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Reversion of methionine
addiction of osteosarcoma cells
to methionine independence
results in loss of malignancy,
modulation of the epithelial-
mesenchymal phenotype and
alteration of histone-H3 lysine-
methylation
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Jun Yamamoto1,2, Yutaro Kubota1,2, Noriyuki Masaki1,2,
Koya Obara1,2, Kazuyuki Hamada1,2, Justin D. Wang4,
Sachiko Inubushi5, Michael Bouvet2, Steven G. Clarke6,
Kotaro Nishida3 and Robert M. Hoffman1,2*

1AntiCancer Inc, San Diego, CA, United States, 2Department of Surgery, University of California San
Diego, La Jolla, CA, United States, 3Department of Orthopedic Surgery, Graduate School of
Medicine, University of the Ryukyus, Nishihara, Japan, 4School of Medicine, California University of
Science and Medicine, Colton, CA, United States, 5Department of Surgery, Kobe University, Kobe,
Japan, 6Department of Chemistry and Biochemistry, University of California Los Angeles,
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Methionine addiction, a fundamental and general hallmark of cancer, known as

the Hoffman Effect, is due to altered use of methionine for increased and

aberrant transmethylation reactions. However, the linkage of methionine

addiction and malignancy of cancer cells is incompletely understood. An

isogenic pair of methionine-addicted parental osteosarcoma cells and their

rare methionine-independent revertant cells enabled us to compare them for

malignancy, their epithelial-mesenchymal phenotype, and pattern of histone-H3

lysine-methylation. Methionine-independent revertant 143B osteosarcoma cells

(143B-R) were selected from methionine-addicted parental cells (143B-P) by

their chronic growth in low-methionine culture medium for 4 passages, which

was depleted of methionine by recombinant methioninase (rMETase). Cell-

migration capacity was compared with a wound-healing assay and invasion

capability was compared with a transwell assay in 143B-P and 143B-R cells in

vitro. Tumor growth and metastatic potential were compared after orthotopic

cell-injection into the tibia bone of nude mice in vivo. Epithelial-mesenchymal

phenotypic expression and the status of H3 lysine-methylation were determined

with western immunoblotting. 143B-P cells had an IC50 of 0.20 U/ml and 143B-R

cells had an IC50 of 0.68 U/ml for treatment with rMETase, demonstrating that
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143B-R cells had regained the ability to grow in low methionine conditions.

143B-R cells had reduced cell migration and invasion capability in vitro, formed

much smaller tumors than 143B-P cells and lost metastatic potential in vivo,

indicating loss of malignancy in 143B-R cells. 143B-R cells showed gain of the

epithelial marker, ZO-1 and loss of mesenchymal markers, vimentin, Snail, and

Slug and, an increase of histone H3K9me3 and H3K27me3 methylation and a

decrease of H3K4me3, H3K36me3, and H3K79me3methylation, along with their

loss of malignancy. These results suggest that shifting the balance in histone

methylases might be a way to decrease the malignant potential of cells. The

present results demonstrate the rationale to target methionine addiction for

improved sarcoma therapy.
KEYWORDS

malignancy, methionine addiction, Hoffman effect, methionine-independent
revertant, epithelial-mesenchymal phenotype, histone-methylation, osteosarcoma
Introduction
Cancers were originally described as methionine dependent,

as it was thought that the cancer cells lost the ability to synthesize

methionine (1–3). However, we showed that cancer cells make

normal or greater-than-normal amounts of methionine from

homocysteine, but still require large amounts of exogenous

methionine in order to grow and survive, unlike normal cells,

due to excess transmethylation reactions (4–10). Our seminal

studies of methionine addiction of cancer cells (4–9) were

confirmed by Wang, et al., who showed that tumor-initiating

cells were highly methionine-addicted (11). We further

characterized methionine addiction of cancer cells (12–16).

Thus, cancer cells must have much larger-than-normal

amounts of methionine in order to survive and proliferate,

which is described as methionine addiction. Other teams are

now using the term “methionine addiction of cancer” (11, 17,

18). We have previously shown that osteosarcoma cells,

including 143B, Saos-2, MNNG-HOS, and U-2OS, are

methionine-addicted, and 143B is the most methionine

addicted among these osteosarcoma cell lines (19). However,

the linkage of the methionine addiction and malignancy is

incompletely understood.

Methionine-independent revertant cells, isolated from

methionine-addicted parental cancer cells in low-exogenous

methionine conditions (20), have reduced malignancy (13,

15, 16, 21, 22), suggesting that reversion of methionine

addiction of cancer cells to methionine independence is

related to malignancy itself. We and Borrego et al. have

previously shown that methionine-independent revertant

cells have reduced growth ability in soft agar (16, 21, 22).

We have also shown methionine-independent revertant cells
02
have lost tumorgenicity in subcutaneous-xenograft mouse

models (13, 16) and lost metastasis in xenograft mouse

models (15).

It was previously reported that methylation of histone H3

lysine marks in tumor-initiating cells was increased compared to

non-tumor-initiating cells (11). Our previous studies also showed

that histone-H3 lysine-methylation was increased in cancer cells

compared to normal cells (12, 23), and it is further increased in

high-malignancy variants selected from parental cancer cells,

compared to the parental cells (16). We also previously reported

that the status of the histone-H3 lysine-methylation in

methionine-addicted cancer cells is unstable during methionine

restriction, using recombinant L-methionine a-deamino-g-
mercapto-methane lyase (rMETase) (24), at concentrations

which arrest cancer-cell proliferation (12, 14). These results

suggest that the status of the histone-H3 lysine-methylation

might be associated with malignancy ofcancer cells. However,

the molecular relationship of methionine addiction and

malignancy is incompletely understood.

In osteosarcoma, the 5-year survival rate for patients who

have metastases, mostly lung metastasis, is about 30%, while the

5-year survival rate for overall osteosarcoma patients is about

60% (25). In the metastatic processes, epithelial-to-mesenchymal

transition (EMT) and mesenchymal-to-epithelial transition

(MET) are thought to be required for cell plasticity (26).

Recently, EMT/MET has been studied in osteosarcoma (27–

37) and other types of sarcoma (38–45), as well as carcinomas,

since the theory that sarcoma cells can reside in an intermediate

phenotype between epithelial and mesenchymal has been widely

accepted (46–48).

In the present report, we show that reversion of methionine

addiction of osteosarcoma cells to methionine-independence

results in loss of malignancy, modulation of the epithelial-
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mesenchymal phenotype, and alteration of histone-H3 lysine-

methylation. The present results provide unique clues for further

understanding of the fundamental basis of cancer.
Materials and methods

Cell culture

The 143B human osteosarcoma cell line was obtained from

the American Type Culture Collection (Manassas, VA, USA)

and cultured in Dulbecco’s Modified Eagle Medium (DMEM;

#10-103-CV, Corning Inc., Corning, NY, USA), supplemented

with 1 IU/ml penicillin/streptomycin (#15-240-062, Thermo

Fisher Scientific, Waltham, MA, USA) and 10% fetal bovine

serum (FBS; Access Biologicals, Vista, CA, USA).
Recombinant methioninase production

Recombinant methioninase (rMETase) is a tetramer, with

each monomer having a 172-kDa molecular weight. The

procedure for the production of rMETase, from recombinant

E. coli with the Pseudomonas putida gene, has been previously

reported (24).
Depletion of methionine in the culture
medium with rMETase

Normal methionine-containing DMEM with/without

different amount of rMETase, 0 U/ml; 0.125 U/ml; 0.25 U/ml;

0.5 U/ml; 1 U/ml; 2 U/ml; and 4 U/ml, was incubated at 37°C for

3 h. The concentration of methionine in each medium was

determined with an HPLC (Hitachi L-6200A Intelligent pump,

Hitachi, Ltd., Tokyo, Japan). Experiments were performed twice.
Selection for methionine-independent
revertant osteosarcoma cells

Methionine-independent revertant 143B osteosarcoma cells

(143B-R) were selected by the following procedure, modified

from previous reports (13, 15, 16): methionine-addicted parental

143B osteosarcoma cells (143B-P) were cultured in normal

medium with increasing concentrations of rMETase (0.75-1.6

U/ml) for 3 weeks, followed by culture in normal medium for 3

weeks and passage. This procedure was repeated 4 times.
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rMETase sensitivity assay

Each 143B-P and 143B-R cells were cultured in 96-well

plates (1.0 × 103 cells/well) in normal DMEM (100 ml/well) and
incubated at 37°C overnight. Each cell was treated with normal

medium or different concentration of rMETase, at 37°C for

72 h, as follows: 0 U/ml; 0.025 U/ml; 0.05 U/ml; 0.1 U/ml; 0.2

U/ml; 0.4 U/ml; 0.8 U/ml; and 1.6 U/ml. After the treatment

period, WST-8 reagent (10 ml) (#CK04, Dojindo laboratory,

Kumamoto, Japan) was added to each well and the plate was

additionally incubated at 37°C for 1 h. Absorbance at 450 nm

was measured, and rMETase-sensitivity cell-survival curves

and half-maximal inhibitory concentration (IC50) were

obtained, as previously described (14). Experiments were

performed twice in triplicate.
Wound healing assay

Each 143B-P and 143B-R cells were cultured in 6-well plates

in normal medium and incubated at 37°C overnight. Wounds

were made by scratching the monolayers with a 200 ml pipette
tip. The plates were washed with phosphate-buffered saline

(PBS; #MB1039-1X, BioPioneer Inc., San Diego, CA, USA)

twice to remove floating cells, followed by incubation at 37°C.

The wound areas were measured by light microscopy (Olympus

IX70, Olympus Corporation, Tokyo, Japan) at four and eight

hours after making the wound. Experiments were performed

twice in triplicate.
Invasion assay

24-well Transwell inserts (#3422, Corning Inc.) were coated

with 100 ml of Matrigel Matrix (200 mg/ml) (#354234, Corning

Inc.) for each well, in advance. 143B-P or 143B-R cells were

cultured in the upper chambers of the insert (2.5 × 104 cells/well)

with 250 ml FBS-free medium, with the lower chambers filled

with normal medium, containing 10% FBS, followed by

incubation at 37°C for 18 h. The inserts were removed and

washed with PBS twice, followed by fixation with 100%

methanol (#33900HPLC, Pharmco, Brookfield, CT, USA) for

20 min and staining with 0.5% crystal violet (#C0775-25G,

Sigma-Aldrich, Burlington, MA, USA) for 15 min. The inner

side of the inserts was wiped with cotton swabs. The remaining

cells were counted under a light microscopy (Olympus IX70,

Olympus Corporation). Experiments were performed twice

in triplicate.
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Western immunoblotting

143B-P or 143B-R cells were cultured in 25 cm2 cell-culture

flasks in normal DMEM for more than 5 days. Cells were then

lysed to extract total proteins, using RIPA Lysis and Extraction

buffer (#89900, Thermo Fisher Scientific) with 1% Halt Protease

Inhibitor Cocktail (#87786, Thermo Fisher Scientific).

Extraction of total histones used an Epiquik Total Histone

Extraction Kit (#OP-0006-100, Epigentek, Farmingdale, NY,

USA). Western immunoblotting for total proteins and histones

was performed as follows: Total proteins or histones were loaded

onto 7.5% or 12% SDS-PAGE gels, for electrophoresis,

respectively. After separation of proteins or histones by

electrophoresis, they were transferred to 0.45 mm or 0.2 mm
polyvinylidene difluoride (PVDF) membranes (#GE10600023 or

#GE10600021, respectively, GE Healthcare, Chicago, IL, USA).

The membranes were blocked with Bullet Blocking One for

Western Blotting (#13779, Nakalai Tesque, Inc., Kyoto, Japan).

Anti-ZO-1 antibody (1:1,000, #8193, Cell Signaling Technology,

Danvers, MA, USA); anti-vimentin antibody (1:1,000, #5741,

Cell Signaling Technology); anti-Snail antibody (1:1,000, #3879,

Cell Signaling Technology); anti-Slug antibody (1:1,000, #9585,

Cell Signaling Technology); anti-beta actin antibody (1:1,500,

#20536-1-AP, Proteintech, Rosemont, IL, USA); anti-H3K4me3

antibody (1:1,000, #9751, Cell Signaling Technology); anti-

H3K9me3 antibody (1:1,000, #13969, Cell Signaling

Technology); anti-H3K27me3 antibody (1:1,000 #9733, Cell

Signaling Technology); anti-H3K36me3 antibody (1:1,000,

#4909, Cell Signaling Technology); anti-H3K79me3 antibody

(1:1,000, #74073, Cell Signaling Technology); anti-H3 antibody

(1:1,500, #17168-1-AP, Proteintech) were used. Beta-actin or

total histone-H3 were used as internal loading controls.

Horseradish-peroxidase-conjugated anti-rabbit IgG (1:20,000,

#SA00001-2, Proteintech) was used as the secondary antibody.

The signals were detected with a UVP ChemStudio (Analytik

Jena, Upland, CA, USA), enhanced by Clarity Western ECL

Substrate (#1705061, Bio-Rad Laboratories, Hercules, CA, USA).

The protein signals were normalized to those of beta-actin, the

histone signals were normalized to those of total histone-H3, for

relative quantification. Experiments were performed three times.
Animals

Female athymic nu/nu nude mice (4-6-week-old)

(AntiCancer Inc., San Diego, CA, USA) were used for the

present study. All mice were bred and maintained in a barrier

facility with high efficacy particulate air (HEPA) -filtered rack

under standard conditions (12 h light/dark cycles). The care and

use of animals was reviewed and approved under Assurance

Number A3873-1, with The Institutional Animal Care and Use
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Committee (IACUC) protocol, based on the National Institutes

of Health (NIH) Guide for the Care and Use of Animals,

approved. A cocktail of anesthetics and analgesics [ketamine

(20 mg/kg) (#11695-0702-1, Henry Schein, Inc., Melville, NY,

USA), xylazine (15.2 mg/kg) (#59399-111-50, Akorn Operating

Company LLC, Lake Forest, IL, USA), acepromazine maleate

(0.48 mg/kg) (#0010-3827-01, Boehringer Ingelheim GmbH,

Ingelheim, Germany)] was used for all surgical procedures to

minimize animal distress.
Osteosarcoma orthotopic xenograft
mouse model

143B-P or 143B-R cells [2.5 × 105 cells/5 ml PBS and 5 ml
Matrigel Matrix (#354234, Corning Inc.)] were injected with

28G syringes (#329461, BD, Franklin Lakes, NJ, USA) into the

left proximal tibia of ten mice each. The procedure was

performed as described in previous reports (49, 50). Tumor

size was measured twice a week with calipers and calculated with

the following formula: tumor volume (mm3) = length (mm) ×

width (mm) × width (mm) × 1/2. All mice were sacrificed four

weeks after cell injection. Tumor and lung samples were

obtained to examine spontaneous metastases in the lungs

macroscopically and with subsequent hematoxylin and eosin

(H&E) staining.
H&E staining

From each mouse with a primary tumor in the tibia at

necropsy, tumor tissue and lung tissues were obtained and fixed

with 10% formalin (#SF99-20, Thermo Fisher Scientific) for

48 h, followed by embedding in paraffin (#PARA2, Cancer

Diagnostics, Inc., Durham, NC, USA). The tissues were then

sectioned, deparaffined, and rehydrated. H&E staining was

performed according to standard protocols.
Statistical analysis

The Student’s t-test was performed to statistically analyze the

means between two groups, and the Fisher’s exact test was

performed to statistically evaluate the metastatic potential of

143B-P and 143B-R cells, with JMP pro ver. 15.0.0 (SAS

Institute, Cary, NC, USA). IC50 values were obtained with

ImageJ ver. 1.53a (National Institutes of Health, Bethesda,

MD, USA). Bar graphs show the mean and error bars show

standard deviation of the mean. A probability value ≤ 0.05 was

defined as a statistically-significant difference.
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Results

Methionine-independent revertant
osteosarcoma cells were selected from
methionine-addicted parental
osteosarcoma cells in low-methionine
medium

rMETase decreased the level of methionine in the culture

medium, in a concentration-dependent manner (Figure 1A).

143B-R cells were selected from 143B-P cells in low methionine

media after 4 cycles of selection. 143B-R cells were more normal-

fibroblast-like, becoming larger and more bipolar and aligned in

direction than 143B-P cells, which is consistent with previous

reports of other methionine-independent revertant cells (21)

(Figure 1B). 143B-R cells became resistant to methionine

restriction, induced by rMETase, compared to 143B-P, with

the following IC50: 143B-P: 0.20 U/ml; 143B-R: 0.68 U/ml (P <

0.001), which is consistent with previous reports of other

methionine-independent revertant cells from various cancer

types (15, 20, 22, 51) (Figures 1C, D).
Frontiers in Oncology 05
Methionine-independent revertant
osteosarcoma cells had reduced cell
migration and invasion capacity

A wound healing assay and cell-invasion assay were

performed to compare the cell migration and invasion capacity

of 143B-R cells and 143B-P cells. 143B-R cells showed

significantly decreased cell migration (P < 0.01) and invasion

(P = 0.018) capacity, compared to 143B-P (Figure 2), indicating

that methionine-independent 143B-R cells lost malignancy

in vitro.
Methionine-independent revertant
osteosarcoma cells had reduced tumor
growth and lose metastatic potential in
vivo

To compare the metastatic potential of 143B-P and 143B-R

cells in vivo, orthotopic xenograft mouse models, in which 143B-

P or 143B-R cells were injected in the proximal tibia, were
A B

DC

FIGURE 1

Methionine-independent revertant osteosarcoma cells become less-sensitive to methionine restriction. (A) Dose-dependent methionine
depletion of DMEM effected by rMETase. The methionine level in DMEM was measured 3 h after rMETase was added. (B) Morphology of 143B-P
and 143B-R cells. Scale bar in photomicrographs: 250 mm. Magnification: 100×. (C, D) Methionine-restriction sensitivity of 143B-P and 143B-R
cells with rMETase. 143B-P: methionine-addicted parental 143B osteosarcoma cells, 143B-R: methionine-independent 143B osteosarcoma cells.
***P < 0.001.
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established and spontaneous lung metastasis from the tibia was

examined. The 143B-R tumor size was significantly smaller than

the 143B-P tumor size (P = 0.034), although both of them

formed primary tumor tissue at the same ratio, 7 out of 10 mice

(Figures 3A–C). Histological differences of the primary tumor

tissues in 143B-P and 143B-R were not demonstrated with H&E

staining (Figure 3D). Four different lung samples were then

randomly obtained from each of the 7 mice with primary tumor.

The lungs were examined for metastases from the primary tibia

tumor. Macroscopically, 4 out of 7 lungs in 143B-P-injected

mice had metastatic lesions, in contrast, no macroscopic

metastatic lesions were seen in 143B-R mice (Figure 3E).

Histological analysis demonstrated that 143B-P cells formed

spontaneous lung metastases in 5 out of 7 mice, in contrast,

143B-R cells formed no metastases (P = 0.021) (Figure 3E).

These results indicate that methionine-independent 143B-R cells

lost malignancy in vivo, as well as in vitro.
Frontiers in Oncology 06
Expression of an epithelial marker was
increased and the expression of
mesenchymal markers were decreased in
methionine-independent revertant
osteosarcoma cells

We then performed western immunoblotting to compare the

gene expression levels related to the epithelial-mesenchymal

phenotype in 143B-R cells and 143B-P cells. 143B-R cells

showed gain of the epithelial marker, ZO-1 (P = 0.012) and

loss of mesenchymal markers, vimentin (P < 0.001), Snail (P <

0.001), and Slug (P < 0.001), compared to 143B-P cells

(Figure 4). These results indicate that EMT is, at least in part,

related to the metastatic process in osteosarcoma, as well as

carcinoma cells, which is consistent to previous reports (27–37,

46–48), and also suggest that the modulation of epithelial-

mesenchymal phenotype may, at least in part, be related to the
f

A

B

FIGURE 2

Methionine-independent revertant osteosarcoma cells have reduced cell migration and invasion capacity. (A) Cell migration capacity of 143B-P
and 143B-R cells, in the wound-healing assay. Scale bar in photomicrographs: 250 mm. Magnification: 100×. (B) Cell-invasion capacity of 143B-
P and 143B-R cells, with the transwell assay. Scale bar in photomicrographs: 250 mm. Magnification: 100×. 143B-P: methionine-addicted
parental 143B osteosarcoma cells, 143B-R: methionine-independent 143B osteosarcoma cells. *P < 0.05, **P < 0.01.
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A

B D

E

C

FIGURE 3

Methionine-independent revertant osteosarcoma cells have reduced tumor growth and lost metastatic potential, in orthotopic xenograft mouse
models. (A–C) Tumor growth in the orthotopic xenograft mouse models of 143B-P or 143B-R cells. Dashed yellow lines show the edge of the
tumor tissue. Scale bar: 50 mm. *P < 0.05. (D) Representative photomicrographs of H&E-stained primary tumor tissues in the tibia of 143B-P
and 143B-R cells. Scale bar: 100 mm. Magnification: 100×. (E) Spontaneous lung metastases from the tibia of 143B-P and 143B-R cells. Dashed
yellow lines show metastatic lesions in the lung. Scale bar in photographs: 25 mm. Scale bar in photomicrographs: 500 mm. Magnification of
photomicrographs: 40×. 143B-P: methionine-addicted parental 143B osteosarcoma cells, 143B-R: methionine-independent 143B osteosarcoma
cells.
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relationship of methionine addiction and malignancy of

osteosarcoma cells.
The status of histone-H3 lysine-
methylation was significantly altered in
methionine-addicted parental
osteosarcoma cells and methionine-
independent revertant osteosarcoma
cells

To compare the status of histone-H3 lysine-methylation in

143B-R and 143B-P, western immunoblotting was performed.

The levels of histone H3K9me3 and H3K27me3 were increased

(P = 0.035, P = 0.042, respectively) and the levels of histone

H3K4me3, H3K36me3, and H3K79me3 were decreased (P <

0.001, P = 0.036, P < 0.001, respectively) in 143B-R cells,

compared to 143B-P cells (Figure 5). These results suggest that

unbalanced histone-H3 lysine-methylation status may be

involved in the relationship of methionine addiction and

malignancy of osteosarcoma cells.
Discussion

The present study showed that revertant 143B-R cells,

selected from parental 143B-P cells long-term in low-

methionine media, became more resistant to methionine

restriction than 143B-P cells. 143B-R cells had reduced cell
Frontiers in Oncology 08
migration and invasion capacity in vitro and reduced tumor

growth and loss of metastatic potential in vivo, indicating they

lost malignancy, which is consistent with other methionine-

independent revertant cells selected from other methionine-

addicted cancer types (13, 15, 16, 21, 22). These results

strongly support the concept that methionine addiction is

closely related to malignancy.

In the present study, histone H3K9me3 and H3K27me3

were increased, and histone H3K4me3, H3K36me3, and

H3K79me3 were decreased, in 143B-R cells. Histone

H3K9me3 and H3K27me3 are involved in gene repression and

histone H3K4, H3K36, and H3K79 are involved in gene

promotion (52–57). Although which of the histone-H3 lysine-

methylation-modifications are directly involved in specific gene-

modifications is still uncertain (58, 59), the results of the present

study suggest that shifting the balance in histone methylases

might be a way to decrease the malignant potential of cells, and

the loss of malignancy of the methionine-independent revertant

cells may be related to regulation of specific gene-expression

changes via these histone-H3 lysine-mark modifications. The

present study suggests that histone-H3 lysine-methylation may

be involved in the relationship of malignancy and methionine

addiction, as previously reported (15, 16). Although, in the

present study, the western immunoblotting clearly shows the

changes in histone-H3 lysine-methylation when 143B-P cells

revert to 143B-R cells, future experiments will further investigate

changes in histone-H3 lysine-methylation in 143B-P and 143B-

R cells in IHC experiments. The mechanism of how the changes

in the methylation of the histone-H3 lysine marks, including

H3K4me3, H3K9me3, H3K27me3, H3K36me3, and H3K79me3,
FIGURE 4

The expression of epithelial and mesenchymal markers in 143B-P and 143B-R cells, demonstrated with western immunoblotting. 143B-P:
methionine-addicted parental 143B osteosarcoma cells, 143B-R: methionine-independent 143B osteosarcoma cells. *P < 0.05, ***P < 0.001.
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affects properties of sarcoma will be investigated in

future studies.

The histone-H3 lysine-trimethylation, including

H3K4me3, H3K9me3, H3K27me3, H3K36me3, and

H3K79me3, were all reduced in methionine-independent

revertant cells of methionine-addicted HCT116 colon cancer

cells and H460 lung cancer cells (15). In the present study,

selection for 143B-R cells was performed more strictly and for a

longer period than in previous studies, with 4 cycles of the

following selection procedure repeated: cells were cultured in

methionine depleting medium until almost all the cells died,

followed by rescue of any remaining live cells in normal

medium and subsequent passage . Moreover , 143B

osteosarcoma cells are much more sensitive to methionine

restriction than HCT116 colon cancer cells and H460 lung

cancer cells (IC50 of rMETase: 143B: 0.20 U/ml; HCT116: 0.71

U/ml; H460: 1.14 U/ml), suggesting 143B cells are more

methionine-addicted than HCT116 colon-cancer cells or

H460 lung-cancer cells (12). These differences might have

contributed to selection of 143B-R cells with different

histone-H3 lysine methylation changes from the revertant

cells of HCT116 or H460 cells.
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In the present study, 143B-R cells showed gain of an

epithelial marker, ZO-1, and loss of mesenchymal markers,

vimentin, Snail, and Slug, also contributing to the benign

characteristics of 143B-R cells, which formed no spontaneous

metastases in the lungs, in contrast to 143B-P cells. These results

suggest that 143B-R cells have lost their metastatic potential, to

which the modulation of epithelial-mesenchymal phenotype and

alteration of histone-H3 lysine-methylation may be related.

Changes in histone-H3 lysine-methylation, including

H3K4me3, H3K9me3, H3K27me3, H3K36me3, and

H3K79me3, are associated with epithelial-mesenchymal

phenotype changes (60–62). Borek, almost 60 years ago,

suggested unbalanced methylation is a basis of cancer (63).

The present results support Borek’s hypothesis.

The present study demonstrated that reversion of

methionine addiction of cancer cells to methionine-

independence results in loss of malignancy, and showed the

modulation of the epithelial-mesenchymal phenotype and

unbalanced histone-H3 lysine-methylation status are involved

in the relationship of methionine addiction and malignancy.

Methionine addiction of cancer is known as the Hoffman Effect

(64). Future studies will focus more on the relationship of the
FIGURE 5

The status of the histone-H3 lysine-methylation in 143B-P and 143B-R cells, with western immunoblotting. 143B-P: methionine-addicted
parental 143B osteosarcoma cells, 143B-R: methionine-independent 143B osteosarcoma cells. *P < 0.05, ***P < 0.001.
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modulation of the epithelial-mesenchymal phenotype and

histone-H3 lysine-methylation status to methionine addiction

and malignancy, by upregulating or blocking the changes we

have observed.
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