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Objectives: This study aimed to differentially diagnose thyroid nodules (TNs) of

Thyroid Imaging Reporting and Data System (TI-RADS) 3–5 categories using a

deep learning (DL) model based on multimodal ultrasound (US) images and

explore its auxiliary role for radiologists with varying degrees of experience.

Methods: Preoperative multimodal US images of 1,138 TNs of TI-RADS 3–5

categories were randomly divided into a training set (n = 728), a validation set

(n = 182), and a test set (n = 228) in a 4:1:1.25 ratio. Grayscale US (GSU), color

Doppler flow imaging (CDFI), strain elastography (SE), and region of interest

mask (Mask) images were acquired in both transverse and longitudinal sections,

all of which were confirmed by pathology. In this study, fivefold cross-

validation was used to evaluate the performance of the proposed DL model.

The diagnostic performance of the mature DL model and radiologists in the

test set was compared, and whether DL could assist radiologists in improving

diagnostic performance was verified. Specificity, sensitivity, accuracy, positive

predictive value, negative predictive value, and area under the receiver

operating characteristics curves (AUC) were obtained.

Results: The AUCs of DL in the differentiation of TNs were 0.858 based on

(GSU + SE), 0.909 based on (GSU + CDFI), 0.906 based on (GSU + CDFI + SE),

and 0.881 based (GSU + Mask), which were superior to that of 0.825-based

single GSU (p = 0.014, p< 0.001, p< 0.001, and p = 0.002, respectively). The

highest AUC of 0.928 was achieved by DL based on (G + C + E + M)US, the

highest specificity of 89.5% was achieved by (G + C + E)US, and the highest

accuracy of 86.2% and sensitivity of 86.9% were achieved by DL based on (G +

C + M)US. With DL assistance, the AUC of junior radiologists increased from

0.720 to 0.796 (p< 0.001), which was slightly higher than that of senior
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1012724/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1012724/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1012724/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1012724/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1012724&domain=pdf&date_stamp=2022-11-08
mailto:jwtian2004@163.com
mailto:yy.yu@szu.edu.cn
https://doi.org/10.3389/fonc.2022.1012724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1012724
https://www.frontiersin.org/journals/oncology


Tao et al. 10.3389/fonc.2022.1012724

Frontiers in Oncology
radiologists without DL assistance (0.796 vs. 0.794, p > 0.05). Senior

radiologists with DL assistance exhibited higher accuracy and comparable

AUC than that of DL based on GSU (83.4% vs. 78.9%, p = 0.041; 0.822 vs.

0.825, p = 0.512). However, the AUC of DL based onmultimodal US images was

significantly higher than that based on visual diagnosis by radiologists (p< 0.05).

Conclusion: The DL models based on multimodal US images showed

exceptional performance in the differential diagnosis of suspicious TNs,

effectively increased the diagnostic efficacy of TN evaluations by junior

radiologists, and provided an objective assessment for the clinical and

surgical management phases that follow.
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1 Introduction

Thyroid cancer has become the most common endocrine

malignancy, with an increasing incidence of approximately 7%–

15% annually (1, 2). Ultrasound (US) is widely used as a first-line

screening tool for the clinical examination of thyroid lesions,

with the advantages of no exposure to radiation, real-time

dynamic imaging, and simplicity of procedure (1, 3). Multiple

versions of the Thyroid Imaging Reporting and Data System (TI-

RADS) have been proposed for US imaging to standardize and

improve the diagnostic consistency and accuracy of thyroid

lesions, and each risk stratification system has its advantages

(1, 3–6).

Nevertheless, US diagnosis of thyroid nodules (TNs) is

subjective to a certain extent. Various diagnostic results of US

evaluation of TNs were obtained from different observers,

especially less-experienced radiologists, who showed relatively

lower accuracy. In previous studies, moderate variability in the

interobserver agreement was found among different TI-RADS

scores (7). There was fair agreement in margin, echotexture, and

echogenicity (k = 0.34, 0.26, and 0.34, respectively) for

interobserver variability (8–10). Clinically, there is a wide

range of malignant risks (approximately 2%–90%) and some

overlapping US features for the TNs of TI-RADS 3–5 categories;

therefore, it was difficult for radiologists to accurately

differentiate between benign and malignant TNs (11–13),

resulting in overdiagnosis or misdiagnosis.

Fine-needle aspiration (FNA) is a relatively effective method

for the preoperative diagnosis of TNs (14). The radiologists

assess the malignant probability of TNs and then recommend

patients for FNA or US follow-up according to TI-RADS.

However, FNA is an invasive procedure with some possible
02
complications, such as bleeding, and FNA results are also

dependent on the size, composition of TNs, and skills of

radiologists. Moreover, approximately 20% of the FNA results

were rendered inconclusive, which led to uncertainty in the next

course of clinical treatment (15–17). The development of

artificial intelligence (AI) technology has shown great potential

in reducing the influence of subjectivity and improving the

consistency of diagnosis.

In the past two decades, machine-learning methods have

been used in TN characterization, which is usually known as

“radiomics” (18, 19). Radiomics can automatically extract

features in the region of interest (ROI), which tends to be

difficult to discern with the naked eye. It should be noted that

high-throughput features extracted by radiomics from the ROI

are easily affected by the segmentation strategy and imaging

parameters. Deep learning (DL) is a machine-learning concept

that has shown strong capability in medical image

characterization and outperforms traditional machine-learning

methods. With the help of artificial neural networks, DL has

been widely applied to differentiate breast, thyroid, and liver

lesions with good performance (20–22). However, radiologists

cannot be completely replaced with AI technology. It is crucial to

integrate DL methods into clinical practice; therefore, they can

aid radiologists in diagnosis, evaluation, and decision-making

(23). In this study, the diagnostic performances of junior and

senior radiologists with and without a DL assistant

were compared.

Most previous studies using DL for the diagnosis of TNs

have concentrated on grayscale US (GSU) imaging. However,

beyond conventional GSU, some new US technologies such as

color Doppler flow imaging (CDFI), elastography, and contrast-

enhanced ultrasonography are commonly used to assist in the
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diagnosis of GSU for TNs, which have been proven to improve

the diagnostic accuracy in the clinical evaluation (13, 24, 25).

This indicated that the features of blood flow and hardness also

played an important role in thyroid US diagnosis. Therefore, in

our study, new DL models based on multimodal US imaging

were proposed to explore their application value in improving

the diagnostic accuracy of suspicious thyroid lesions and the role

of auxiliary diagnosis for radiologists.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the Ethics

Committee of The Second Affiliated Hospital of Harbin

Medical University, and the requirement for informed consent

was waived (approval number KY2021-152). Consecutive

patients who had undergone thyroid surgery at The Second

Affiliated Hospital of Harbin Medical University between

September 9, 2020, and June 6, 2021, were enrolled. The

inclusion criteria of the enrolled patients were as follows:

lesions with (1) complete or high-quality transverse and

longitudinal section images (2), complete surgical records and

pathological results (3), no preoperative operation such as FNA

and ablation or surgical treatment of TNs, and (4) US

examination in our hospital within 1 week before surgery.

Finally, 1,138 TNs of TI-RADS 3–5 categories from 781

patients were included in the study. The postoperative

pathological results were used as the gold standard. The mean
Frontiers in Oncology 03
diagnostic age of patients was 47.74 ± 10.60 years (range, 21–79

years). According to the pathological results, there were 550

(48.33%) malignant and 588 (51.67%) benign TNs. The

workflow of the selection is shown in Figure 1.
2.2 Ultrasound image acquisition and
analysis

Preoperative thyroid US examinations were performed by

two radiologists with 10 years of experience (Q.D. and H.K.)

using a US device (Hitachi HI VISION Avius, Hitachi Medical

Corporation, Tokyo, Japan) equipped with a 5- to 13-MHz

linear probe. According to the Chinese TI-RADS (C-TIRADS)

issued by the Chinese Society of Ultrasound in Medicine in 2020,

thyroid scanning and imaging parameter adjustments were

guided and completed (6). The GSU, CDFI, and strain

elastography (SE) images of the TNs were acquired in

transverse and longitudinal sections, which showed obvious

characteristics and were saved in BMP format.

The ultrasonographic features were evaluated for all 1,138

TNs in our study. To maintain consistency, the images were

independently analyzed by two experienced radiologists (L.Z.

and W.Y.) in a double-blind manner, and results were obtained

through consultation by consensus when discrepancies arose.

GSU features, including the maximum diameter, position,

echotexture, echogenicity, composition, orientation, margin,

punctate echogenic foci, halo, and posterior features, were

evaluated visually according to the C-TIRADS. CDFI could

indicate tumor blood flow characteristics using the vascular
FIGURE 1

Flowchart of enrolling patients with thyroid nodules.
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distribution pattern and Adler grade (0–3) standards (26).

Tumor tissue hardness was evaluated on a scale of 1–4

according to the Asteria standard by SE (27).
2.3 Construction of deep learning

2.3.1 Pretreatment of multimodal and double-
view ultrasound images

Four modalities of TN images were included in our research:

GSU, CDFI, SE, and ROI mask (Mask) images. Each modal

image was captured from both horizontal and vertical

perspectives. The multimodal and double-view US images of a

TN in the right lobe of a 65-year-old female patient with

pathologically proven papillary carcinoma are illustrated in

Figure 2. The Masks of the TNs were manually segmented

using ImageJ (version 1.48, National Institutes of Health,

USA) by two radiologists (Q.D. and Y.T.). The total data set

was separated into training, validation, and test data sets, with a

ratio of 4:1:1.25.

2.3.2 Deep residual learning with attention
block

Deep networks can extract more abstract information from

low-level feature maps, which enables them to perform better

than shallow networks. The residue strategy provides a skip

connection to solve the degradation problem, making it possible

to train a very deep network. To make full use of the multimodal

image features, ResNet-50 (28) was used as the backbone for

feature extraction in our method. In the ResNet-50, there is one
Frontiers in Oncology 04
convolutional layer and 16 residual blocks. For the essential

composition of ResNet-50, a residual block is defined as follows:

y = x + F(x,W) (1)

where x and y denote the input and output feature maps of the

residual block, respectively. F refers to the residual function,

which is learned by stacked convolutional layers with different

kernel sizes in the residual block. The right side of the equation is

obtained by feedforward neural networks with skip connections,

which allow gradients to propagate through the networks.

All available multimodal images were preprocessed to a size

of 224 × 224 × 3 pixels, where 224 denotes the width and height

and 3 denotes the channels of images. The training and

validation data sets were randomly divided into five parts for

fivefold cross-validation. Multimodal US images of the same

patient were sent to the training, validation, or testing data set as

one sample. During the training process, the parameters of the

modal were optimized by forward and backward propagation

computing until the prediction reached a high accuracy related

to the ground truth. The feedforward process can be

mathematically expressed as follows:

hl = Rl(Wl ∗ hl−1 + bl) (2)

where l denotes the number of layers. hl represents the output

feature map of the l layer with hl−1 as the input. W and b denote

the weights and biases of the convolutional filter bank,

respectively. R is a rectified linear activation (ReLU) function.

In back propagation, the parameters of the network are updated

by optimizing the following binary cross-entropy loss.
FIGURE 2

Multimodal ultrasound images of a thyroid nodule in the right lobe of a 65-year-old female patient with a pathologically proven papillary
carcinoma. (A) GSU, (B) CDFI, (C) SE, and (D) Mask ultrasound images in transverse section. (E) GSU, (F) CDFI, (G) SE, and (H) Mask ultrasound
images in longitudinal section. GSU, grayscale ultrasound; CDFI, color Doppler flow imaging; SE, strain elastography; Mask, region of interest
mask.
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Because of the low contrast and small area of TNs in thyroid

US images, it is necessary to obtain effective feature information.

However, the key channels and spatial position of the lesion

cannot be identified because the information obtained by the

convolution operation with the kernel in ResNet is local and may

fail to capture effective features from the global image. To solve

this problem, we combined the convolutional bottleneck

attention module (29) and ResNet-50 to learn the weights for

our feature maps (Figure 3). Two attention units were inserted

before the first and after the last residual block to obtain abstract

features from both the higher and lower layers, as shown in

Figure 3A. There are two types of attention mechanisms in the

attention unit: spatial attention and channel attention, as shown

in Figure 3B. Channel-wise attention was used to select features

that could calculate the strongest channel-wise activation values.

Spatial attention performs average pooling and max pooling

along the channel axis on the feature map to obtain the activated

feature map with a local receptive field in the spatial dimension.

To complement channel attention, spatial attention was applied

to find the informative region for the input feature map in the

spatial dimension.

2.3.3 Implementation
To establish the DL model, we used 588 benign and 550

malignant TNs with multimodal and double-view images as the

data set. Furthermore, fivefold cross-validation was applied to

the data sets.

To evaluate the performance of the four types of sonography

in thyroid cancer diagnosis, we performed experiments with
Frontiers in Oncology 05
multimodal inputs (i.e., GSU, CDFI, SE, and Mask). The four

streams in Figure 4 correspond to the four modalities. All four

modalities (Figure 4), as well as one or multiple modalities of the

same patient, were taken as the inputs. Popular ResNet-50 was

used as the feature extraction backbone (Figure 3A). The

features obtained by multiple network streams from the

different modalities and views were averaged and then applied

to fully connected layers to predict the classification result. In

our experiments, each network stream had its own

independent parameters.

The framework was implemented on a Dell-T7920

workstation equipped with an NVIDIA GeForce RTX3090

GPU and 64 GB of memory. The Adam optimization

algorithm for minibatch gradient descent was used for training

with a batch size of 32. The learning rate was initially set to

0.00001 and reduced by 0.1 every 30 epochs. A pretrained model

was used for parameter initialization. The models with the

smallest loss values within 100 training epochs were selected

as the final models to generate classification results. We set the

same epochs for training every modal, including the double- and

single-view modes.
2.4 Comparing the diagnosis of the deep
learning model and radiologists

In this section, we investigate the diagnostic performance of

the DL models and radiologists using 228 cases from the test set.

According to a survey, the diagnostic accuracy of radiologists
B

A

FIGURE 3

The overall network architecture. (A) Architecture of the backbone network ResNet-50 with two attention units. (B) The attention unit.
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increased when they classified the final category into either

dichotomous prediction or malignant risk (9). In our study,

radiologists diagnosed TNs of the test set based on multimodal

US images, and the results were compared with those of the DL

method. Five senior radiologists with 5–10 years of experience

and five junior radiologists with 1–3 years of experience

independently evaluated the TNs and were blinded the

diagnosis to the postoperative pathological results. The

radiologist then performed a second diagnosis based on the

results of the DL and arrived at the final diagnosis. The

diagnostic performance of the radiologist alone and in

combination with DL assistance was compared.
2.5 Statistical analysis

R software (version 1.8) and MedCalc (version 11.2, Ostend,

Belgium) were used to analyze the data. The data set was

randomly divided into five non-overlapping groups, whereas

there was no data intersection for the same subject for each

group. After fivefold cross-validation, the accuracy, sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), and area under the receiver operating
Frontiers in Oncology 06
characteristics curves (AUC) were obtained to evaluate the

performance of the presented DL model in the test set. The

Delong test results in terms of the AUC for the test data set were

introduced to evaluate the statistical difference between DL

based on different combined US images and radiologists with

variable levels. A 95% confidence interval was used to estimate

the range of these evaluation values; p-values of less than 0.05

(two-tailed) were considered statistically significant.
3 Results

3.1 General and ultrasonic characteristic
analysis

Among the 781 patients, 135 (17.29%) were men and 646

(82.71%) were women. The mean diagnostic age of the patients

was 45.92 ± 10.18 years (range, 22–67 years) for men and 48.11 ±

10.66 years (range, 21–79 years) for women. The average size of

malignant TNs (12.5 ± 7.40 mm) was significantly larger than

that of benign TNs (9.70 ± 6.40 mm) (p< 0.001) (Table 1).

The US characteristics of the 1,138 TNs were statistically

analyzed, and the results are listed in Table 1. Except for
FIGURE 4

The illustration of multimodality inputs and feature fusion.
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TABLE 1 Comparing the characteristics of benign and malignant thyroid nodules.

Characteristics All nodules Benign Malignant p
(n = 1138) (n = 588) (n = 550)

n (%) n (%) n (%)

Size(mm) < 0.001

Mean ± SD 11.2 ± 7.1 12.5 ± 7.4 9.7 ± 6.4

(Range) (3.0–59.0) (3.0–44.5) (3.0–59.0)

Position 1 0.001

Left lobe 533 (46.84) 295 (50.17) 238 (43.27)

Right lobe 585 (51.41) 290 (49.32) 295 (53.64)

Isthmus 20 (1.76) 3 (0.51) 17 (3.09)

Position 2 0.001

Upper region 250 (21.97) 117 (19.90) 133 (24.18)

Mid region 478 (42.00) 264 (44.90) 214 (38.91)

Lower region 390 (34.27) 204 (34.69) 186 (33.82)

Isthmus 20 (1.76) 3 (0.51) 17 (3.09)

Position 3 0.005

Shallow side 364 (31.99) 196 (33.33) 168 (30.55)

Mid side 347 (30.49) 171 (29.08) 176 (32.00)

Deep side 407 (35.76) 218 (37.07) 189 (34.36)

Isthmus 20 (1.76) 3 (0.51) 17 (3.09)

Echotexture 0.604

Homogeneous 113 (9.92) 61(10.40) 52(9.50)

Heterogeneous 1025 (90.10) 527(89.60) 498(90.50)

Echogenicity < 0.001

Isoechoic or hyperechoic 359 (31.55) 307 (52.21) 52 (9.45)

Hypoechoic 671 (58.96) 259 (44.05) 412 (74.91)

Markedly hypoechoic 108 (9.49) 22 (3.74) 86 (15.64)

Composition < 0.001

Predominantly solid 142 (12.48) 131 (22.28) 11 (2.00)

solid 996 (87.52) 457 (77.72) 539 (98.00)

Orientation < 0.001

Parallel 589 (51.76) 451 (76.70) 138 (25.09)

Vertical 549 (48.24) 137 (23.30) 412 (74.91)

Punctate echogenic foci < 0.001

No punctate echogenic foci 872 (76.63) 523 (88.95) 349 (63.45)

Punctate echogenic foci of undetermined significance 70 (6.15) 21 (3.57) 49 (8.91)

Microcalcifications 196 (17.22) 44 (7.48) 152 (27.64)

Margin < 0.001

Circumscribed 473 (41.56) 354 (60.20) 119 (21.64)

Ill-defined 88 (7.73) 61 (10.37) 27 (4.91)

Irregular or extrathyroidal extension 577 (50.70) 173 (29.42) 404 (73.45)

Halo < 0.001

Absent 954 (83.83) 504 (85.71) 450 (81.82)

Complete 53 (4.66) 38 (6.46) 15 (2.73)

Incomplete 131 (11.51) 46 (7.82) 85 (15.45)

Posterior features < 0.001

No posterior features 932 (81.90) 530 (90.14) 402 (73.09)

Enhancement 46 (4.04) 26 (4.42) 20 (3.64)

Shadowing 160 (14.06) 32 (5.44) 128 (23.27)

Vascular distribution pattern 0.004

(Continued)
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echotexture (p = 0.649), the risk features of GSU were

significantly different between malignant and benign nodules

(p< 0.05). We found some significantly different US features in

the vascular distribution pattern, Adler grading, and Asteria

standard in this study (p< 0.05).
3.2 Diagnostic performance of deep
learning models

The performances of the various DL models for

differentiating TNs are summarized in Table 2 and Figure 5.

In our study, a total of eight DL models were established based

on multimodal US imaging. We found that the feature fusion of

images from both transverse and longitudinal sections could

achieve better performance than that from a single section

(Supplementary Text S1).

The AUCs of DL using multimodal US imaging (0.909 based

on [G + C]US, 0.858 based on [G + E]US, and 0.906 based on [G

+ C + E]US) outperformed those of GSU imaging alone (0.825)

(p = 0.014, p< 0.001, and p< 0.001, respectively). There was a

statistically significant difference in the diagnosis between the (G

+ C)US and (G + E)US images (0.909 vs. 0.858, p = 0.001).

However, the AUC of the DL model based on (G + C + E)US

exhibited an excellent performance similar to that based on (G +

C)US (0.906 vs. 0.909, p = 0.294), which were both markedly

better than DL based on (G + E)US (0.906 vs. 0.858, p = 0.002;

0.909 vs. 0.858, p = 0.001, respectively). In addition, the accuracy,
Frontiers in Oncology 08
specificity, PPV, and NPV of DL based on (G + C + E)US were

better than those of (G + C)US; however, only the PPV was

statistically significant (87.8% vs. 85.2%, p = 0.045;

Supplementary Text S2).

Furthermore, after adding the Mask feature, the diagnostic

performance was obviously better than that of GSU alone (0.881

vs. 0.825, p = 0.002), and the AUCs of (G + C)US, (G + E)US,

and (G + C + E)US were also increased (0.918 vs. 0.909, 0.889 vs.

0.858, 0.928 vs. 0.906), but without statistical differences (p =

0.57, p = 0.22, and p = 0.28; Table 2). The highest accuracy of

86.2%, sensitivity of 86.9%, and PPV of 87.8 were achieved by

the DL model based on (G + C + M)US, and the highest

specificity of 89.5% and NPV of 87.7% were achieved based on

(G + C + E)US. The DL model using (G + C + E + M)US images

achieved the best performance (AUC of 0.928), with an increase

of 10.3% compared with that using a single GSU (p< 0.001).
3.3 Deep learning performance
compared with radiologists

The diagnostic performance of radiologists with different

levels of experience in differentiating malignant from benign

TNs is shown in Table 3 and Figure 6. When independently

evaluating the TNs without DL assistance, the diagnosis of

senior radiologists showed higher accuracy, specificity, and

AUC than that of juniors (80.6% vs. 72.7%, p = 0.008; 81.7%

vs. 72.0%, p = 0.018; 0.794 vs. 0.720, p = 0.002, respectively). The
TABLE 1 Continued

Characteristics All nodules Benign Malignant p
(n = 1138) (n = 588) (n = 550)

n (%) n (%) n (%)

Avascularity 171 (15.03) 70 (11.90) 101 (18.36)

Peripheral vascularity 643 (56.50) 330 (56.12) 313 (56.91)

Mainly central vascularity 121 (10.63) 71 (12.07) 50 (9.09)

Mixed vascularity 203 (17.84) 117 (19.90) 86 (15.64)

Adler grade < 0.001

0 119 (10.46) 50 (8.50) 69 (12.55)

1 385 (33.83) 166 (28.23) 219 (39.82)

2–3 634 (55.71) 372 (63.27) 262 (47.64)

Elastography score < 0.001

2 559 (49.12) 386 (65.65) 173 (31.45)

3 495 (43.50) 186 (31.63) 309 (56.18)

4 84 (7.38) 16 (2.72) 68 (12.36)

C-TIRADS < 0.001

3 110 (9.67) 108 (18.37) 2 (0.36)

4a 255 (22.41) 219 (37.24) 36 (6.55)

4b 320 (28.12) 159 (27.04) 161 (29.27)

4c 360 (31.63) 93 (15.82) 267 (48.55)

5 93 (8.17) 9 (1.53) 84 (15.27)
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TABLE 2 Comparing the deep learning diagnostic performance based on multimodal ultrasound images.

Models Accuracy % Sensitivity % Specificity % PPV % NPV % AUC

G 78.9 (76.7–81.1) 77.5 (74.3–80.7) 80.3 (78.5–82.1) 78.6 (76.6–80.6) 79.3 (76.8–81.8) 0.825 (0.815–0.835)

G + C 83.8 (82.1–85.5)* 80.4 (76.5–84.3) 86.9 (86.0–87.8)** 85.2 (84.5–85.9)** 82.7 (80.0–85.4) 0.909 (0.894–0.924)**

G + E 81.8 (79.0–84.6) 75.5 (69.7–81.3) 87.6 (85.9–89.3)** 85.0 (83.2–86.8)* 79.5 (75.6–83.4) 0.858 (0.844–0.872)*

G + C + E 84.8 (82.3–87.3)* 79.8 (73.1–86.5) 89.5 (87.0–92.0)** 87.8 (85.8–89.8)** 83.0 (78.7–87.3) 0.906 (0.895–0.917)**

G + M 82.4 (81.7–83.1)* 82.9 (81.5–84.3)* 81.9 (80.8–83.0) 81.0 (80.1–81.9) 83.7 (82.6–84.8)* 0.881 (0.870–0.892)*

G + C + M 86.2 (84.4–88.0)* 86.9 (82.9–90.9)* 85.6 (84.5–86.7)* 84.9 (84.0–85.8)** 87.7 (84.5–90.9)* 0.918 (0.906–0.930)**

G + E + M 82.5 (80.5–84.5)* 82 (79.2–84.8) 82.9 (80.4–85.4) 81.7 (79.5–83.9) 83.2 (80.9–85.5) 0.889 (0.880–0.898)*

G + C + E + M 86.1 (85.5–86.7)** 84.7 (83.6–85.8)* 87.5 (86.3–88.7)** 86.3 (85.2–87.4)** 86.0 (85.2–86.8)* 0.928 (0.921–0.935)**

p1 0.264 0.208 0.501 0.889 0.220 0.001†

p2 0.145 0.362 0.254 0.083 0.274 0.002†

p3 0.504 0.894 0.099 0.045† 0.929 0.294

p4 0.020† 0.017† 0.196 0.061 0.014† 0.002†

p5 0.099 0.050 0.087 0.655 0.051 0.570

p6 0.685 0.083 0.013 0.051 0.143 0.215

p7 0.342 0.193 0.193 0.255 0.205 0.284
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Data in parentheses have 95% confidence intervals.
US, ultrasound; G, grayscale ultrasound; C, color Doppler flow imaging; E, strain elastography; M, region of interest mask; AUC, area under the receiver operator characteristic curve; PPV,
positive predictive value; NPV, negative predictive value.
p1 = G + C vs. G + E, p2 = G + E vs. G + C + E, p3 = G + C vs. G + C + E, p4 = G vs. G + M, p5 = G + C vs. G + C + M, p6 = G + E vs. G + E + M, p7 = G + C + E vs. G + C + E + M.
The accuracy, sensitivity, specificity, PPV, NPV, and AUC of the DL-based multimodality was statistically compared to those of the DL-based single GSU.
*p< 0.05. **p<0.001. †p-Values for statistical significance (<0.05).
FIGURE 5

The ROC curves of DL-based single GSU and multimodality. ROC, receiver operating characteristics; DL, deep learning; GSU, gray-scale
ultrasound.
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TABLE 3 The diagnostic performance of deep learning (DL), radiologists alone, and DL-assisted radiologists.

Radiologists Accuracy % Sensitivity % Specificity % PPV % NPV % AUC

First diagnosis without DL assistance

Senior 80.6 (77.2–84.0)* 79.5 (75.2–83.8) 81.7 (76.4–87.0)* 80.5 (75.7–85.3)* 81.1 (77.7–84.5)* 0.794 (0.758–0.830)*

Junior 72.7 (70.8–74.6) 73.5 (70.5–76.5) 72.0 (69.8–74.2) 71.0 (69.2–72.8) 74.5 (72.2–76.8) 0.720 (0.702–0.738)

Second diagnosis with DL assistance

Senior 83.4 (80.9–85.9)** 82.9 (79.0–86.8)** 83.9 (80.0–87.8)** 82.9 (79.5–86.3)** 84.2 (81.2–87.2)** 0.822 (0.793–0.851)**

Junior 80.2 (79.2–81.2)** 80.9 (77.9–83.9)* 79.5 (78.0–81.0)* 78.6 (77.7–79.5)** 81.8 (79.7–83.9)* 0.796 (0.786–0.806)**

p1 0.285 0.315 0.571 0.490 0.269 0.141

p2 0.070 0.489 0.099 0.066 0.290 0.465

p3 0.041† 0.081 0.177 0.083 0.054 0.512

p4 0.856 0.411 0.208 0.290 0.532 0.019†

p5 0.491 0.465 0.059 0.060 0.677 0.027†

p6 0.106 0.446 0.158 0.131 0.319 0.010†
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Data in parentheses have 95% confidence intervals.
US, ultrasound; G, grayscale ultrasound; C, color Doppler flow imaging; E, strain elastography; M, region of interest mask; AUC, area under the receiver operator characteristic curve; PPV,
positive predictive value; NPV, negative predictive value.
p1 = (senior diagnosis standalone vs. senior diagnosis with DL assistance), p2 = (junior diagnosis with DL assistance vs. senior diagnosis with DL assistance), p3 = (senior diagnosis with DL
assistance vs. DL diagnosis [GSU], p4 = (senior diagnosis with DL assistance vs. DL diagnosis [G + C]), p6 = (senior diagnosis with DL assistance vs. DL diagnosis [G + C + E]), p6 = (senior
diagnosis with DL assistance vs. DL diagnosis [G + C + E + M]).
The accuracy, sensitivity, specificity, PPV, NPV, and AUC were statistically compared with those of junior radiologists in the first diagnosis without DL assistance.
*p< 0.05. **p< 0.001. †p-Values for statistical significance (<0.05).
FIGURE 6

The ROC curves of DL and radiologists with different degrees of experience. ROC, receiver operating characteristics; DL, deep learning.
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sensitivity (79.5%) of US diagnosis by senior radiologists was

also better than that (73.5%) of junior radiologists (p = 0.079).

When the DL method was added for the second diagnosis in

the test set, the diagnostic performance of junior radiologists

significantly increased from 0.720 to 0.796 (p< 0.001). The AUC

of the junior radiologists in the second diagnosis was similar to

that of the first diagnosis by senior radiologists (0.796 vs. 0.794)

but was considered inferior (0.796 vs. 0.822), and the differences

were not statistically significant (p > 0.05). Moreover, the DL

model also had a certain auxiliary diagnostic effect and could

slightly improve the diagnostic performance of senior

radiologists in terms of accuracy (from 80.6% to 83.4%), which

was higher than that of DL based on GSU (83.4% vs. 78.9%, p =

0.041). However, the AUC of senior radiologists with DL

assistance was only comparable to that of DL based on a

single GSU (0.822 vs. 0.825, p = 0.512) and significantly less

than that of DL based on multimodal US images (0.822 vs.

0.858–0.928, p< 0.05).
4 Discussion

Thyroid cancer has recently become one of the most

common malignancies in Chinese women (2). US was the first

choice for the examination of thyroid lesions, and TNs were

diagnosed on US imaging by radiologists according to TI-RADS.

Each guideline has its strengths and weaknesses; for example, the

American Thyroid Association 2015 guideline showed better

diagnostic efficiency in evaluating TNs >1 cm, the TIRADS

issued by the American College of Radiology in 2017 had more

advantages in reducing unnecessary biopsy operations, and TNs

were well diagnosed by radiologists according to C-TIRADS,

achieving a higher performance (6–8). However, the diagnostic

results were susceptible to operator dependency, probe, and US

equipment variability. FNA is a comparatively accurate method

for differentiating TNs preoperatively, but it was reported that

approximately 20% of FNA samples obtained had ambiguous

results (15–17). AI not only solves the complex problem of the

US risk stratification system but also reduces intra- and

interobserver variability in US diagnosis (23, 30).

Nevertheless, most applications of DL in the diagnosis of

TNs have been conducted based on single GSU imaging or

single-view sections, limiting access to image information to a

certain extent (21, 31–33). In addition to GSU, radiologists also

referred to CDFI and elastography for obtaining the blood flow

and hardness information of TNs to assist the GSU diagnosis

clinically and make a diagnosis after a comprehensive analysis.

In terms of the statistical analysis in our study, a higher elastic

score was markedly correlated with malignant TNs, confirming

that malignant TNs tend to be hard. The differences in vascular

distribution pattern and Adler grade were statistically significant

in TNs, and malignant TNs tended to be less or lacked blood

flow. In addition, many studies have verified the effectiveness of
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combined or multimodal US imaging in the differentiation of

TNs visually (11, 13, 24, 25). Therefore, based on multimodal US

images of TNs obtained from transverse and longitudinal

sections, new DL models were used to distinguish benign from

malignant TNs in our study.

In our study, the diagnostic performance of GSU (0.825) was

comparable to that of previous studies (AUC of 0.788 and 0.829)

(32, 33). However, the DL models using combined or

multimodal US images achieved a better performance (0.858–

0.928) than those using GSU alone (0.825) (p< 0.05). Notably,

the AUC of the DL model based on GSU alone was also greatly

improved after adding CDFI (0.825 vs. 0.909, p< 0.001). In a

related study, Baig et al. quantified the regional blood flow

indices of TNs, and the diagnostic accuracy of GSU features

was increased from 58.6% to 79.3% when combined with CDFI

(p< 0.05) (34). The DL models in our study provided consistent

and repeatable results and outperformed conventional machine

learning-based methods with a specificity of 86.9%, a PPV of

85.2%, and an accuracy of 83.8%. As for the improvement in

diagnostic efficiency after adding CDFI, we found that it may be

due to the attention mechanism algorithm applied in this study,

which could obtain richer and more objective features that were

previously unrecognized visually by learning the information of

CDFI images autonomously. We also demonstrated that SE

imaging helped improve the diagnosis of DL based on GSU

(0.825 vs. 0.858, p< 0.05). However, the AUC of the DL model

based on (G + E)US was markedly less than that based on (G +

C)US (0.858 vs. 0.909, p = 0.001). Additionally, there were no

significant differences between (G + C + E)US and (G + C)US

(0.906 vs. 0.909, p = 0.294). Therefore, our study confirmed that

CDFI played a more substantial role in distinguishing TNs than

SE in our study, and the less obvious advantages of SE may be

associated with the subjectivity of the collecting process of

SE images.

Adding a Mask containing the contour information of the

TNs was found to help improve the diagnostic performance of

DL models based on GSU (from 0.825 to 0.881), (G + C)US

(from 0.909 to 0.918), (G + E)US (from 0.858 to 0.889), and (G +

C + E)US (from 0.906 to 0.928), indicating that effective

delineation of the nodular boundaries in US images played an

important role in characterizing TNs. The best AUC of 0.928

was achieved by DL using (G + C + E + M)US. The highest

specificity (89.5%) and PPV (87.8%) were achieved by DL based

on (G + C + E)US, which could play a primary role in avoiding

overdiagnosis and helping reduce unnecessary biopsies for the

diagnosis of TNs, whereas the highest sensitivity (86.9%) and

NPV (87.7%) of great clinical significance for screening out

malignant TNs and avoiding misdiagnosis were achieved by DL

based on (G + C + M)US. In summary, the performance of DL

models based on multimodal US imaging was superior to that

based on a single GSU, which supports our assumption that

multimodal US could provide more comprehensive and effective

information for TN diagnosis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1012724
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tao et al. 10.3389/fonc.2022.1012724
In clinical practice, US diagnosis by radiologists cannot be

completely replaced by AI technology, and a final diagnosis

should be made by radiologists. Therefore, we compared the

performance of the DL method for differentiating TNs with that

of visual diagnosis by radiologists and further explored the

auxiliary role of DL for radiologists’ diagnosis. Compared with

the first diagnosis of TNs visually by junior radiologists, there

was a significant improvement in the second diagnosis with DL

assistance (0.720 vs. 0.796, p< 0.001), which could be comparable

to that of the seniors in the first diagnosis (0.796 vs. 0.794, p >

0.05). Moreover, the DL method could also provide an auxiliary

diagnosis for senior radiologists in terms of accuracy (from

80.6% to 83.4%), which was superior to DL based on GSU alone

(83.4% vs. 78.9%, p = 0.041). It has been proven that DL can

assist clinical radiologists in improving diagnostic ability and

increasing confidence, especially for juniors with less experience.

In a study by Peng et al. (35), the DL-assisted method also

improved the AUC of radiologists in diagnosing TNs from 0.837

to 0.875 (p< 0.001).

Nevertheless, there were no significant diagnostic differences

with and without DL assistance for senior radiologists (0.794 vs.

0.822, p = 0.141). It seems that DL-aided diagnosis was less

effective for senior than junior radiologists, which may be

related to the fact that senior radiologists were more likely to

rely on their own clinical experience. Our analysis may also be due

to the fact that, by using DL models, we sacrificed interpretability

for robust and complex imaging features with greater

generalizability. Furthermore, DL technology obtained results

based on features that were learned and extracted independently

rather than on predefined handcrafted features, where the process

was abstract and incomprehensible, leading to distrust by the

radiologists. To resolve the visualization of DL learning and

decision processes, Kim et al. (36) applied Grad-CAM to

generate output images overlaid with heat maps to achieve

visual interpretability. Meanwhile, Zhou et al. (20) found that

the adjacent parenchyma of TNs is critical for classification by

visual interpretability of DL.

By comparing the radiologists’ and DL’s diagnostic efficacy,

we found that senior radiologists with DL assistance only had a

diagnosis comparable to the DL model based on GSU in terms of

AUC (0.822 vs. 0.825, p = 0.512), which could not be compared

with the diagnosis based on multimodal US imaging (0.822 vs.

0.858–0.928, p< 0.05), effectively demonstrating the excellent

clinical value of the DL method, especially for multimodal US

imaging, with potential for further development and application.

Radiologists may be affected by fatigue and other factors in daily

work, whereas AI can run on its own and has the characteristics

of indefatigability with stable and high diagnostic efficiency.

Our study has several advantages. To our knowledge, this is

the first study in which the attention mechanism-guided residual

network was used to construct a variety of DL models based on

different US imaging combinations. The objects in our study

were TNs of the C-TIRADS 3–5 categories, which are more
Frontiers in Oncology 12
suitable for clinical diagnosis difficulties and extend the scope of

clinical application. We have verified that DL models based on

multimodal US can assist radiologists in improving diagnostic

performance, especially for those with less experience, and

postoperative pathological results were used as the gold

standard for statistical analysis in this study, which was more

objective than the studies using cytological pathological results

(20, 31). Our case set included relatively more samples and

achieved a balance between benign and malignant TNs, which

could effectively reduce the diagnostic bias compared with a

previous study (18).

This study had some limitations. First, the main limitation of

our study was that the data were retrospectively derived from a

single center, and additional external validation or multicenter

studies are needed to refine our study. Second, the images in this

study were static images stored in a compressed format, which

may have led to some potential image features not being mined.

Therefore, dynamic images or raw radiofrequency signals should

be included in future studies. Third, the visualization of the DL

proposed in this study was not achieved. Visualization of the DL

process could be conducted to make the results more reliable in

subsequent studies. More technologies could be included, such

as shear wave elastography, superb microvascular imaging, and

contrast-enhanced US.

In conclusion, the DL model based on multimodal US

images can achieve a high diagnostic value in the differential

diagnosis of benign and malignant TNs of C-TIRADS 3–5

categories, aid second-opinion provision, and improve the

diagnostic ability for radiologists, which is of great significance

for clinical decision-making.
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