily determine circadian disruption. Thus,

circadian disruption is often operationalized by employing

general linear models to assess between-group differences or

changes over time in these measures (134, 135). Furthermore,

the application of cosinor-based methods may be better suited to

some circadian markers than others. Although commonly used

with actigraphy-based rest-activity assessments, motor activity

patterns, for example, do not typically resemble a sinusoid, and

thus, other approaches have been warranted (131, 136).

To overcome some of these challenges, non-parametric

approaches to circadian activity rhythms have been developed

with the aim to assess intra-daily variability as a marker of sleep-

wake cycle disturbances, and inter-daily stability as a marker of

circadian entrainment (131). One promising approach in cancer

populations has been the use of the dichotomy index (I<O). The

I<O is a measure of the relative amount of activity in-bed below
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the median of activity out-of-bed (137). Lower I<O is considered

to reflect weaker rest-activity rhythmicity (138) and studies have

shown that lower I<O is associated with poorer outcomes in

cancer patients (136, 139). A strength of the I<O is the reporting

of general cut-off values. An I<O value close to 100% is

indicative of non-disrupted rest-activity rhythms as seen in

healthy subjects, whereas a median value of 97.5% has been

reported in cancer patients and considered the threshold for

circadian rest-activity disruption (140). Finally, more

sophisticated non-parametric approaches have also been

applied to rest activity data, such as Hidden Markov

Modelling that can i) threshold activity into different states in

a probabilistic way and in a time dependent manner, ii) capture

square wave forms observed in activity data alongside

heterogeneous ultradian variances in human activity, and iii)

can generate circadian rhythm parameter estimates based on

probabilities of transitions between rest and activity (141).

Finally, given that circadian markers are often measured

continuously across time, dynamical modelling that describe the

state of the rhythm as a function of time capturing the ongoing

fluctuations or change in the rhythms may also be applied,

although in practice these approaches are less widely used (142).
5 Circadian rhythm disruption
in cancer patients: Key
research findings

In the following section, key research findings related to the

assessment of each of the circadian markers in cancer populations

will be presented and associations with CTRS will be reviewed.
5.1 Melatonin levels in cancer patients

Disrupted melatonin rhythms have been observed in a wide

variety of diseases (143–146). Unfortunately, research regarding

the effects of cancer and cancer treatments on circadian

melatonin rhythms have been sparse, possibly due to the

aforementioned methodological challenges associated with

assessing melatonin rhythms. However, there are notable and

relatively consistent patterns of findings from the few, small

studies that exist. A recent study that compared salivary

melatonin levels in newly diagnosed prostate cancer patients

with controls found that the cancer patients had lower melatonin

levels compared with the controls (147). Breast cancer patients

have also been found to excrete lower levels of melatonin from

24-hour urine samples (148) and have exhibited suppressed

nocturnal peak, mesor, and amplitude of serum melatonin when

compared with benign patient groups (149). Melatonin rhythms

and secretion levels have also been examined over the course of

cancer treatment. Among early-stage breast and ovarian cancer
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patients receiving chemotherapy, studies have found significant

reductions in the level of night-time melatonin over the course of

chemotherapy (150, 151). Melatonin has also been examined in

other cancer types including cervical cancer (152), lung cancer

(153, 154), and colorectal cancer (155). Typically, these studies

have found lower melatonin concentrations than patient or

healthy control groups, though two studies found differences

from healthy controls in circadian melatonin profiles as well,

including a flatter slope (152). Using a DLMO protocol, a small

recent study found indications for earlier melatonin secretion in

gastrointestinal cancer patients with disrupted activity rhythms

(140). However, it ought to be mentioned that inter-subject

variability was markedly larger for cancer patients than controls,

and such variability highlights a potential weakness of the

DLMO protocol.

5.1.1 Melatonin and CTRS
Few studies have specifically investigated the association

between circadian melatonin rhythms and CTRS (see Table 1).

Chang and colleagues (154) investigated diurnal variation in

salivary melatonin in newly-diagnosed lung cancer patients

prior to treatment compared with matched healthy controls.

Although lung cancer patients evidenced lower melatonin levels

and flatter diurnal slopes than controls, there were no significant

associations observed between melatonin slope or melatonin

levels and sleep quality, symptoms of depression, or fatigue. In

another study (156), serum melatonin levels were investigated in

a group of newly diagnosed breast cancer patients. Pre-surgical

levels were negatively associated with self-reported symptoms of

depression, while melatonin levels post-surgery were negatively

associated with daytime sleepiness. Clearly, more research is

needed with the aim of prospectively investigating associations

between the development of CTRS and melatonin rhythms.

Although there are evident methodological challenges in

capturing circadian melatonin rhythms, the DLMO protocol

may be useful for capturing the slope of dim-light melatonin

secretion and phase shifts in cancer-patients throughout the

cancer treatment trajectory (102).
5.2 Cortisol levels in cancer patients

In a broad array of studies focused predominantly on breast

cancer and ovarian cancer patients, increased disruption to

cortisol rhythms or secretion levels has been found based on

comparisons with control groups or patients at an earlier stage of

disease. The predominant finding is that compared with

comparison groups, the primary cancer groups tend to

experience elevations in mean or nocturnal cortisol levels (38,

157–159) and flatter diurnal cortisol rhythms (38, 157, 159). A

study that followed ovarian cancer patients prior to primary

treatment to 1 year post-treatment, found that patients showed
frontiersin.org
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TABLE 1 Summary of studies that examined melatonin and cancer- and treatment-related symptoms (CTRS).

Authors Fatigue Sleep Depressed Cognition Patient Stage of
cer
ctory/
sment
es

Melatonin
markers

Outcome
measures

Study
design

Found
association
between
melatonin
and CTRS

Results

sed
Salivary
melatonin
3 times/
day:
diurnal
melatonin
slope and
levels

Fatigue: BFI
Sleep: PSQI
Depression:
HADS

cross-
sectional

no Although cancer patients
had lower melatonin levels
and flatter slopes than
controls, there were no
associations between
melatonin slope or levels
with fatigue, sleep or
depression scores.

ge I-III
g
therapy
ring
cle
last
f
therapy

Urinary
aMT6s
levels

Sleep: PSQI,
actigraphically-
assessed
nighttime sleep
duration, sleep
efficiency,
nighttime total
wake time

longitudinal not tested Sleep efficiency significantly
lower than at baseline, but
higher than beginning of
chemotherapy.
Deterioration in morning
urinary aMT6s level during
chemotherapy was
cumulative.
Did not examine
associations between CTRS
and melatonin levels.

wly
sed,

ytime
urgery
ghttime
rgery

Serum
melatonin
levels

Sleep: ISI, ESS
Depression:
BDI

cross-
sectional

yes Pre-surgery melatonin levels
negatively correlated with
depression scores.
Daytime post-surgery
melatonin levels negatively
correlated with daytime
sleepiness.

y and Depression Scale; ISI, Insomnia Severity Index; ESS, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index.
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Zaki et al. (156) X X Breast
cancer
(n=45)

T1: N
diagno
before
surger
T2: D
post-
T3: N
post-s
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significant reductions in nocturnal salivary cortisol secretion and

plasma IL-6 and a more normalized diurnal cortisol rhythm at 6

months with changes maintained at 1 year (160). In studies of

lung cancer patients, similar findings of loss of circadian

rhythmicity have been found when compared with healthy

controls (161, 162).

5.2.1 Cortisol and CTRS
Research focused on cortisol and CTRS has primarily

focused on salivary cortisol (as opposed to urinary, serum or

plasma cortisol) and examined diurnal cortisol slope, cortisol

awakening response or cortisol levels at a particular point in time

(e.g., morning or nocturnal levels) (see Table 2). Numerous

studies have examined associations between markers of cortisol

rhythms and depressed mood in cancer patients at different

stages of the cancer trajectory, primarily among breast cancer

patients, but also among lung, colorectal, gynecologic, and

prostate cancer patients (38, 59, 154, 160, 164–168, 170–172,

175, 177, 179, 180). The findings have been equivocal with many

studies finding no association, including among newly

diagnosed lung, endometrial and breast cancer patients (154,

175, 179), advanced breast cancer patients (115), and breast

cancer survivors (164, 166, 180). Others have found associations,

including associations between evening cortisol levels in ovarian

cancer patients and depressive symptoms both before and after

primary treatment (38, 160, 172), higher morning cortisol levels

in women with metastatic breast cancer (177), and reduced

diurnal variation in cortisol levels among depressed advanced

metastatic cancer inpatients compared with those who were

non-depressed (170). The cortisol awakening response has also

been found to be blunted in depressed metastatic breast cancer

patients compared with those who were non-depressed (165). In

contrast, a study by Kuhlman (171) found the opposite; the

cortisol awakening response positively predicted changes in

depressed mood over time in early stage breast cancer

patients. Sephton also found, contrary to expectations, that

accentuated diurnal cortisol rhythms were associated with

greater depressed mood (177).

More consistent associations between markers of cortisol

rhythms and fatigue and sleep quality have been found (36, 38,

39, 115, 154, 160, 166, 174, 176, 178). Flatter diurnal cortisol

slopes have been associated with greater fatigue in breast cancer

patients post-surgery (178), pre-adjuvant treatment (176), and 1

to 5 years after diagnosis (36) and in ovarian cancer survivors

(39), as well as poorer sleep quality in breast cancer survivors

(166, 174, 178) and among newly diagnosed lung cancer patients

(154). Higher cortisol upon awakening has also been associated

with fatigue in breast cancer patients evaluated post-surgery

(178) and higher daily cortisol levels with poorer sleep quality

among hepatocellular cancer patients (169). In a large,

longitudinal study of 265 breast cancer patients undergoing

adjuvant therapies (176), higher evening cortisol levels were
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associated with higher physical fatigue both pre-adjuvant

therapy and 7 weeks later. Importantly, this study evaluated

changes in cortisol levels over time and found associations

between changes in evening cortisol levels and AUC with

changes in physical fatigue from pre-adjuvant therapy to 13

weeks later, though neither morning cortisol, the cortisol

awakening response, nor slope were associated with fatigue.

Highlighting the interrelationships between different CTRS,

Hoyt (167) found that lower cortisol output and a flatter diurnal

slope accounted for 45-57% of the effect of sleep quality at study

entry upon depressed mood 4 months later in prostate

cancer survivors.

Not all studies have found associations between cortisol

rhythms and CTRS. For example, a large study (n=200) of

breast cancer patients after primary therapy that measured 24-

hour urinary cortisol instead of diurnal salivary cortisol, found

no differences between fatigued and non-fatigued patients (163).

Abercrombie etal. (159) investigated metastatic breast cancer

patients and found no association between cortisol slope

and cognition.
5.3 Activity rhythms in cancer patients

Circadian activity rhythm disruption has been detected

across the cancer trajectory. Soon after diagnosis, many cancer

patients undergo surgery. In one study of 60 endometrial cancer

patients, significant rest-activity disruption (as measured by

lower mesor and weaker amplitude) 1 week and 1 month

post-surgery was found, with significant recovery on all

parameters by 4 months post-surgery (181). Furthermore, the

cancer group had more impaired rhythms than a reference

group at 1-week post-surgery suggesting that surgery may also

be associated with circadian disruption. A large majority of

research in this area has focused on circadian activity rhythm

disruption associated with chemotherapy, particularly in breast

cancer patients. In one such longitudinal study, circadian

impairments were examined in breast cancer patients before

and during chemotherapy (182). Ninety-five women scheduled

to receive neoadjuvant or adjuvant anthracycline based

chemotherapy for stage I-III breast cancer wore wrist

actigraphs for 72 consecutive hours pre-chemotherapy, and

during weeks 1, 2 and 3 of cycles 1 and 4 of chemotherapy.

Compared to baseline, amplitude, mesor, up-mesor, down-

mesor, and rhythmicity were all significantly impaired during

the first week of both chemotherapy cycles with some recovery

during weeks 2 and 3. However, most variables remained

significantly more impaired than baseline during weeks 2 and

3 of cycle 4. These findings were corroborated by another

longitudinal study that included a cancer-free control group

(14). One hundred and forty-eight women with stage I-III breast

cancer scheduled to receive at least 4 cycles of chemotherapy and
frontiersin.org

https://doi.org/10.3389/fonc.2022.1009064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 2 Summary of studies that examined cortisol and cancer- and treatment-related symptoms (CTRS).

Authors Fatigue Sleep Depressed Cognition Patient population Stage of cancer Cortisol markers Outcome Study design Found

association

between

cortisol and

CRTS

Results

oss-

ional

no No associations between cortisol slope and

cognitive functioning among patients.

oss-

ional

yes No differences in urinary cortisol between fatigued

and non-fatigued patients.

oss-

ional

yes Fatigued survivors had significantly flatter cortisol

slope than non-fatigued survivors, less rapid

decline in in evening hours.

Survivors with highest fatigue had flattest cortisol

slopes.

tudinal no Fatigue did not significantly predict intra-

individual changes in physical activity or cortisol.

Depressive symptoms significantly predicted

physical activity but not cortisol levels.

oss-

ional

yes Cortisol slope and fatigue were significant

predictors of PSQI score.

Flatter cortisol slope (and higher fatigue) predicted

more severe sleep disturbance.

Anxiety and depression were not influenced by

cortisol rhythms.

oss-

ional

yes Flatter diurnal cortisol slopes were associated with

significantly higher fatigue after controlling for age

and cancer stage.

tudinal

+

ulation

yes Compared with nondepressed patients, depressed

patients had lower 2-day average baseline waking

rise in log cortisol level.
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mood trajectory/

assessment

times

measures

Abercrombie

et al. (159)

X Breast cancer (n=17)

and healthy controls

(n=31)

metatastic 3-day salivary cortisol, 4

times/day: diurnal cortisol

slope, mean cortisol levels

Cognition:

RAVLT

cr

sec

Alexander

et al. (163)

X X X Breast cancer

(n=200)

after primary

treatment

24-h urinary cortisol Fatigue: FACT-F,

BFS, FCS, SCID

for CRF

Depression:

HADS

cr

sec

Bower et al.

(36)

X Breast cancer,

fatigued (n=13) and

non-fatigued (n=16)

1 to 5 years

after diagnosis

2-day salivary cortisol, 4

times/day: diurnal cortisol

slope, mean cortisol levels,

AUC

Fatigue: RAND

SF-36 – energy/

fatigue subscale

cr

sec

Castonguay

et al. (164)

X X Breast cancer

(n=145)

T1: ≤20 weeks

after primary

treatment

T2: 3 months

later

T3: 6 months

later

T4: 9 months

later

T5: 12 months

later

3 non-consecutive days (T1)

or 2 nonconsecutive days

(T2-T5) salivary cortisol:

AUC

Fatigue: BFI

Depression: CES-

D

long

Chang and

Lin (154)

X X X Lung cancer (n=40)

and healthy controls

(n=40)

Newly

diagnosed

Salivary cortisol 3 times/day:

diurnal cortisol slope and

levels

Fatigue: BFI

Sleep: PSQI

Depression:

HADS

cr

sec

Cuneo et al.

(39)

X Ovarian cancer

(n=30)

At least 5 years

post-diagnosis

3-day salivary cortisol, 3

times/day: diurnal cortisol

slope

Fatigue: POMS-

SF fatigue

subscale

cr

sec

Giese-Davis

et al. (165)

X Breast cancer,

nondepressed

Metastatic

T1: assessed 1

week before

2-day salivary cortisol, 5

times/day: baseline diurnal

Depression:

PANAS

long

mani
t

t

t

i

t

t

i
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TABLE 2 Continued

Authors Fatigue Sleep Depressed

mood

Cognition Patient population Stage of cancer

trajectory/

Cortisol markers Outcome

measures

Study design Found

association

between

cortisol and

CRTS

Results

No other differences in cortisol between groups at

any time.

s-

nal

yes Controlling for initial cortisol level, flatter diurnal

cortisol slope associated with later time of

awakening, poorer sleep quality, shorter total sleep

hours.

Depression and anxiety not correlated with slope.

dinal yes Mediation models examining sleep at T1 on

depression at T2 with BMI and age as covariates:

Flatter cortisol slope and less overall cortisol

output related to higher depressive symptoms. No

indirect effect for CAR.

Reverse mediation models - i.e., cortisol –> sleep

quality –> depression was non-significant or small

indirect effects

dinal mixed Diurnal cortisol slopes were steeper compared

with baseline.

Significant decreases in depression, but no

significant changes in sleep variables across the 8

months.

Habitually later time of awakening over the 8

months predicted flatter cortisol slope.

Habitual time of going to bed, sleep problem

index, and depression not associated with cortisol

patterns during 8 month follow up.

s-

nal

yes Patients with higher daily cortisol levels tended to

report poorer sleep quality. This was not case with

healthy controls.

Poor sleepers among patients with least severe

liver disease showed slight increase in cortisol level

at bedtime.

Bedtime cortisol level of poor sleepers with least

severe liver disease was higher than that of healthy

poor sleepers.

(Note: all patients with more severe disease had

poor sleep).
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assessment

times

(n=45) and

depressed (n=45)

T2: day of, and

T3: day after

Trier Social

Stress Test

cortisol slope, mean waking

cortisol, mean wake + 30 rise

Ho et al.

(166)

X X Breast cancer

(n=181)

Non-metastatic

or no

recurrence

2-day salivary cortisol, 4

times/day

Sleep: 10-point

scale of sleep

quality, time of

awakening, total

sleep hours

cro

secti

Hoyt et al.

(167)

X X Prostate cancer

(n=66)

T1: Localized

and treated in

prior 2 years

T2: 4 months

later

3-day salivary cortisol, 4

times/day:

diurnal cortisol slope, AUC

and CAR

Sleep: PSQI

Depression: CES-

D

longitu

Hsiao et al.

(168)

X X Breast cancer (n=62) T1: Aged 40

and below who

completed

treatment

T2: 2nd month

T3: 5th month

T4: 8th month

1-day salivary cortisol, 6

times/day: diurnal cortisol

slope

Sleep: MOS sleep

scale

Depression: BDI-

II

longitu

Huang et al.

(169)

X X Hepatocellular

cancer (n=75) and

healthy controls

(n=33)

Outpatients not

under surgical

treatment

3-day salivary cortisol, 5

times/day: mean daily

cortisol, mean cortisol levels

at each sampling time point,

peak cortisol levels, cortisol

slope, AUC

Sleep: PSQI cro

secti
s

o

s

o
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TABLE 2 Continued

Authors Fatigue Sleep Depressed

mood

Cognition Patient population Stage of cancer

trajectory/

Cortisol markers Outcome

measures

Study design Found

association

between

cortisol and

CRTS

Results

cross-

sectional

yes Relative cortisol VAR decreased in depressed

patients compared with non-depressed patients.

Cortisol VAR independently negatively associated

with depression.

ngitudinal yes No cortisol indices were associated with depressive

symptoms at T1.

After controlling for T1 depression, CAR

predicted depressive symptoms at 6 months.

When history of major depression was included as

covariate, association between CAR and increases

in depressive symptoms trended in the same

direction but were not significant.

cross-

sectional

yes Elevations in total depression and vegetative

depression were related to higher evening cortisol.

cross-

sectional

not tested Examined associations between cortisol circadian

rhythms and rest-activity rhythms only. Cortisol

circadian rhythms were positively correlated with

r24 but not I<O or mean activity.

cross-

sectional

yes Longer nocturnal wake episodes associated with

flatter diurnal cortisol slope.

No significant relationships between 2-day mean

of waking cortisol or cortisol rise and other

measures of sleep.

cross-

sectional

not tested Examined associations between r24 status and

cortisol only. High r24 patients had higher serum

cortisol ratios between 8am and 4pm than low r24

patients.

cross-

sectional

yes Depressive symptoms unrelated to cortisol slope.

After controlling for presence of poorer prognosis

cancer subtypes, greater depressive symptoms

were significantly related to greater cortisol

intraindividual variability.
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assessment

times

Jehn et al.

(170)

X Cancer patients,

with (n=31) and

without depression

(n=83)

Advanced

metastatic

cancer

Plasma cortisol at 8am and

8pm: cortisol VAR

Depression:

HADS-D

Kuhlman

et al. (171)

X Breast cancer

(n=135)

T1: Recently

diagnosed

T2: 6 months

after primary

treatment

72-h salivary cortisol, 4

times/day:

CAR, diurnal cortisol slope,

AUC

Depression: CES-

D

lo

Lutgendorf

et al. (172)

X Ovarian cancer

(n=112) and tumors

of low malignant

potential (n=25)

Awaiting

surgery

3-d salivary cortisol, 4 times/

day:

CAR, diurnal cortisol slope,

AUC

Depression: CES-

D

Mormont

et al. (173)

X X X Colorectal cancer

(n=200)

Metastatic

before

chronotherapy

2-day serum cortisol at 8am

and 4pm:

amplitude

Fatigue: EORTC

QLQ-C30 v2.

Depression:

HADS

Palesh et al.

(174)

X Breast cancer (n=99) Metastatic 2-day salivary cortisol, 5

times/day:

cortisol slope, AUC

Sleep: actigraph-

assessed time in

bed, SOL, SE,

nocturnal wake

episodes, WASO

Rich et al.

(59)

X X Colorectal cancer,

normal (high r24,

n=40) and

dampened 24-h

rest-activity patterns

(low r24, n=40)

Metastatic

before

chronotherapy

2-day serum cortisol at 8am

and 4pm: amplitude

Fatigue: EORTC

QLQ-C30 v2.

Depression:

HADS

Sannes et al.

(175)

X Endometrial cancer

(n=82)

Nonmetastatic,

before surgery

3-day salivary cortisol, 4

times/day: diurnal cortisol

slope, intradindividual

variability

Depression:

SIGH-AD
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TABLE 2 Continued

Authors Fatigue Sleep Depressed

mood

Cognition Patient population Stage of cancer

trajectory/

Cortisol markers Outcome

measures

Study design Found

association

between

cortisol and

CRTS

Results

udinal yes Cross-sectional results:

Higher evening cortisol levels associated with

higher physical fatigue levels T0 and T1.

Larger AUC associated with higher physical

fatigue levels.

At T0, physical fatigue associated with flatter

cortisol slope and higher CAR, but not at T1 and

T2.

Longitudinal results:

Significant positive associations of change in

evening cortisol level and AUC with change in

physical fatigue, but no association with change in

morning cortisol, CAR, or slope.

Changes in affective or cognitive fatigue not

associated with changes in cortisol parameters.

udinal yes At 6 months, reductions in nocturnal cortisol

secretion and more normalized diurnal cortisol

rhythm, maintained at 1 year.

Reductions in nocturnal cortisol associated with

declines in fatigue, and marginally with vegetative

depression.

ss-

onal

yes Depression scores were uncorrelated with mean

cortisol levels.

Patients with greater depression had higher

morning cortisol and accentuated diurnal cortisol

rhythms.

ss-

onal

yes Significant associations between ongoing fatigue

and sleep quality and cortisol parameters:

Women reporting greater ongoing fatigue had

higher cortisol levels upon awakening

Elevation in ongoing fatigue associated with a less

pronounced CAR, slower decline over the day.

Poor sleep quality associated with linear slope

(flatter), but not associated with cortisol upon

awakening, CAR or quadratic change.

Reduction in sleep quality predicted slower

cortisol decline in linear slope.
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times

Schmidt et al.

(176)

X Breast cancer

(n=265)

T0: pre-

adjuvant

treatment

T1: week 7

T2: post-

intervention

week 13

1-day salivary cortisol, 5

times/day: CAR, AUC,

diurnal cortisol slope

Fatigue: FAQ longit

Schrepf et al.

(160)

X X Ovarian cancer

(n=117)

T1: Prior to

surgery

T2: 6 months

T3: 1 year

3-day salivary cortisol, 3

times/day: mean cortisol,

diurnal cortisol slope

Fatigue: POMS-

SF

Sleep: how many

hours of sleep?

Depression: CES-

D (vegetative

symptoms)

longit

Sephton et al.

(177)

X Breast cancer (n=72) Metastatic 3-day salivary cortisol, 4

times/day:

diurnal mean cortisol level,

diurnal cortisol slope

Depression: CES-

D

cro

sect

Tell et al.

(178)

X X X Breast cancer

(n=130)

Recently

diagnosed, after

surgery

2-day salivary cortisol, 5

times/day: wake-up cortisol,

CAR, linear and quadratic

slope from wake-up to

bedtime

Fatigue: MFSI-SF

Sleep: PSQI

cro

sect
i

i
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TABLE 2 Continued

Authors Fatigue Sleep Depressed

mood

Cognition Patient population Stage of cancer

trajectory/

Cortisol markers Outcome

measures

Study design Found

association

between

cortisol and

CRTS

Results

livary cortisol, 4

y: AUC, diurnal

early morning peak

Depression:

HADS

cross-

sectional

yes No associations between cortisol variables and

depressed mood or distress among cancer patients.

livary cortisol, 3

y: diurnal cortisol

y, nocturnal cortisol

Fatigue: POMS

fatigue subscale

Depression: CES-

D

cross-

sectional

yes Ovarian cancer patients had significantly elevated

nocturnal cortisol and diminished cortisol

variability compared with women with benign

disease and healthy women.

Among cancer patients, higher nocturnal cortisol

and less cortisol variability associated with greater

functional disability, fatigue, and vegetative

depression.

sma cortisol at 20-60

ntervals:

variation, phase,

e, mesor, phase

Sleep:

polysomnography

cross-

sectional

yes The circadian pattern of cortisol (timing, timing

relative to sleep, or amplitude) was

indistinguishable between patients and controls.

There was an aberrant spike of cortisol during the

sleep of a subset of women, during which there

was an eightfold increase in the amount of

objectively measured wake time. This cortisol

aberration was associated with shorter disease-free

interval.

ue Scale; CAR, Cortisol Awakening Response; CES-D, Center for Epidemiologic Studies Depression Scale; cortisol VAR, relative diurnal
re Quality of Life Questionnaire version 2; FACT-F, Functional Assessment of Cancer Therapy: Fatigue; FAQ, Fatigue Assessment
al Anxiety and Depression Scale – Depression; MFSI-SF, Multidimensional Fatigue Symptom Inventory – Short Form; MOS, Medical
Sleep Quality Index; r24, autocorrelation coefficient at 24 hours; RAVLT, Rey Auditory Verbal Learning Test; SCID for CRF, Structured
cy; SF-36, 36-item Short-Form Survey; SIGH-AD, Structured Interview Guide for the Hamilton Depression Inventory; SOL, sleep onset

A
m
id
ian

d
W
u

10
.3
3
8
9
/fo

n
c.2

0
2
2
.10

0
9
0
6
4

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

14
assessment

times

Vedhara

et al. (179)

X Breast cancer (n=85)

and healthy controls

(n=59)

Newly

diagnosed

2-day sa

times/da

cortisol,

Weinrib et al.

(38)

X X Ovarian cancer

(n=100), benign

disease (n=77),

healthy women

(n=33)

Suspected

ovarian cancer

3-day sa

times/da

variabili

Zeitzer et al.

(115)

X Breast cancer (n=97)

and healthy controls

(n=24)

Advanced 28-h pla

minute

Diurnal

amplitu

angles

AUC, Area Under the Curve; BDI, Beck Depression Inventory; BFI, Brief Fatigue Inventory; BFS, Bidimensional Fatig
variation of cortisol; EORTC QLQ-C30 v.2, The European Organization for Research and Treatment of Cancer C
Questionnaire; FCS, Fatigue Catastrophising Scale; HADS, Hospital Anxiety and Depression Scale; HADS-D, Hospit
Outcomes Study; PANAS, The Positive and Negative Affect Schedule; POMS, Profile Of Mood States; PSQI, Pittsburgh
Clinical Interview for the Diagnostic and Statistical Manual – IV to diagnose Cancer-Related Fatigue; SE, sleep efficien
latency; WASO, wake after sleep onset.
t

i

d

o
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matched cancer-free controls participated. Circadian activity

rhythm data was collected via 72 consecutive hour actigraphy

before the start of chemotherapy, at the end of cycle 4 of

chemotherapy, and 1 year after the start of chemotherapy. R-

squared was the circadian outcome of interest indicating rhythm

robustness. At baseline, breast cancer patients had more

disrupted rhythms than the controls. At cycle 4, the cancer

patients had more disrupted rhythms compared to their own

baseline levels and to controls. At 1 year, cancer patients’

circadian activity rhythms did not differ from non-cancer

controls. The number of chemotherapy cycles also appear to

be important. One study examined rest-activity in newly

diagnosed breast cancer patients during chemotherapy cycles

(183). Average scores of all rhythm parameters (i.e., mesor,

amplitude, acrophase, rhythm quotient, circadian quotient, peak

activity, dichotomy index, and autocorrelation coefficient)

significantly decreased with an increasing number of

chemotherapy cycles. In addition, activity rhythm disruptions

during chemotherapy are likely to peak at the start of the cycles

and decrease during the periods between cycles (120).

Other studies have found circadian activity rhythm

disruptions in other cancer populations or associated with

other cancer treatments (including mixed cancer patients

undergoing chemotherapy and/or radiation therapy, colorectal

cancer patients undergoing chemotherapy, gynecologic cancer

patients undergoing chemotherapy, and breast cancer patients

undergoing endocrine therapy). Such studies have generally

shown disruptions to circadian parameters when compared

with pre-treatment, the beginning of treatment, with cancer

controls, or with healthy controls (184–189). Studies have also

investigated activity rhythms in lung cancer populations at

different stages of the cancer trajectory (190–192). In one

longitudinal study of 82 newly diagnosed lung cancer patients

undergoing cancer treatment (193), sleep-wake rhythms were

assessed at baseline prior to treatment and at four subsequent

time points at weeks 6, 12, 24, and 48. While poorer sleep-wake

rhythms were observed at baseline, significant improvements

were observed at week 48.

Even years after cancer treatment, circadian activity rhythm

alterations have been detected. One small scale study of breast

cancer survivors found circadian activity rhythm alterations 5

years after primary diagnosis when compared with a healthy

control group (194).

Overall, numerous studies suggest that circadian activity

rhythms may be disrupted prior to, during and after cancer

treatment. In addition, a recent scoping review of actigraphy-

based circadian activity rhythms revealed that up to 55% of

patients with advanced cancer had disrupted activity rhythms (195).

5.3.1 Activity rhythms and CTRS
Numerous studies have elucidated potential associations

between important circadian rhythm markers and various
Frontiers in Oncology 15
CTRS, typically through the use of actigraphy over 24 to 72

hours of continuous measurement (see Table 3). Studies on the

associations between circadian activity rhythms and CTRS have

been undertaken in cancer populations across the

cancer trajectory.

Several studies have revealed associations between circadian

activity disruption and CTRS prior to treatment onset (115, 196,

199, 200, 204–206). More disrupted circadian activity rhythms

have been found to be associated with greater depressed mood

prior to treatment among head and neck cancer patients and

lung cancer patients (200, 201). A study of metastatic colorectal

cancer patients prior to chronotherapy also found that patients

with a high r24 coefficient (i.e., greater regularity) had fewer

fatigue symptoms than those with a low r24 coefficient (59). In a

study of breast cancer patients prior to chemotherapy, lower

mesor (i.e, mean level of activity) was associated with worse sleep

quality and higher sleep onset latency (199). A study of a mixed

group of cancer patients before treatment, also found a limited

number of significant correlations between circadian activity

rhythmmarkers and sleep quality (204). However, another study

of breast cancer patients scheduled for chemotherapy did not

find associations between circadian activity rhythms and CTRS

of fatigue, sleep quality or depression (196).

Many studies have examined circadian activity rhythms and

CTRS during cancer treatment (14, 122, 183, 185, 188, 190, 193,

198, 201, 208). An early study by Roscoe and colleagues (207)

directly examined and found significant temporal associations

between increases in circadian activity disruption across cycles

of chemotherapy and increases in depression and fatigue among

breast cancer patients undergoing chemotherapy. Another study

focused on depression, this time in lung cancer patients, found

associations between disrupted sleep-activity rhythms and worse

depression among outpatients prior to chemotherapy, but not

among inpatients during chemotherapy (201). A subsequent

study by Liu and colleagues of 148 Stage I-III breast cancer

patients undergoing chemotherapy, also found that more

disrupted circadian activity rhythms were significantly

associated with increases in fatigue (122). Other cross-sectional

studies have had similar findings (188, 191).

Disturbances to circadian rhythms have also been associated

with CTRS post-treatment. For example, in a cross-sectional

study by Chen and colleagues (192) of 106 lung cancer patients,

poorer circadian function, including a lower dichotomy index,

was associated with poorer objective sleep quality. A recent study

examined circadian activity rhythms and cognition in breast

cancer patients during and after treatment. There was a

significant group-by-time effect in self-reported, but not

objective cognition when compared with matched controls.

Changes in objective cognitive functioning were positively

associated with changes in circadian rhythmicity (i.e., a

decrease in cognitive functioning at follow-up was predicted

by reduced circadian activity rhythm robustness, worsening
frontiersin.org
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TABLE 3 Summary of studies that examined rest-activity and cancer- and treatment-related symptoms.

Authors Fatigue Sleep Depressed Cognition Patient Stage of Rest-activity markers Outcome
asures

Study
design

Found
association
between

rest/activity
and CRTS

Results

MFSI-SF
ion: CES-D
SQI, FOSQ

cross-
sectional

no No significant correlations
between rhythm variables and
fatigue, sleep, depression, or
functional outcome of sleep.

- MFSI-SF;
otal sleep
al nap
QI global
ality score;
ion - CES-D

longitudinal not tested T1: Patients longer total
daytime nap time, worse sleep
quality, more fatigue, more
depression, and more disrupted
rest-activity rhythms than
controls;
T2: Patients worse sleep,
increased fatigue, more
depression, more disrupted
rest-activity rhythms compared
to T1 and to controls.
T3: Patients’ fatigue, depression
returned to T1 levels, but still
worse than controls; nap time
and rest-activity rhythms did
not differ from controls.

MFSI-SF
ion: CES-D
SQI, TST,
%sleep,
E
n:
ychological
ery, PAOFI

longitudinal yes No significant group-by-time
interaction in objective
cognition.
Significant group-by-time
interaction in self-reported
cognition: significant
decrements from Baseline to
Cycle 4 and 1 year among
breast cancer patients but no
marked changes in controls.
Decreases in objective cognitive
functioning in cancer patients
predicted by less robust
circadian activity rhythms,
worsening sleep quality and
increases in nap time compared
to baseline.
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mood population cancer
trajectory

me

Ancoli-
Israel et al.
(196)

X X X Breast cancer
(n=85)

Newly
diagnosed stage
I-III scheduled
to receive
chemotherapy

72-h actigraphy:
F statistic, acrophase

Fatigue
Depress
Sleep: P

Ancoli-
Israel et al.
(14)

X X X Breast cancer
(n=68) and cancer-
free controls
(n=60)

T1: Newly
diagnosed stage
I-III scheduled
to receive
chemotherapy
T2: end of
cycle 4
T3: 1 year
post-
chemotherapy

72-h actigraphy: R-squared Fatigue
Sleep -
time, to
time; P
sleep qu
Depress

Ancoli-
Israel et al.
(197)

X X X X Breast cancer
(n=69) and
matched controls
(n=64)

T1: Newly
diagnosed stage
I-III scheduled
to receive
chemotherapy
T2: end of
cycle 4
T3: 1 year
post-
chemotherapy

72-h actigraphy: R-squared Fatigue
Depress
Sleep: P
WASO
NAPTI
Cogniti
Neurop
test bat
:

t
t
S

:

,
M
o
s
t

https://doi.org/10.3389/fonc.2022.1009064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

r cross-
sectional

not tested Disturbed sleep, low daytime
activity, and impaired rest-
activity rhythms during the
first week after chemotherapy
cycles 1–3.
Rhythm measures were 78%–

83% (mesor) and 66%–72%
(amplitude) of values obtained
in healthy young adults.
Rhythm consistency from day
to day (r24) was 0.33-0.34
during the first week after
chemotherapy 1–3.

er
, Daily
sity

HADS

longitudinal
intervention

yes Rhythm parameters more
disrupted compared to healthy
adults.
More robust rhythms
associated with lower fatigue,
depressive symptoms, BMI and
higher performance status.

r cross-
sectional

yes Worse sleep quality and more
impaired components of sleep
quality, sleep latency, and
habitual sleep efficiency
correlated with lower mesor.
Longer subjective sleep latency
was the only component
associated with lower
amplitude.

PHQ-9 cross-
sectional

yes Cognitive and affective
depression symptoms
associated with rest-activity
rhythm disruption.
Overall and somatic depression
symptoms associated with
phase shifts, shifting from
morning to evening.
Rest/activity rhythm disruption

(Continued)
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trajectory

Berger et al.
(185)

X X Colon and rectal
cancer (n=14)

Stage II-III
during
chemotherapy

7-day actigraphy: mesor,
amplitude, acrophase, circadian
quotient, r24

Fatigue: Pip
Fatigue Scal
Sleep: PSQI

Berger et al.
(198)

X X Breast cancer
(n=190)
randomized to
behavioral therapy
sleep intervention
or healthy eating
control group

T1: Newly
diagnosed stage
I-IIIA 3-4
weeks before
chemotherapy
T2: During
cycle 3
T3: 30 days
after last cycle

7-day actigraphy: mesor,
amplitude, peak activity, acrophase,
circadian quotient, r24

Fatigue – Pi
Fatigue Scal
Fatigue Inte
(Item #7 fro
Piper)
Depression

Berger et al.
(199)

X X Breast cancer
(n=130)

Stage I-IIIA
during 48
hours before
chemotherapy

≤48-h actigraphy: mesor,
amplitude, acrophase, goodness of
fit

Fatigue: Pip
Fatigue scale
Sleep: PSQI

Cash et al.
(200)

X Head and neck
cancer (n=55)

Newly
diagnosed
before
chemoradiation

6-day actigraphy: r24; I<O
(nighttime restfulness); acrophase

Depression:
depressive
symptoms
e
e

p
e
n
m

-

e

https://doi.org/10.3389/fonc.2022.1009064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

and lower nighttime restfulness,
but not acrophase, associated
with 2-year overall survival.

HADS

longitudinal not tested Compared with baseline, sleep–
wake rhythms improved
significantly after starting
treatment.
Fatigue worsened significantly;
depressive symptoms improved.

aph-
, SE,

cross-
sectional

yes Significant positive correlations
of the TST with I<O, SOL with
UP activity mean.
Negative correlations of SE
with UP activity mean, SOL
with I<O, SOL with 24-h light-
activity minutes.
Lower I<O, lower 24-hour
light-activity minutes, and
higher value for the UP activity
mean had poorer objective
sleep quality.

HADS cross-
sectional

yes Outpatients:
- more robust daily activity
patterns (mean daily activity,
daily amplitude, peak of
activity) and longer, more
consolidated nighttime sleep
(night-day sleep balance)
compared with inpatients.
- more disrupted daily sleep-
activity rhythms associated
with worse depression and/or
anxiety.
- severely depressed outpatients
- lower activity levels during
daytime and more active
during night than those with
lower depression scores.
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trajectory

Chang and
Lin (193)

X X X Lung cancer (n=82) T1: Newly
diagnosed
T2: 6 weeks
T3: 12 weeks
T4: 24 weeks
T5: 48 weeks
after start of
treatment

72-h actigraphy:
I<O

Fatigue: BFI
Sleep: PSQI
Depression:

Chen et al.
(192)

X Lung cancer
(n=106)

Post-treatment 72-h actigraphy: r24, I<O Sleep: Actig
assessed TST
SOL

Du-Quiton
et al. (201)

X X Non-small cell lung
cancer inpatients
(n=42) and
outpatients (n=42)

Advanced stage
before or
beginning of
chemotherapy

3 to 7-day actigraphy during first
chemotherapy cycle (inpatients) or
prior to chemotherapy
(outpatients): mesor, amplitude,
acrophase, circadian quotient,
rhythm quotient, peak activity, r24,
day-night activity balance, night-
day sleep balance

Depression:
r
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TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

- inactivity during the day and
daytime napping associated
with depression;
- higher circadian amplitudes
of activity, and higher peak
daily activity associated with
less depressed mood.
- better night-day sleep balance,
more nighttime sleep and less
daytime sleep were associated
with lower depression scores.
Inpatients: No associations
between circadian rhythms and
depression.

Sleep,
n: EORTC
leep, &
subscales

cross-
sectional

yes Insomnia severity correlates
negatively with 24-hour
autocorrelation, day-to-day
stability.
Outpatient fatigue levels
associated with diminished
robustness of circadian
quotient, rhythm quotient,
night-day balance of time spent
asleep.
More robust day-night activity/
sleep measurement differences,
the less fatigue these patients
experience during each day.

– Fatigue,
RTC
0 v2
– Fatigue,
DASI

cross-
sectional

yes Cohort #1:
Significantly lower I<O
associated with greater fatigue
and sleep trouble.
Greater circadian disruption
associated with more severe
fatigue and sleep problems.
Cohort #2:
Significantly lower I<O
associated with greater fatigue,
but not sleep disturbance.
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A
m
id
ian

d
W
u

10
.3
3
8
9
/fo

n
c.2

0
2
2
.10

0
9
0
6
4

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

19
trajectory

Grutsch
et al. (191)

X X X Lung cancer (n=84) Advanced stage
in period prior
to and during
first treatment

4 to 7-day actigraphy: mesor,
amplitude, acrophase, circadian
rhythm robustness and day-to-day
stability, peak activity, r24

Fatigue,
Cogniti
fatigue,
cognitiv

Innominato
et al. (202)

X X Cohort 1:
Metastatic
colorectal cancer
(n=237)
Cohort 2:
Histologically
proven advanced
or metastatic
cancer requiring
medical treatment
(n=31)

Metastatic or
advanced post-
treatment

72-h actigraphy:
I<O

Cohort
Sleep: E
QLQ-C
Cohort
Sleep: M
o
s
e

1
O
3
2
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TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

Greater circadian disruption
associated with higher fatigue.

C

ORTC
I
RTC

cross-
sectional
(part of

intervention
study)

not tested No correlation between
performance scores and any
actigraphy data item.
Patients reported poor sleep
quality as well as fatigue 20-
points below population-based
surveys.

-
time
, sleep
httime
e

longitudinal not tested Sleep efficiency significantly
lower than at baseline, but
higher than beginning of
chemotherapy.
Percent rhythm, F-statistic, and
mesor at end of chemotherapy
were significantly lower than
baseline.
Did not examine associations
between CTRS and rest-wake
activity.

-SF longitudinal yes Increases in fatigue significantly
associated with greater
disruptions in amplitude,
mesor, and F-statistic over
time.

d

essed

es

cross-
sectional

yes Actigraphy-assessed sleep
parameters (TST, SE, SOL,
WASO but not TIB, waking
episodes) correlated with
rhythm parameters (r24 and
I<O).
Rest/activity rhythms of
patients with poor sleep quality
(PSQI>5) were much less
regular than those with good
sleep quality.
r24 significantly predicted sleep
quality (negative association).
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A
m
id
ian

d
W
u

10
.3
3
8
9
/fo

n
c.2

0
2
2
.10

0
9
0
6
4

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

2
0

trajectory

Levin et al.
(190)

X X X Non-small cell lung
cancer (n=33)

Stage IIIA,
IIIB-IV before
or during
chemotherapy

4 to 7-day actigraphy: circadian
amplitude; circadian
fragmentation/
amplitude of ultradian rhythms;
circadian quotient; peak activity;
I<O, rhythm quotient

Fatigue: EOR
QLQ-

C30
Sleep: PSQI
Depression: E
QLQ-C30, Q
Cognition: EO
QLQ-C30

Li et al.
(151)

X Breast cancer
(n=180)

T1: Stage I-III
awaiting
chemotherapy
T2: During
first cycle
T3: At last
cycle of
chemotherapy

Percent rhythm, F-statistic,
amplitude, mesor, acrophase

Sleep: PSQI,
actigraphicall
assessed nigh
sleep duratio
efficiency, nig
total wake tim

Liu et al.
(122)

X Breast cancer
(n=148) and
healthy controls
(n=61)

T1: Stage I-III
before
chemotherapy
T2: After 4
cycles of
chemotherapy

72-h actigraphy: amplitude,
acrophase, mesor, up-mesor,
down-mesor, F-statistic

Fatigue: MFS

Ma et al.
(203)

X Cancer (n=68) Advanced
stage, at least 3
months post-
surgery

72-h actigraphy: r24, I<O Sleep: PSQI;
sleep log;
actigraphy-as
TIB, TST, SE
WASO, SOL
waking episo
T

L

y
t
n

I

3

s
,
,
d
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TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

S
, GSDS

cross-
sectional

yes Significant correlations between
PSQI global score and SOL,
TST, sleep period time, mesor,
and circadian quotient.
Significant correlation between
fatigue subscores and
acrophase.

RTC
2.
: HADS

cross-
sectional

yes Fatigue was associated with all
activity scores.
Depression was associated with
dampened rhythm parameters
(r24 and I<O)

I CTC- longitudinal yes Circadian disruption (i.e., I<O
≤ 97.5%) during or after
chemotherapy associated with
significantly higher risk of
clinically significant fatigue.

SE,
y,

cross-
sectional

yes Patients with sleep complaints
had worse circadian function
(i.e., lower I<O) compared to
those without sleep problems
(96.4% vs 98.1%) with clinical
cut off of 97.5%.

RTC
2.
: HADS

cross-
sectional

yes High r24 patients had
significantly fewer fatigue
symptoms than low r24
patients, but no differences in
anxiety and depression.

CL,

: CES-D,
S

longitudinal yes r24, mean activity significantly
correlated with percent sleep
and mostly significantly
correlated with fatigue, mood
and depression.
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Miaskowski
et al. (204)

X X Breast, prostate,
lung, or brain
cancer (n=185)

Before
radiation
therapy

24-h actigraphy: mesor, amplitude,
acrophase, r24

Fatigue: LF
Sleep: PSQ

Mormont
and
Waterhouse
(205)*

X X Colorectal cancer
(n=200)

Metastatic,
before
chronotherapy

3 to 5-day actigraphy: mean
activity level, r24, I<O

Fatigue: EO
QLQ-C30
Depression

Ortiz-
Tudela et al.
(188)

X Cancer (n=49) T1: Advanced
stage, before
chronotherapy
T2: During
chronotherapy
T3: Right after
chronotherapy
T4: Late after
chronotherapy

13-day actigraphy spanning the
four time points: I<O, r24,
interdaily stability, intradaily
variability, relative amplitude

Fatigue: NC
AE v3.0

Palesh et al.
(206)

X Colorectal cancer
with sleep
problems (n=155)
and no sleep
problems (n=82)

Metastatic,
before
treatment

72-h actigraphy:
I<O, clock time of lowest activity
using cosinor analysis, average
activity counts

Sleep: TST
sleep latenc
WASO

Rich et al.
(59)

X X Colorectal cancer,
normal (high r24,
n=40) and
dampened 24-h
rest-activity
patterns (low r24,
n=40)

Metastatic,
before
chronotherapy

3-day actigraphy: r24 (high = top
quartile, low = bottom quartile),
I<O, mean activity

Fatigue: EO
QLQ-C30
Depression

Roscoe et al.
(207)

X X Breast cancer
(n=78) undergoing
chemotherapy or
radiation or both
(but not

T1: 72 h after
second on-
study
treatment
T2: 72 h after

Actigraphy: r24, mean activity Fatigue - F
MAF
Depression
HDI, POM
I

v

,

v

S

https://doi.org/10.3389/fonc.2022.1009064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 3 Continued

Authors Fatigue Sleep Depressed
mood

Cognition Patient
population

Stage of
cancer

trajectory

Rest-activity markers Outcome
measures

Study
design

Found
association
between

rest/activity
and CRTS

Results

fourth on-
study
treatment

Change scores in r24 and mean
activity over time were in
general significantly correlated
with changes in fatigue, mood,
depression (unrelated to
paroxetine).

T1: Newly
diagnosed
during cycle 1
chemotherapy
T2: During
cycle 2
chemotherapy
T3: During
cycle 3
chemotherapy

72-h actigraphy: mesor, amplitude,
acrophase; rhythm quotient,
circadian quotient, peak activity,
I<O, r24

Fatigue, Sleep,
Cognition: Hindi
QLQ-C30

longitudinal no Significant decrease on all
functional and symptom scales
that include fatigue, insomnia
and emotional domains from
cycle 1 to cycle 6.

rganization for Research and Treatment of Cancer Core Quality of Life Questionnaire version 2; FOSQ, Functional Outcomes of Sleep Questionnaire; FSCL,
and Depression Scale; HDI, Hamilton Depression Inventory; I<O, actigraphic dichotomy index; LFS, the Lee Fatigue Scale; MAF, the Multidimensional
Fatigue Symptom Inventory – Short Form; NCI CTC-AE v3.0, National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0;
9; POMS, Profile of Mood States; PSQI, Pittsburgh Sleep Quality Index; QLI, Ferrans and Powers Quality of Life Index; r24, autocorrelation coefficient at 24
O, wake after sleep onset.
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sleep quality, and increases in nap time compared to

baseline (197).

Finally, among cohorts of advanced cancer patients,

significant associations have been detected between disrupted

circadian activity rhythms and fatigue (202, 205), depressed

mood (205), and poorer subjective sleep/sleep quality (203, 206).
5.4 Temperature rhythms in
cancer patients

Thus far, research on circadian temperature rhythms in

cancer patients has been sparse. In one small observation

study of 9 breast cancer survivors (209), circadian core body

temperature was measured using an ingested radio telemetry

pill. Results were suggestive of circadian disruption of skin

temperature in all participants. However, due to the lack of a

comparison group, larger controlled studies are indicated.

Another small study involving 10 breast cancer patients

receiving chemotherapy used wireless skin surface temperature

patches on the front thorax (210). Half of the patients exhibited

disrupted circadian skin surface temperature rhythms following

chemotherapy. In a recent study, significantly deteriorated chest

surface temperature rhythms were observed in gastrointestinal

cancer patients (N = 25) with disrupted activity rhythms as

indicated by a low dichotomy score (< 97.5%) compared with

patients without such disruptions (140).

5.4.1 Temperature rhythms and CTRS
To the best of our knowledge, no studies have specifically

examined the relationship between circadian temperature

rhythms and CTRS.
6 Discussion

This review describes key findings of studies that have

examined circadian rhythms in cancer patients and associations

with CTRS. The majority of studies focused on circadian activity

rhythm disruptions in cancer patients and many found

associations between activity rhythm disruptions and fatigue,

sleep and depressed mood. A number of studies also examined

cortisol and CTRS in cancer, particularly by examining diurnal

variation or cortisol levels. The findings were more mixed,

especially with respect to associations with depressed mood.

However, apart from a couple of exceptions, more consistent

associations were found between indicators of cortisol disruption

(including flatter diurnal cortisol slopes and higher cortisol levels

at different times of the day) and fatigue and sleep outcomes. Few

studies examined melatonin levels in cancer patients across time,

and even fewer examined associations with CTRS, which is

surprising given the current interest in exogenous melatonin as
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a potential antiproliferative agent for some cancers (211).

Cognition was rarely examined in any of the reviewed studies,

with only one finding associations between circadian activity

rhythm disruption and cognitive impairment.

For the most part, the reviewed studies have focused on one

or maybe two approaches to the assessment of circadian

rhythms. Studies in this area would likely benefit from a

multi-modal approach to the assessment of circadian rhythms,

e.g., through the use of advanced actigraphy that includes

measurement of multiple markers, such as activity and skin

temperature rhythms. In addition, longitudinal studies assessing

multiple circadian rhythms and associations with CTRS over

time would provide richer data regarding the nature and

strength of these associations. Furthermore, the inclusion of

health or non-cancer control groups would provide the field with

a clearer picture of circadian rhythm changes, and associations

with side effects and symptoms that are unique to the cancer

patient experience. The field would also benefit from further

work to develop an operationalized standard for what a

normative healthy circadian rhythm ought to be, so that there

are clearer cut-offs for determining clinically significant

circadian rhythm disruption. In conclusion, given the potential

modifiability of the circadian system through enhancement of

both photic and non-photic zeitgebers, targeting the circadian

system in the treatment of CTRS is a fertile area for

future research.

Overall, we have highlighted the important role that the

circadian system may play in the manifestation of CTRS. A

limitation of this review is that we did not review the potential

role of circadian disruption on mortality. Indeed, there have

been numerous seminal studies that have found associations

between circadian markers and mortality in cancer patients, and

that deserve mention due to their obvious relevance to this topic

(e.g., 136, 173, 212, 213). Pioneering work by Mormont and

colleagues (173) examined circadian rest-activity rhythms in 192

metastatic colorectal cancer patients receiving chronomodulated

chemotherapy after failure of a first treatment protocol. Survival

at two years was five times higher in patients with stronger

activity rhythms (I<O in upper quartile) than those with weaker

activity rhythms (I<O in lower quartile). A later study reinforced

these findings in 192 previously untreated metastatic colorectal

cancer patients undergoing chronomodulated chemotherapy

(139). A pooled study of 436 patients that included the

aforementioned cohorts plus an additional cohort of colorectal

cancer patients, the majority of whom had failed prior

chemotherapy for metastatic disease, confirmed that I<O was

a robust predictor of overall survival, particularly among those

with an I<O above 97.5% (136). Important studies focusing on

cortisol markers in cancer patients have also found associations

with survival. In studies by Sephton and colleagues (213, 214)

that examined 104 metastatic breast cancer patients and 62 lung

cancer patients, diurnal cortisol slope positively predicted

survival after seven and across three years respectively.
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However, these findings need to be considered in light of poor

correlation between cortisol concentrations in the serum and in

saliva, particularly in the case of metastatic colorectal cancer

(212). Thus, future studies would benefit from further

examination of associations between rigorous markers of

circadian rhythms and survival, in addition to CTRS.

A further limitation of this review is that it focused on

circadian rhythm disruption at the physiological and behavioral

levels. We did not examine disruption at molecular and/or

cellular levels. For example, there is research showing that

clock gene variations, particularly to NPAS2, CLOCK, RORA,

RORB, and PER3, may contribute to small but statistically

significantly elevated cancer risk (215). In addition, disrupted

cellular signaling pathways in cancer patients (e.g., of the

mechanistic target of rapamycin [mTOR]) may be controlled

by the circadian clock (216), and thus may also underlie CTRS.
6.1 Future directions and conclusion

Overall, this review suggests that circadian rhythms may be

disrupted in cancer patients, and that such disruptions may

contribute to the development and persistence of CTRS. In this

regard, the circadian system offers a potential modifiable target

for a variety of pharmacological and non-pharmacological

interventions that aim to normalize circadian rhythms and,

thus, ameliorate CTRS. Importantly, synchronization of

circadian rhythms to the external environment occurs through

entrainment via exposure to environmental “zeitgebers” or time-

givers. Such zeitgebers include bright light, which potently drives

the SCN rhythm, and non-photic zeitgebers (e.g., physical

activity, timing of eating), which may drive rhythms of

peripheral systems (217–219). Under healthy conditions, the

central SCN rhythm directly coordinates peripheral rhythms

through endocrine and autonomic nervous system signals and

regulation of core body temperature, and indirectly through

feedback from activity and feeding rhythms (219). Misalignment

occurs if the central rhythm is misaligned to the light/dark cycle

or if central and peripheral rhythms are not aligned with each

other (220), which can impair the homeostasis of the body (219)

and potentially contribute to CTRS. Importantly, the receptivity

of circadian rhythms to zeitgebers illustrates how the circadian

system is inherently modifiable, making it an attractive

intervention target. Thus, the enhancement of central and

peripheral zeitgebers may be a pathway to improving circadian

health in cancer patients and, in turn, CTRS. In this regard, the

optimization of the timing of multiple zeitgebers in cancer

patients through what we term “Chrono-Behavioral Therapy”

may be an approach worth investigating in future research (as

conceptualized in Figure 2 below).

Light (both natural and artificial) is the strongest, direct

zeitgeber of the SCN (i.e., the central clock of the circadian

system), and has been used as a therapeutic tool to treat other
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disorders, including seasonal affective and other mood disorders

for decades already (221). Thus, it is not a surprise that there has

been a particular focus on light and its association with CTRS. A

study by Liu and colleagues (66) assessed circadian activity

rhythms with actigraphy in breast cancer patients who were

undergoing chemotherapy. Increased fatigue was significantly

associated with decreased light exposure, possibly due to patients

spending less time outdoors in bright light. This work triggered a

range of intervention studies that tested the use of light exposure

to treat CTRS (72, 73, 222–225). In general, protocols instruct

cancer patients to use a light box or glasses emitting circadian

stimulating light each morning upon waking for 30-45 minutes

for 4 weeks or during treatment in order to improve the

robustness of the circadian system. Results have shown that

light therapy can prevent fatigue and depression in cancer

patients undergoing treatment (222, 224), and ameliorate

fatigue and improve sleep in cancer survivors after primary

treatment (72, 73, 223, 226). Unfortunately, these studies have

generally not been sufficiently powered to determine if circadian

rhythms mediate light therapy’s effect on CTRS, but one study

did determine that bright light therapy protected breast cancer

patients from experiencing circadian activity rhythm

deterioration during chemotherapy (227).

Another potential area of work focuses on enhancement of

peripheral zeitgebers including the timing of physical activity

and the timing of eating. Physical activity is a strong non-photic

zeitgeber for the mammalian circadian clock (228) likely in part

due to effects on central clock genes in skeletal muscles that

regulate biological processes (229). Non-photic zeitgebers may

support the circadian system through associative learning

processes that engage circadian time as a conditioned stimulus

(217, 230). In addition, non-photic behavioral zeitgebers tend to

be salient to the individual and can serve as a “gatekeeper” to

photic zeitgebers (i.e., light/dark exposure) (217). Indeed, there

is evidence that physical activity, particularly at night, can phase

delay circadian rhythms (i.e., shift the circadian rhythm to later)

(231–234). A recent systematic review also confirmed exercise’s

phase-shifting properties across studies (235). The timing of

eating is another potential peripheral zeitgeber of the circadian

system (219, 236) via homeostatic effects on core body

temperature (237). Importantly, metabolic dysfunction is a

comorbidity of many types of cancers and implicated in

peripheral fatigue (238). Furthermore, circadian misalignment

can occur if food intake occurs during the dark phase, resulting

in systemic metabolic dysregulation (219, 239, 240). Both animal

and human research indicates that later timing of food intake

may result in negative health outcomes (241–243). Indeed, a

recent study found that night eating during the COVID-19

pandemic was associated with greater swings in fatigue (244).

In the field of psychiatry, attempts have already been made to

harness the power of peripheral zeitgebers through a therapeutic

approach called “interpersonal social rhythm therapy,” originally

developed to treat patients with bipolar disorder (245). The therapy
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is based on the hypothesis that bipolar disorder arises due to

dysregulated neurotransmitter systems and perturbations in the

circadian system, and therefore focuses on behavioral techniques to

improve the regularity of a person’s daily routines. Thus far,

interpersonal social rhythm therapy has been found to be feasible

and satisfactory in patients with bipolar disorder, but has not yet

been proven to be efficacious as more rigorous randomized

controlled studies are yet to be undertaken (246). It has not yet

been evaluated in cancer patients.

A final point to consider is the potential of telemonitoring for

the assessment of circadian rhythms and CTRS in the future. For

the most part, the measurement approaches described in the studies

reviewed in this paper are not used in routine clinical practice, likely

due to the difficulties and expense of collecting and tracking patient

data in real-time. However, in recent years, the rapid evolution of

wearable sensor technology, E-Health applications, and cloud-based

computing have made the implementation of new IT-based health

care management methods possible (247, 248). Indeed, a number of

recent studies have demonstrated the feasibility of telemonitoring of

circadian markers (including rest-wake and biological) and patient-

reported outcomes of cancer patients in their own homes (140, 249–

252). Thus, the effect of an increased interest in circadian rhythms

and health combined with the wave of popularity of new health

monitoring technology, has provided the research and health care

community with optimal conditions for telemonitoring research to

grow. Furthermore, such work would likely form a solid basis for a

precision health approach to cancer patient care into the future.
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Thus far, the medical field has already attempted to harness

the circadian system in cancer treatment itself through

chronotherapy approaches that time drug delivery to the

appropriate phase of the circadian rhythm with varying

degrees of success (215). Our review adds to that important

work by summarizing the increasing body of work linking

circadian disruption with CTRS, and thus, it highlights the

potential of the circadian system as an important target for

clinical monitoring and interventions in the future with the

ultimate goal of improving cancer patients’ quality of life.
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