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Inorganic pyrophosphatase (PPA1) encoded by PPA1 gene belongs to Soluble

Pyrophosphatases (PPase) family and is expressed widely in various tissues of

Homo sapiens, as well as significantly in a variety of malignancies. The

hydrolysis of inorganic pyrophosphate (PPi) to produce orthophosphate (Pi)

not only dissipates the negative effects of PPi accumulation, but the energy

released by this process also serves as a substitute for ATP. PPA1 is highly

expressed in a variety of tumors and is involved in proliferation, invasion, and

metastasis during tumor development, through the JNK/p53, Wnt/b-catenin,
and PI3K/AKT/GSK-3b signaling pathways. Because of its remarkable role in

tumor development, PPA1 may serve as a biological target for adjuvant therapy

of tumor malignancies. Further, PPA1 is a potential biomarker to predict survival

in patients with cancer, where the assessment of its transcriptional regulation

can provide an in-depth understanding. Herein, we describe the signaling

pathways through which PPA1 regulates malignant tumor progression and

provide new insights to establish PPA1 as a biomarker for tumor diagnosis.

KEYWORDS

inorganic pyrophosphatase 1 (PPA1), tumor, biomarker, signaling pathways,
epithelial-mesenchymal transition
Introduction

In 1926, Kay et al. identified a synthetic hydrolysis system in various human tissues

and body fluids that balance the inorganic phosphates present in the body (1). In 1967,

inorganic pyrophosphatase was first purified from human erythrocytes with a molecular

weight of 42 KD (2, 3). The study of human-associated inorganic pyrophosphatases is
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gradually approaching maturity. In the past decades, proteomic

analysis based on two-dimensional polyacrylamide gel

electrophoresis and mass spectrometry has revealed that the

expression of PPA1 is significantly increased in lung

adenocarcinoma (4), primary colorectal carcinoma (5),

infiltrating ductal carcinoma of the breast (6), prostate cancer

(7), gastric cancer (8), liver cancer (9), large B-cell lymphoma

(10), and ovarian cancer (11), compared with that in the

corresponding normal or paraneoplastic tissues. It is

significantly expressed in lung and breast cancer (12). PPA1,

an energy-metabolizing enzyme, is encoded by a housekeeping

gene and is widely expressed in various tissues of the body. PPA1

differential expression in normal tissues and corresponding

malignant tumors indicates its potential as a molecular target

for screening, diagnosing, and treating malignancies as well as

predicting patient prognosis. Further studies have revealed that

PPA1 is positively correlated with the progression of various

malignant tumors as a result of its ability to facilitate tumor

proliferation, suppress tumor apoptosis (12–14), and promote

tumor metastasis by participating in epithelial-mesenchymal

transition (EMT)-related signaling pathways (8, 15–17). In

addition, a new human PPase, phospho-lysine phospho-

histidine inorganic pyrophosphate phosphatase (LHPPase), has

been cloned, and a significant increase of this protein was found

to be associated with hyperthyroidism, while a decrease was

observed in thyroid tumors (18).
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Tumor cells are highly plastic and undergo rapid

proliferation, invasion, and metastasis (19). The widespread

expression of a protein such as PPA1 in tumor tissues and

cells implies that it plays an extremely important role in the

development of this malignancy. Based on this consideration, we

describe the basic structure, function of PPA1 and the

characteristics of its enzymatic activity, and summarize its role

in malignancies with potential molecular mechanisms.
Introduction of PPA1

Properties and structure of PPA1

PPases are often localized in the cytoplasm and are involved in

the hydrolysis of PPi to form Pi. They also promote biological

processes such as amino acid activation, nucleic acid

polymerization, and nucleotide biosynthesis. Excessive

accumulation of PPi can cause metabolic disorders in the body,

leading to disease (3, 20) (Figure 1). A membrane-bound

pyrophosphatase present in plants utilizes the energy of PPi

hydrolysis for Na+ and H+ transport across the cell membrane

(22). Further, a mitochondrial pyrophosphatase with catalytic

subunits structurally and functionally similar to soluble PPases

has also been reported (23–25). The three non-homologous

families (I, II, and III) of soluble PPases display conserved
FIGURE 1

Diagram of the monomeric and dimeric structures of PPA1, and their modes of participation in PPi hydrolysis (21). (PDB code: mono 7BTN;
dimer 7CMO).
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functional elements with substantial overall sequence variation (26,

27). Family II pyrophosphatases (PPA2) in prokaryotes have poorly

conserved protein residues, and family III pyrophosphatases

(PPA3) are single structural domain proteins (20, 27). More

closely associated with human organismal activity is the family I

pyrophosphatase (PPA1), encoded by a housekeeping gene located

on the long arm of chromosome 10 (28). Recent studies have shown

that the crystal structure of human PPA1 can be determined at a

resolution of 2.4 Å (29). It has a conserved dimeric structure that

folds into a compact monomeric form with a molecular weight of

42 KD (3). The core is a substrate recognition site formed by a b-
folded barrel-linked ring b5-b6, and the metal ionMg2+ can bind to

a binding groove near the b-folded barrel (20, 21, 29). The activity

of PPA1 is closely associated with its function and is regulated by

divalent cations. Such as free magnesium ions (Mg2+), it can

stabilize PPase activity and act as a physiological activator (20,

30). The catalytic activity of PPase cannot be activated if there is a

lack of divalent cations. The pH values also affect the hydrolytic

activity of PPA1, with the highest activity at pH 6.5-7 (20). Pi, as an

end product of the PPi hydrolysis, also inhibits the function of

PPA1 to some extent (30). As an essential energy-metabolizing

enzyme, PPA1 participates in various biosynthetic and metabolic

pathways. Analyzing the differences between normal tissues and

tumor tissues in terms of PPA1 enzymatic activity is beneficial to

further investigate the potential role of PPA1 in the metabolic

process for tumors. In a study by Shatton, J. B. et al., PPase activity

was studied in a variety of rat tissues (31). The enzyme activity was

significantly greater in liver and kidney tissues than in other tissues.

Based on a per gram basis, PPase enzyme activity in liver is twice

that of any other tissue at least, and 100 times greater than alkaline

phosphatase activity, 13 times greater than glucose-6-phosphatase

activity, and five times greater than ATPase activity. It is worth

mentioning that the increase in enzyme activity in the tumor was

pronounced (31). Furthermore, PPase activity is also affected by age

and energy metabolism. Rats aged 24 months had a 2-fold greater

liver activity of PPase than adult rats aged 4 months (32). PPase

activity and expression increase inmice with short-term fasting, and

refeeding reverse effect (33). Additionally, PPA1 has a self-assembly

system that is dependent on the highly conserved amino acid

residues Arg52 and Asp281. Nevertheless, PPA1 with mutated

amino acid residues in self-assembly still exhibits enzymatic

activity and promotes tumor cell growth, suggesting that self-

assembly does not affect the biological function of PPA1

(21) (Figure 1).
Biological functions of PPA1

PPA1 does not function solely as a hydrolase, but is also

involved in biosynthetic functions through other metabolic

mechanisms. Precursors of nicotinamide adenine dinucleotide

(NAD+) are presented in all living cells which play a key role as

coenzymes in the metabolism of substances and energy
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production. High levels of NAD+ contribute to the rapid

proliferation of tumor cells (34). It is proved that silencing

PPA1 inhibits NAD+ metabolism, leading to cell cycle arrest

and cell death by autophagy in Baker’s yeast (35). Recently, the

role of PPA1 in maintaining systemic metabolic stability has

been explored. Mice deficient in the PPA1 gene fed a high-fat

diet exhibited impaired glucose tolerance and severe insulin

resistance, accompanied by impaired adipose tissue

development and ectopic lipid accumulation. Mechanistic

studies suggest that PPA1, a target gene of PPARc, maintains

mitochondrial function in adipocytes (36).

During mammalian neuronal cell development, Tezuka et al.

found that PPA1 over-expression in a mouse neuroblastoma cell

line (N1E115) inhibited neurite growth after treatment with

neuronal differentiation agents through dephosphorylation of

phospho-c-Jun N-terminal kinase 1 (p-JNK1) (37). The effect of

PPA1 on JNK dephosphorylation also induces type I collagen

synthesis and stimulates calcification of osteoblasts (38).

Furthermore, PPA1 has been shown to play a vital role in

mediating tumor proliferation, apoptosis, and metastasis in a

JNK activation-dependent or -independent manner; this is

discussed in detail below (13, 14, 17).
PPA1 promotes survival of
malignant tumors

Owing to the extreme adaptability of malignancies, enhanced

PPA1 expression suggests its requirement for tumor survival. In 2016,

Luo et al. demonstrated that silence PPA1 in vitro reducing

proliferation and promoting apoptosis in lung and breast cancer

cells; the expression of cell cycle-related proteins p21 and p53 and

cleaved caspase-3 was increased significantly, while the expression of

proliferation-related protein Ki-67 was decreased (12). Similar

findings were observed in diffuse large B-cell lymphoma (10),

suggesting that the role of PPA1 in value-added apoptosis appears

to be inextricably linked to p53. This was later confirmed in the lung

cancer cell line H1299 (TP53 deficient), where silencing or

overexpression of PPA1 did not affect the proliferation or apoptosis

(12, 13). Wang et al. found that the proliferation and viability of

colorectal cancer cells may be associated with upregulation of PPA1

and promotion of dephosphorylation of p-JNK1, while its expression

did not affect the levels of p-ERK or p-p38 (14). Another study in

lung cancer reported similar observations. Additionally, this

significant increase in PPA1 expression inhibits apoptosis in lung

cancer cells by dephosphorylating p-JNK1 at the peptide level (13)

(Figure 2; Table 1).

Notably, expression of a pyrophosphatase active-inactivating

mutant, PPA1 (D117A), abolished the PPA1-mediated apoptosis

of the tumor, while inactivation of this active site also affected the

dephosphorylation of p-JNK1 by PPA1 (13, 14). Whether PPA1

mediates tumor proliferation and apoptosis through

dephosphorylation of JNK1 followed by regulation of p53 is not
frontiersin.org
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known, but some reports hint toward this possibility. Wang et al.

eliminated the effect of PPA1 silencing on increased p53

expression levels using a JNK-specific inhibitor (SP600125) (14).

Furthermore, microRNA (miR-545-3p) can target PPA1 to inhibit

cell proliferation and invasion and enhance cisplatin resistance by

increasing JNK phosphorylation in ovarian cancer (39) (Table 1).
PPA1 promotes metastasis of
malignant tumors

PPA1 and EMT

The expression of PPA1 is significantly increased in the

metastatic lymph nodes of malignancies, including gastric
Frontiers in Oncology 04
cancer (8, 40), colorectal cancer (14), ovarian cancer (16), and

laryngeal squamous cell carcinoma (LSCC) (41) as assessed by

immunohistochemistry or tissue microarrays, compared to that

in controls. This means that PPA1 plays an essential role in the

metastatic process of these tumors. Several functional

experiments have confirmed this hypothesis. PPA1 over-

expression in gastric cancer cell lines promotes its proliferation

and increases its aggressiveness (8). Niu et al. studied the

relationship between PPA1 and ovarian cancer tumorigenesis.

They showed that PPA1 knockdown reduced the invasiveness

and migration of ovarian cancer cells, and PPA1 expression was

associated with EMT process. PPA1 silencing increases the

expression of epithelial-specific marker E-cadherin and

decreases the expression of mesenchymal-specific markers N-

cadherin, vimentin, and smooth muscle actin (15). PPA1 also
FIGURE 2

Signaling pathway of PPA1 in malignant tumor progression. PPA1, Inorganic pyrophosphatase; JNK-1, c-Jun N-terminal kinase 1; p53, p53 tumor
suppressor homolog; p300, Histone acetyltransferase; Sp1, Sp1 transcription factor; PI3K, Phosphatidylinositol 3-kinase; AKT, AKT serine/
threonine kinase; GSK-3b, glycogen synthase kinase 3 beta; Slug, snail family transcriptional repressor 2; Dishevelled, Dishevelled segment
polarity protein 2 L homeolog; APC, APC regulator of WNT signaling pathway; Axin, Axin protein; p, Phosphorylation; ←, activation; ├, inhibition.
TABLE 1 Role of inorganic pyrophosphatase (PPA1) in tumor progression.

Cancer type Biological function of PPA1 Mechanism Reference

Colon Cancer
Lung Cancer

Promotes proliferation and inhibits apoptosis JNK/P53 (13, 14)

Ovarian Cancer Promotes tumor progression and increases cisplatin resistance Circ_0067934/miR-545-3p/JNK (39)

Human Epithelial Ovarian Cancer, EOC Promotes proliferation and metastasis Promotion of EMT by Wnt/b-catenin (15)

Breast Cancer Promotes proliferation and metastasis Promoting EMT via PI3K/AKT/GSK-3b (17)
fro
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promotes the aggressiveness of tumor cells in ovarian cancer,

and a positive correlation between b-catenin and PPA1

expression has been demonstrated (15, 16). In EMT process,

tumor cells lose their ability to adhere and more easily

metastasize via the blood or lymph to other locations (42, 43).

Thus, PPA1 is most likely involved in tumor metastasis by

promoting EMT.
Regulation of EMT via Wnt/b-
catenin signaling

The Wnt signaling pathway initiates intracellular signaling

and plays an essential role in cell proliferation, differentiation,

and tumor formation. b-catenin-T-cell factor (TCF)/lymphoid-

enhancer factor is the hub of Wnt signaling pathway, and large

amount of evidence suggest that it is involved in stemness,

metabolic reprogramming, immune evasion, and therapeutic

resistance of cancer cells (42, 43). Li et al. found that b-catenin
expression was reduced after PPA1 silencing in ovarian serous

carcinoma. In their work, total b-catenin, but not nuclear- or
cytoplasm-derived b-catenin, were assayed, suggesting that

PPA1 expression may play a role in the b-catenin signaling

activation (16). An in-depth analysis of PPA1 showed that PPA1

silencing induces a slight reduction in the nuclear translocation

of b-catenin, as well as a decrease in the transcriptional activity

of TCF in the nucleus. In addition, EOC cell lines overexpressing

PPA1 were treated with a series of Wnt/b-catenin specific

inhibitors, in which the glycogen synthase kinase-3 beta (GSK-

3b) inhibitor (KY021111) blocked the nuclear translocation of

PPA1-promoted b-catenin (15). Nuclear translocation of b-
catenin in the Wnt/b-catenin signaling pathway is a key

process in Wnt activation. When GSK-3b phosphorylates b-
catenin, it is hydrolyzed by intracytoplasmic proteases, resulting

in the inability of intracellular b-catenin to accumulate and

translocate to the nucleus to activate the corresponding

transcription factors (44). The use of GSK-3b inhibitors blocks

the process by which PPA1 promotes b-catenin nuclear

translocation, implying that PPA1 promotes EMT in ovarian

cancer by participating in b-catenin dephosphorylation

(Figure 2; Table 1).
Regulation of EMT via PI3K/AKT/GSK-
3b signaling

The phosphatidylinositol 3-kinase (PI3K) and its

downstream molecule AKT serine/threonine kinase (AKT),

have been shown to be closely associated with tumor EMT,

and activation of PI3K/AKT leads to the inhibition of epithelial

characteristics and expression of mesenchymal proteins (45, 46).

Guo et al. found that PPA1 acts as an activator of the PI3K/AKT/

GSK-3b pathway and participates in the development of EMT
Frontiers in Oncology 05
induced by transcription factor Slug, thereby promoting breast

cancer proliferation and metastasis (17). However, PPA1 is not

directly upstream of PI3K, and their molecular interactors have

not yet been reported. Elevated expression of p-PI3K (Tyr458)

promotes phosphorylation of AKT (Ser473) and GSK-3b (Ser9)

(17). Phosphorylated GSK-3b is degraded, releasing snail and b-
catenin, which enter the nucleus to inhibit the transcriptional

activity of E-cadherin (17, 47). Inhibition of E-cadherin during

EMT causes epithelial cells to lose their ability to adhere and

transform into a mesenchymal state (48). Slug, Twist, and zinc

finger E-box-binding homeobox 1, which are transcription

factors positively regulating the EMT program, were assessed

and only Slug was found to be regulated by PPA1, where

silencing PPA1 resulted in reduced Slug protein expression

levels (17) (Figure 2; Table 1).
PPA1, a biomarker for predicting
survival prognosis

Analysis of several types of malignancies showed that PPA1

expression was closely correlated with clinicopathological

staging. The higher the grade and stage of the tumor tissue,

the higher the PPA1 expression. This has been observed in

gastric cancer (8, 40), epithelial ovarian cancer (15), and

colorectal cancer (14). The results of univariate and

multivariate analyses have shown that PPA1 expression could

also be used as a predictor of postoperative survival in clinical

patients and as an independent predictor of overall survival (OS)

(13, 14, 40, 49). PPA1 expression is significantly associated with

intrahepatic cholangiocarcinoma (ICC) development, including

tumor size, lymph node metastasis, differentiation, and TNM

stage. Patients with PPA1-overexpressing tumors have reduced

OS and higher recurrence rates than those with low PPA1

expression (49). More prominently, the expression of PPA1 is

significantly higher in patients with advanced gastric cancer and

in those with a poorer prognosis. However, there is no significant

relationship between PPA1 expression and histological

differentiation of gastric cancer (40). Overall, in malignancies

with significantly increased PPA1 expression, PPA1 expression

implies poor survival of patients.
Transcriptional regulation of PPA1

Reports on the transcriptional regulation of PPA1 are scarce.

In breast cancer cell line MCF7, Mishra et al. found three

putative Sp1 binding sites in the promoter region of PPA1,

which exhibited the highest transcriptional activity. Sp1 is a

constitutive transcription factor located in the sequence of many

housekeeping genes that play a regulatory role. It is

overexpressed in many cancers and is associated with poor

prognosis (50). Further validation showed that Sp1 activates
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PPA1 promoter activity, upregulates protein expression, and

increases chromatin accessibility. Histone acetyltransferase

(p300) activates the promoter activity of PPA1 induced by Sp1

(51). Notably, the CDK inhibitor (p16) expresses the key

regulatory factor Sp1 which is required to maintain the activity

of the proximal promoter necessary for p16 expression. This

proximal promoter can also be modified by p300, which

interacts directly with the reverse transcriptional activation

domain of Sp1 and is recruited to the p16 promoter (50).

Additionally, the PPA1 promoter may undergo local

chromatin remodeling because of histone acetylation/

deacetylation (51) (Figure 2). At the post-transcriptional level,

PPA1 mRNA expression can be repressed by miR-545-3p, while

circ_0067934, a molecular sponge of miR-545-3p, promotes the

expression of PPA1 (39). It is expected that more miRNAs will

be discovered and applied to clinical therapeutics targeting PPA1

in the future.
Future perspectives

As the number of newly diagnosed cancer patients and

cancer survivors continues to grow each year, it is tremendous

pressure and burden on patients who are battling cancer and

society at large (52, 53). It is an urgent need to discover effective

biomarkers for diagnosis, treatment and prediction of patient

survival. PPA1, an enzyme indispensable for maintaining energy

metabolism, excels in the progression of several malignancies,

regulating tumor cytogenesis development through the JNK/

p53, Wnt/b-catenin and PI3K/AKT/GSK-3b signaling

pathways. Based on this, we summarized the small molecule

inhibitors (such as JNK-IN-8 (54), BKM120 (55) and
Frontiers in Oncology 06
Capivasertib (56)) targeting the above pathways for

malignancy treatment, and found the feasibility and

development potential of such therapeutic strategies (39, 57,

58). We also focused on PPA1 whose knockdown represses

malignant abilities, such as tumor proliferation and migration.

We noticed that designing small-molecule inhibitors to target

PPA1 is a promising therapeutic strategy. To this end, designing

molecular inhibitors of PPA1 or exploring more miRNAs to

regulate PPA1 expression in malignant tumors, or combining

with JNK (54) or PI3K-AKT inhibitors (55, 56, 59, 60) may be

sensible choices.

Tumor microenvironment and metabolic reprogramming

play a vital role in malignant tumor progression. PPA1, an

energy metabolism-related enzyme, maintains the cellular

metabolism in mitochondria and the expression of the key

metabolite NAD+ (57, 61). Therefore, new therapeutic

strategies targeting PPA1 need to be investigated, to curb the

metabolic plasticity of tumors, either to be used as a standalone

therapy or in combination with chemotherapy and other

adjuvant therapies (Figure 3). We also propose that as PPA1

upregulation has been associated with high recurrence rates and

low survival rates in patients with malignant tumors, PPA1 has

substantial potential to be a reliable indicator of survival and

prognosis in patients with tumors.
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