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The nasal mucosa, which performs the crucial functions of filtering,

humidifying and temperature regulation, is one of the most vulnerable areas

of nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT). Following

RT, NPC patients experience a series of pathological changes in the nasal

mucosa, ultimately leading to physiological dysfunction of the nasal epithelium.

This article systematically reviews the clinical and pathological manifestations

of RT-related nasal damage in NPC patients and summarizes the potential

mechanism of damage to the human nasal epithelium by RT. Finally, we outline

the current mechanistic models of nasal epithelial alterations after RT in NPC

patients and provide additional information to extend the in-depth study on the

impairment mechanisms of the nasal mucosa resulting from RT. We also

describe the relationship between structural and functional alterations in the

nasal mucosa after RT to help mitigate and treat this damage and provide

insights informing future clinical and fundamental investigations.

KEYWORDS

nasopharyngeal carcinoma, radiotherapy, nasal mucosa, epithelial barrier,
impairment mechanism
Abbreviations: CNS, Central nervous system; CRS, Chronic rhinosinusitis; CRSr, Radiation-induced

chronic rhinosinusitis; CRSsNP, CRS without nasal polyps; CRSwNP, CRS with nasal polyps; CT,

Computed tomography; EBV, Epstein-Barr virus; HN-MRI, Head and neck magnetic resonance

imaging; HE, Haematoxylin and eosin; IMRT, Intensity-modulated radiotherapy; IT, Inferior turbinate;

LM, Light microscopy; MCC, Mucociliary clearance; MT, Middle turbinate; N, Nodal; NPC,

Nasopharyngeal carcinoma; OD, Olfactory dysfunction; OMC, Ostiomeatal complex; PAS, Periodic

acid–Schiff; RT, Radiotherapy; T, Tumor; TEM, Transmission electron microscopy.
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1 Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial

carcinoma originating from the nasopharyngeal epithelium

(1). NPC has extremely high incidence rates in Southeast Asia

and North Africa, with over 70% of new cases occurring in

these regions, especially in China, in 47.7% of cases occur (2–

4). The occurrence of NPC has been proven to be related to

genetic, ethnic and environmental factors and Epstein-Barr

virus (EBV) infection. There is a higher incidence of NPC in

males than females, with a ratio of 2:5 in China in 2015 (5, 6).

NPC is very sensitive to radiotherapy (RT), unlike other head

and neck malignancies. Therefore, the most classic treatment

for NPC is RT in both the early and advanced stages of the

disease (7, 8). Early conventional RT techniques cause severe

side effects, including mucositis, dermatitis, xerostomia

and dysphagia (4, 9). RT is also associated with late toxic

effects, including xerostomia, sensorineural hearing loss,

osteoradionecrosis, trismus, Central nervous system (CNS)

abnormalities and hormonal dysfunction (4, 10). As the

radiation dose increases or accumulates, the toxic side

effects become more obvious (10). However, photon-based

RT techniques have evolved from traditional two-dimensional

RT to three-dimensional conformal RT to intensity-modulated

RT (IMRT). Although RT techniques have advanced greatly

and the precise radiation range of IMRT causes less damage to

normal tissues, toxic side effects are still common in

surviving patients.

As one of the most vulnerable areas to IMRT or common

RT, the nasal mucosa is substantially damaged upon RT

initiation. When NPC patients receive RT, the tumour cells

are killed, but direct damage is also sustained in tumour-adjacent

areas such as the nasal mucosa (11). RT usually causes

congestion and oedema of the nasal mucous membrane,

discharge of purulent secretions from the nasal cavity,

adhesion of mucus in the nasal cavity and sinus orifices, and

damage and loss of cilia. Then, a series of inflammatory reactions

result in sinus drainage obstruction, eventually leading to nasal

diseases such as radiation-induced chronic rhinosinusitis (CRSr)

(12). These patients mainly present with symptoms similar to

chronic rhinosinusitis (CRS), such as nasal congestion,

rhinorrhoea, smell loss, headache, and head swelling (10).

Acute onset may be accompanied by additional symptoms

such as fever and rhinorrhoea (10, 13). The incidence of CRSr

was as high as 86.1% with past techniques (14). Despite the

improvement of RT techniques in recent years, the incidence of

CRSr caused by moderate-intensity RT is still as high as 73.5%,

and the damage has a cumulative effect, which usually reaches a

maximum after 1 year (12, 15). Mechanistically, the consensus

view attributes CRSr to radiation damage sustained by the

ciliated cells and goblet cells of the nasal mucosa (16). Many
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studies have focused on the damage to the nasal mucosa caused

by RT, but there is still a lack of high-quality evidence to confirm

the association between clinical manifestations and pathological

changes after RT. This review is a comprehensive overview of the

important findings regarding damage to the nasal mucosa after

RT and systematically organizes and categorizes the clinical and

pathological manifestations of nasal diseases after RT.
2 Clinical characteristics of NPC
patients after treatment with RT

After RT, purulent nasal discharge, nasal congestion, and

significant anosmia (16, 17) ultimately lead to nasal disease and

low quality of life (9, 18, 19) in NPC patients (Figure 1).

Numerous studies (20–22) have verified a significant decrease

in nasal ciliary clearance after RT through the saccharin/

charcoal test. Ciliary clearance dysfunction causes NPC

patients to develop nasal congestion, facial pain and the

perception of unpleasant odour; furthermore, the prolonged

clearance time indicates cilia dysfunction or reduction in

number, which leads to inadequate drainage of secretions.

Moreover, NPC patients are vulnerable to upper respiratory

tract infections after RT due to the impaired nasal epithelial

barrier (17, 23).

RT also has other serious side effects in the early stage, such

as acute reactions in the oral mucosa, which lead to difficulty

swallowing and eating and pain in the throat. Hearing loss, dry

mouth, nasal dryness and hypothyroidism also occur in the

early stage of RT (9, 19, 24, 25). Notably, physical problems

may not be the only symptoms occurring after RT. Even after

the physical complications subside, survivors still face many

psychosocial challenges, such as fatigue, cognitive changes,

emotional distress, occupational difficult ies , sexual

dysfunction and fear of cancer recurrence (9, 10, 26).

Among nasal problems after RT, hyposmia is a notable

complication relevant to nasal mucosal injury. Giuseppe Riva

et al. (27)discovered that because of acute inflammation of the

nasal mucosa, patients developed nasal congestion, and their

sense of smell was correspondingly diminished. Radiation

causes patients’ nasal mucosa to undergo various changes,

such as congestion, oedema and mucosal thickening. These

changes prevent odours from entering the olfactory area and

lead to conductive hyposmia in the early stage of RT (13, 27).

Olfactory dysfunction (OD) is classified into transport,

sensory, and neural disorders (28). The mechanism of

olfactory disorders after RT (17, 27) may include both

transport and sensory disorders. When RT is completed, the

acute inflammation of the patient’s nasal mucosa will subside,

and the olfactory disturbance caused by transport disruption

will recover (28).
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Therefore, in the early radiation stage, transport disorders

can be accounted for the mechanical obstruction of odorants to

the olfactory cleft caused by edema. With the gradual

accumulation of radioactive Impairment, we can speculate

that the nasal mucosa is irreversibly damaged by the

stimulation of Long-term chronic inflammation. Due to

abnormal repair of the nasal epithelium, the squamous

epithelium replaces the normal tissue. This phenomenon

impairs olfactory neurosensory function, and this impairment

progresses to complete loss of smell. However, this is merely our

speculation based on previous studies; future research should test

this hypothesis further.
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3 Endoscopic manifestation and
nasal imaging changes after RT

3.1 Nasal endoscopic manifestations

Regular nasal endoscopy facilitates visual monitoring of

NPC recurrence and reveals continuous changes in the nasal

mucosa after RT. Endoscopy(Figure 2) can identify the

occurrence of sinusitis so that treatment can be provided

promptly. Reda Kamel et al. (29)found delayed damage to the

nasal mucosa within 2-6 weeks after patients completed RT. The
FIGURE 2

Endoscopic changes in NPC patients after RT. (A) Black star: congested IT. White arrow: adhesions throughout the nasal tract. (B) White arrow:
pharyngeal fossa in the nasopharynx. (C) Black asterisk: MT. White arrow: middle nasal tract with purulent secretions and scabs. Black ellipse:
middle nasal tract with nasal adhesions. IT, inferior turbinate; MT, middle turbinate.
FIGURE 1

Nasal manifestations after RT in NPC patients.
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nasal mucosa was continuously congested and oedematous, and

after some time, it began to show the development of more

purulent secretions, scabs, and adhesions; atrophy of the

turbinates, widening of the sinus openings (especially the

maxillary sinus and anterior ethmoid sinus) and narrowing or

atresia of the posterior nostrils.
3.2 CT and MRI representation of the
nasal mucosa after RT

Computed tomography (CT) imaging is a crucial tool for

diagnosing rhinosinusitis; this technique allows clinicians to

observe the severity of a patient’s sinus mucosal inflammation

(25, 30). Sinusitis is a common side effect after RT in patients

with nasopharyngeal cancer. When patients develop nasal

symptoms such as nasal congestion and rhinorrhoea after RT,

CT imaging of the paranasal sinuses can be reviewed to assess

the inflammation of the nasal mucosa and associated sinuses. In

a report by Reda Kamel et al. (29)describing 32 NPC patients

who received RT and had no recurrence, CT results also showed

that inflammation of the sinus mucosa was present in most

patients after RT. The highest incidence of inflammation was in

the maxillary sinuses, followed by the anterior septum, the

ostiomeatal complex (OMC), and the posterior septum, with

the lowest incidence in the frontal sinuses. CT showed that the

maxillary sinuses, anterior septal sinus and OMC were the most

affected areas (29, 31).

Accurate delineation of tumor extent is a key step in

determining NPC staging and treatment strategy (32, 33).

Certainly, in this field, head and neck magnetic resonance

imaging (HN-MRI) has been regarded as the best modality for

assessing local NPC extension. Its influence on the tumor (T)
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and nodal (N) staging system of NPC is more pronounced than

that of CT (32, 33). In addition, HN-MRI examinations should

be performed regularly after RT for NPC patients. The MRI

(Figure 3) manifestation in NPC patients with paranasal sinus

invasion include damage to sinus boundary, uneven thickening

of the sinus mucosa or with massive effusion in the sinus cavity

(34). MRI is highly recommended for observing the size of local

nasopharyngeal swelling lesions and the scope and degree of

invasion of surrounding adjacent tissues. MRI also improves the

accuracy of diagnosis of NPC (35–37). However, for detecting

extent of nasal inflammatory response and lesions after RT, HN-

MRI is recognized not as well visualized as CT (since CT is

reported as the gold standard modality for CRS) in observing the

construction of nasal cavity and/or paranasal sinuses (35, 38).
4 Pathological changes in the nasal
mucosa after RT for NPC

4.1 Morphological structure and function
of the normal nasal mucosa

The normal nasal mucosa has a certain normal histological

pattern. After conventional haematoxylin-eosin staining and

periodic acid–Schiff (PAS) staining, normal nasal mucosal

tissue can be observed to contain ciliated cells in the epithelial

layer, while the glands and glandular cells are in the basal and

lamina propria layers (16, 39). The epithelial layer is dominated

by neatly arranged and dense ciliated columnar cells. The cilia

are densely arranged, neat and uniformly oriented. Small

concentrated areas of goblet cells and scattered single goblet

cells are seen between the columns. Basal cells are neatly

arranged without obvious hyperplasia.
FIGURE 3

MRI of the nasopharyngeal passages and skull base. (A) Before RT; the red area indicates nasopharyngeal lesions. (B) After RT. Red arrows:
inflammation of the maxillary sinus; blue dotted lines: oedematous IT (right) and atrophied IT (left).
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In the intrinsic layer, there are mixed, nonatrophied serous

and mucus glands, with serous glands being more common and

occurring mainly in the lobules, while mucus glands are less

common and occur in the submucosa and deeper interstitium.

The interstitium is loose connective tissue, denser in the deep

part than in the superficial part, with a few collagen fibres in the

deep part and awn-like interstitial cells in the superficial part.

More capillaries, nerve endings, a few lymphocytes and plasma

cells can be seen in the intrinsic layer. Eosinophils and

granulocytes are occasionally seen as well. Electron microscopy

shows that the cilia have a neat, dense, uniform, dense and neat

distribution and a consistent direction. On transmission electron

microscopy, most nasal epithelial layers are closely arranged

with ciliated columnar epithelial cells with a normal

nucleoplasmic ratio; the nuclei are normal in size and

morphology, containing mainly euchromatin; an abundant

rough endoplasmic reticulum and numerous mitochondria are

seen in the cytoplasm (16, 40).

The main functions of the structurally normal nose are

respiration, heating and moistening of inhaled air, olfaction,

vocalization and mucociliary clearance (MCC). If the nasal

mucosal blood supply, nerves, glands and mucociliary system

function normally, air is inhaled through the nose during

respiration and then maintains sufficient pressure, volume,

humidity, heat and cleanliness as it travels to the lungs (22, 41).
4.2 Variation in the epithelial structure of
the nasal mucosa after RT for NPC

4.2.1 Alterations in ciliary cells
Cilia are important constituent structures of the upper

respiratory tract, especially in the nose. They fulfil the

physiological function of clearing out foreign bodies and

microbes. When the morphology and function of cilia are

impaired, it can cause a series of pathological phenomena, such

as bronchial dilatation, sinusitis, and nasal polyps. When NPC

patients receive RT, radiation can directly damage ciliated cells and

cause a significant decrease in the quantity and function of ciliated

cells. Many scholars (17, 20, 21, 23, 29, 42) have applied the

saccharin test or a modified version of the saccharin test, and the

results showed prolonged transport time of cilia and reduced

mucociliary clearance, indicating that RT could damage ciliated

cells. Surico G et al. (23) confirmed that this damage was

permanent. PenJen Lou (43 )and Suizi Zhou (16) et al. observed

that the architecture of cilia was disorganized, sparse, absent or

diverging after RT via light microscopy (LM) and transmission

electron microscopy (TEM). Moreover, impaired ciliary motility

was also observed in the histological examination of nasal biopsy

tissue (11, 16). Lou, PJ et al. (43) found delayed impairment effects

of radiation in the nasal mucosa after RT. Previous results showed

increased deposition of dense collagen fibres in the lamina propria
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under light microscopy after RT, along with a stratified

arrangement of epithelial cells and a gradual decrease in

cytoplasmic volume. Ultrastructural observations could detect

cilia area loss, inter-and intracellular vacuole formation and

ciliary aberrations. Researchers have also observed these

pathological phenomena in NPC patients after 23 years of RT,

suggesting that this radiation-induced damage to the nasal

epithelium was irreversible and had a cumulative effect with time

(43). Damage to the nasal mucosa can further lead to rhinosinusitis,

which is why the majority of patients had the highest incidence of

sinusitis 1 year after the end of RT (7, 12, 44).

There are a set of markers for ciliated cells, such as alpha-

tubulin, beta-tubulin and TAp73 (45–47), and markers of

microtubule assemblies of motile cilia, such as DNAH5, DNAI1

and RSPH4A (48–50). Ciliogenesis-associated molecular markers

include FOXJ1 and CP110 (51, 52). According to previous research,

DNAH5 or DNAI1 mutations contribute to outer dynein arm

defects (53–55), while RSPH4A encodes protein components of the

axonemal radial spoke on the head of the cilium (49). Foxj1 and

Cp110 are responsible for abnormal ciliogenesis (53, 56). In recent

years, the mechanism by which RT damages the nasal mucosa has

been investigated using these biomarkers, first qualitatively and then

quantitatively. Hongming Huang (42) and Suizi Zhou et al. (16)

detected these biomarkers in nasal epithelial cells after RT. Their

results showed that alpha-tubulin, beta-tubulin, TAp73, DNAH5,

DNAI1, RSPH4A, FOXJ1 and CP110 levels were significantly

reduced. This result indicated that RT-induced impairment was

ascribable to the reduced production of ciliated cells or that the

generation of ciliated cells was damaged. In addition, these

remaining ciliated cells lose their oscillatory function due to the

inactivation of ciliated power arms, resulting in diminished

mucociliary clearance. More in-depth studies are needed to

elucidate the mechanism of the decreased ciliated cells, prolonged

transport time and diminished mucociliary clearance.

4.2.2 Alterations in goblet cells
Goblet cells are mucus-secreting cells that synthesize and

secrete mucins to form a mucosal barrier that protects nasal

epithelial cells. Radiation can likewise damage goblet cells and

affect their secretory function. The quantity of normal goblet cells

is also significantly reduced after RT, and the mucous glands tend to

atrophy, which is compensated by dysplastic goblet cells, according

to observations under light microscopy (16, 42). On TEM, normal

goblet cells appear vacuolated, degenerated and even atrophied. The

common biomarkers of goblet cells are MUC5AC andMUC5B (16,

42, 53, 57). Hongming Huang (42) and Suizi Zhou et al (16)

collected nasal mucosal tissues of NPC patients after RT for

haematoxylin and eosin (HE), immunohistochemistry and

fluorescence staining. They found that MUC5AC and MUC5B

levels in nasal mucosal tissues of NPC patients were also

significantly reduced. Ko-Hsin Hu et al (58) showed that the

submucosal gland openings decreased after RT.
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4.2.3 Alterations in basal cells
Basal cells, as nasal stem/progenitor cells, have the function

of differentiating into other types of functional nasal epithelial

cells. In general, the nasal mucosa is constantly renewed and

maintains self-repair capacity, ascribed to basal cell proliferation

and differentiation. Reduced basal cell numbers and widening of

the intercellular space between basal cells in NPC patients after

RT have also been observed by light microscopy and TEM. The

biomarkers of basal cells are P63 and Krt5 (42, 59). Ki67 can also

be a biomarker of nasal basal cells in the proliferative phase (16,

53). A related study showed an increase in the numbers of P63

+/Krt5+ cells and a decrease in the numbers of Ki67 cells in the

nasal mucosa after RT (42). In summary, in addition to

impairing ciliated and goblet cells, RT can also reduce the

proliferative capacity of basal cells and lead to their abnormal

proliferation. Due to genetic mutations, it is difficult for

damaged basal cells to differentiate into normal ciliated cells

and goblet cells to repair the defective nasal mucosal epithelium;

this deficiency eventually promotes squamous metaplasia of

nasal cells, leading to structural remodelling of the nasal

epithelium. Pathological changes of nasal mucosa after

radiotherapy in NPC patients are showed in Figure 4.

4.2.4 Other microlevel effect
In addition to changes in the structure of nasal epithelium,

NPC patients have other microlevel performance when suffering

from CRSr. Kuhar (11) et al. reported no difference in eosinophil

counts or neutrophilic infiltration between CRSr patients and
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CRS patients without nasal polyps (CRSsNP patients). when

comparing with CRS patients with nasal polyps (CRSwNP

patients), CRSr patients exhibited decreased eosinophilia and

eosinophil aggregates. There was no difference in the overall

degree of inflammation and fibrosis among three groups. It may

indicate that there is distinct underlying mechanisms and

histopathologic changes in CRSr, and its endotypes is diffirent

from CRSsNP or CRSwNP. However, Giuseppe Riva (27) et al.

performed nasal cytology, which showed prominent neutrophils

and bacteria in the nasal mucosa after CRSr. Stoddard (60) et al.

researched the microbial flora of CRSr patients using cell culture

and molecular techniques for microbial DNA detection. The

bacteria in CRSr patients resembled the microorganisms

responsible for common CRS. The most common organism

identified was Staphylococcus aureus, followed by Pseudomonas

aeruginosa. The reasons for the discrepancy in these researches

can be explained that there is a lack of studies related to the

endotype or molecular immune response to CRSr. Thus, follow-

up work with greater sample sizes and larger power are needed

to confirm them.

The toxic effects of radiation on tumor cells also change the

tumor microenvironment. T cells, B cells and NK cells is very

radiosensitive after RT. It helps the recruitment of antitumor T

cells to against tumor (61). Meanwhile, RT has the potential to

trigger type I interferon response and DNA damage which also

help rebuild the antitumor immune defence (62). The immune

disfunction caused by radiation also results in a maladjusted

immune system and unbalanced growth of parasitic bacteria in
FIGURE 4

NPC patients after RT. After RT, nasal ciliated columnar cells of NPC patients gradually decrease in number and lose ciliary motility, goblet cells
decrease in number or abnormally proliferate, and basal cells decrease in number or give way to squamous metaplasia. ① Biomarkers of ciliated
columnar cells; ② Biomarkers of basal microtubule assemblies; ③ Biomarkers associated with ciliogenesis; ④ Biomarkers of basal cells; ⑤
Biomarkers of cell proliferation.
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the human body. Several harmful bacteria can propagate rapidly.

Due to the proximity of the nasal cavity to the nasopharynx, the

intensity of radiation exposure in the nasal cavity is relatively

high. Nasal epithelia are prone to damage from immune

disorders, and microbial dysbiosis occurs due to radiation

damage (63, 64). However, the interacting genes and pathways

involved in radiation impairment associated with the nasal

epithelial barrier and the immune system leading to

rhinosinusitis need to be addressed in future research.
5 Impairment mechanism of nasal
mucosa after RT for NPC

Therefore, based on previous study, it suggests that the

occurrence of radioactive sinusitis has a close relationship with

the impairment to nasal epithelial barrier. It exists two possible

causes of radiation damage to the nasal epithelial barrier. One

reason is the direct killing effect of radiation on the epithelial

cells which leads to the depletion of cilia, goblet cells and basal

cells (16, 63). Another cause may be the contribution of

radiation to acute inflammation (61, 64). The release and

stimulation of plenty of inflammatory factors gradually lead to

atrophy and death of epithelia. The defective and damaged nasal

epithelial barrier further leads to epithelial dysfunction, resulting

in rhinosinusitis.
6 Conclusions

AfterNPCpatients undergoRT, the clinical characteristics and

microenvironment of the nasal mucosa, including morphological

structure and function, has been altered obviously. As the damage

to the nasal epithelial barrier accumulates and immune function

declines, CRSr occurs. It has been emphasized the relationship

between structural alterations and functional impairment of the

nasal mucosa after RT in this article. However, the mechanism for

RT promoting the damage and loss of nasal functional epithelial

cells (ciliary cells, goblet cells and basal cells) still remains unclear.

Moreover, the interrelationship between the loss of ciliated

columnar epithelium, the decrease in goblet cells, the genetic

changes in basal cells and squamous metaplasia has not yet

been confirmed.
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Consequently, how to effectively prevent and treat CRSr

remains a substantial pressing challenge in clinical practice.

Understanding the changes in local microstructures, the

microenvironment and systemic immune responses is of great

significance in dealing with nasal mucosal injuries after RT.

Meanwhile, RT-induced impairment to nasal microstructures in

NPC patients is a potential entry point for in-depth research,

and further exploration of the mechanism of nasal mucosal

injury by RT or IMRT needs to be addressed.
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