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Background: There are few studies on the application of radiomics in the risk

prediction of early recurrence (ER) after radiofrequency ablation (RFA). This

study evaluated the value of a multi-parametric magnetic resonance imaging

(MRI, mpMRI)-based radiomics nomogram in predicting ER of small

hepatocellular carcinoma (HCC) after RFA.

Materials and methods: A retrospective analysis was performed on 90 patients

with small HCC who were treated with RFA. Patients were divided into two

groups according to recurrence within 2 years: the ER group (n=38) and the

non-ER group (n=52). Preoperative T1WI, T2WI, and contrast-enhanced MRI

(CE-MRI) were used for radiomic analysis. Tumor segmentation was performed

on the images and applied to extract 1316 radiomics features. The most

predictive features were selected using analysis of variance + Mann–

Whitney, Spearman’s rank correlation test, random forest (importance), and

least absolute shrinkage and selection operator analysis. Radiomics models

based on each sequence or combined sequences were established using

logistic regression analysis. A predictive nomogram was constructed based

on the radiomics score (rad-score) and clinical predictors. The predictive

efficiency of the nomogram was evaluated using the area under the receiver

operating characteristic curve (AUC). Decision curve analysis (DCA) was used to

evaluate the clinical efficacy of the nomogram.

Results: The radiomics model mpMRI, which is based on T1WI, T2WI, and CE-

MRI sequences, showed the best predictive performance, with an AUC of 0.812
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for the validation cohort. Combined with the clinical risk factors of albumin

level, number of tumors, and rad-score of mpMRI, the AUC of the preoperative

predictive nomogram in the training and validation cohorts were 0.869 and

0.812, respectively. DCA demonstrated that the combined nomogram is

clinically useful.

Conclusions: The multi-parametric MRI-based radiomics nomogram has a

high predictive value for ER of small HCC after RFA, which could be helpful for

personalized risk stratification and further treatment decision-making for

patients with small HCC.
KEYWORDS

small hepatocellular carcinoma, radiofrequency ablation, early recurrence, magnetic
resonance imaging, radiomics, nomogram
1 Introduction

Hepatocellular carcinoma (HCC) is the most common

primary malignant tumor of the liver and one of the main

causes of cancer-related deaths (1, 2). With the continuous

development of diagnostic equipment and technology, an

increasing number of HCC can be diagnosed at early stages.

According to the Barcelona Clinical Liver Cancer (BCLC)

staging system, for very early stage (BCLC-0 stage) and early

stage (BCLC-A stage) HCC, that is, small HCC with single or at

most three cancerous nodules with a diameter ≤ 3 cm, the

treatment includes surgical resection, liver transplantation, and

radiofrequency ablation (RFA) (1). However, choosing the best

treatment for HCC remains a complex problem. In recent years,

owing to the limited use of surgical resection and liver

transplantation for various reasons, such as limited liver

reserve, shortage of organ donors, and high incidence and

mortality of surgical complications, RFA has been

recommended as the first-line treatment choice for patients

with small HCC (3, 4). The overall survival rate of patients

treated with RFA is similar to that of patients treated with

surgical resection (5). Moreover, in the past few decades, RFA

technology has made continuous progress, gradually

strengthening local tumor control and reducing the occurrence
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of complications (6). However, during follow-up of patients

treated with RFA, HCC still has a high recurrence rate, which

may be as high as 70% within 5 years (7).

According to the latest clinical practice guidelines for HCC,

recurrence of HCC can be divided into early recurrence (ER) (<

2 years) and late recurrence (> 2 years) (8, 9). ER is generally

considered a result of occult metastasis of the primary tumor,

while late recurrence is considered to be a new HCC in the

context of liver cirrhosis (10–13). This is consistent with the

genetic analysis of tumor recurrence; early recurrent tumors are

likely to show a similar clonal origin as preoperative primary

tumors, whereas late recurrent tumors often show different

clonal origins (12). Meanwhile, a growing number of studies

have shown that ER is mostly related to the biological

characteristics of primary tumors, including tumor size and

number, microvascular invasion and poor histological

differentiation, as well as preoperative serum alpha-fetoprotein

(AFP) and albumin (ALB) levels (10, 13–16). HCC with ER

usually has a poor prognosis (17). Preoperative identification of

high-risk patients with ER can guide surgical treatment,

postoperative monitoring, and treatment intervention. At

present, several studies (18–20) have tried to predict the

prognosis of patients with HCC by preoperative conventional

imaging examination, but the conditions for accurate prediction

of ER treated with RFA by these methods are not yet mature and

can be affected by subjective factors. Therefore, there is still a

lack of objective and reliable preoperative prediction methods,

with ER remaining one of the main barriers to improving the

prognosis of patients.

Recently, radiomics has been widely used to evaluate tumor

invasiveness and prognosis by extracting and evaluating features

from medical images (21–23). Notably, HCC is a complex

neoplastic lesion that develops from multi-step carcinogenesis

of cirrhotic nodules, during which there are significant changes
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in blood supply, accompanied by multiple immature abnormal

angiogenesis. Excessive proliferation of tumor cells leads to an

increase in cell atypia, a change in cell membrane permeability,

and metabolic processes (24). These micropathological changes

lead to mixed internal components and uneven structure of the

tumor, and the images show tumor heterogeneity information,

such as rough texture and complex gray distribution, which can

be captured by radiomics. The higher the heterogeneity of the

tumor, the stronger the invasiveness of the tumor and the worse

its prognosis (21, 22, 24). Some studies have predicted the ER or

survival time of HCC by preoperative enhanced computed

tomography or magnetic resonance imaging (MRI) radiomics

models (25, 26). However, most of these studies focused on the

observation of ER after surgical resection, ignoring patients

treated with RFA. At present, there are few studies on the

application of radiomics in the risk prediction of ER after

RFA, and its feasibility is unclear. Meanwhile, MRI has the

characteristics of multi-parameter, multi-sequence, and multi-

directional imaging, which may contain more tumor

heterogeneity information undetectable by the naked eye, and

this will provide more possibilities for predicting the prognosis

of small HCC before RFA. Therefore, our study aimed to explore

the feasibility of multi-parametric MRI (mpMRI)-based

radiomics to predict the ER of small HCC after RFA and to

establish a nomogram based on the combination of radiomics

score (rad-score) and clinical features to explore its value in

individualizing the prediction of ER in small HCC patients.
2 Materials and methods

2.1 Patients

This was a retrospective review of all patients with HCC

treated with RFA at the 900th Hospital of the Joint Logistics

Support Force, Fuzhou, China, between January 2018 and

January 2020. The criteria for the study were as follows: (1)

confirmed by pathology or diagnosed with liver cancer in strict

accordance with the Chinese Standard for diagnosis and

treatment of primary liver cancer (2017 Edition) (27); (2) the

tumor was single or multiple (number ≤ 3, and diameter ≤ 3 cm),

and there was no vascular invasion or extrahepatic metastasis;

(3) RFA was used as a first-line treatment and was examined by

contrast-enhanced MRI (CE-MRI) within one month before the

operation; (4) complete clinical and laboratory data; and (5)

follow-up time of more than two years. Patients with poor MRI

image quality or those complicated by other tumors were

excluded. Finally, 90 patients were enrolled in the study, 38 of

whom had ER, while the others did not. This study was reviewed

and approved by the Institutional Review Board of the 900th

Hospital of the Joint Logistics Support Force. The data were

anonymized, and the requirement for informed consent from

the patients was waived. All study procedures were performed in
Frontiers in Oncology 03
accordance with the Helsinki Declaration of 1964 and its

later versions.
2.2 Clinical characteristics

Preoperative clinical data of the patients were collected in

detail, including sex, age, etiology, history of liver cirrhosis, Child-

Pugh grade (grade A or B), AFP, alanine aminotransferase,

aspartate aminotransferase, ALB, bilirubin, tumor number,

tumor size, and location.
2.2.1 MRI procedure
All patients were examined by 1.5T or 3.0T MRI scanners

(GE SignaHDx or Discovery 750; Siemens Magnetom Trio Tim

or Skyra). The scanning sequences included T1WI, T2WI, multi-

phase enhanced T1WI, and diffusion-weighted imaging (DWI).

The corresponding parameters of different sequences are as

follows: (1) T1WI (Repetition time [TR] 4 ms, echo time [TE]

2 ms) uses layer thickness 5 mm, layer spacing 2.5 mm, matrix

288 × 192, excitation times 1; (2) T2WI (TR 8500 ms, TE 90 ms)

layer thickness 5 mm, layer spacing 5 mm, matrix 320 × 224,

excitation times 1; (3) multi-phase enhanced T1WI sequence

(TR 4 ms, TE 2 ms; field of vision 360 × 400 mm; layer thickness

5 mm; layer spacing 2.5 mm, matrix 288 × 192), wherein three

phase enhanced scans were performed, including the arterial

phase (AP), portal venous phase (PVP), and delayed phase (DP).

The contrast agent was Gadobenate Dimeglumine (MultiHance;

Bracco, Shanghai, China) and was injected at a patient weight-

dependent dose of 0.2 ml/kg and injection rate of 2.0 ml/sec

through the median cubital vein. (4) DWI: visual field 400 × 343

mm; matrix 116 × 97; TR 2500 ms, TE 64 ms; slice thickness 7

mm; interlayer spacing 1 mm; b=800 sec/mm2.
2.3 Follow-up

Complete ablation confirmed with a dynamic CT or MRI

scan was performed 1 month post‐RFA. Patients were followed

up for at least 2 years after RFA every 3–6 months. Recurrence

was monitored using AFP level, liver function, computed

tomography, or MRI. ER is defined as a new cancerous focus

with typical imaging features of the liver or other organs within 2

years of RFA treatment.
2.4 Image preprocessing and
tumor segmentation

T1WI, T2WI, and CE-MR (AP, PVP, and DP) images were

converted to Medical Digital Imaging and Communication

format. Image preprocessing was performed using AK
frontiersin.org
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(Artificial Intelligence Kit, GE Healthcare). Each image is

resampled by 1.0 mm × 1.0 mm × 1.0 mm, and then z-Score

transform is performed to transform the image intensity into

standard normal distribution, wherein mean is 0 and standard

deviation is 1.

Tumor segmentation was performed by two physicians with

rich experience in radiological diagnosis, wherein physician A

used the open-source software ITK-SNAP (www.itk-snap.org)

to draw the regions of interest (ROI) on the maximum cross-

section of the tumor. DP- or T2-weighted images were used as

references (Figure 1).
2.5 Radiomics feature extraction
and intra-group correlation
coefficient (ICC) evaluation

A total of 1316 radiomics features were extracted from each

tumor segment, including first-order histogram features

(intensity distribution of the internal ROI), shape features

(morphological features of the lesions), texture features

(heterogeneity through the relative spatial position of voxels,

including gray-level co-occurrence matrix, gray-level run length

matrix, gray-level size zone matrix, neighboring gray tone

difference matrix, gray-level dependence matrix, and local

binary pattern), high-order features (adding filters or high-

order image description indicators, including Laplacian of

Gaussian), and wavelet features (22).

ICC was used to evaluate the repeatability between the

observers of radiomics feature extraction. When ICC was >

0.75, feature extraction has good consistency. Fifteen images

were randomly selected and segmented by physician B at an
Frontiers in Oncology 04
interval of two weeks. According to the above method, the

features were extracted and evaluated using ICC. The features

with ICC < 0.75 were removed to ensure the stability and

repeatability of feature extraction.
2.6 Feature selection and radiomics
model construction

All patients were randomly divided into training and

validation cohorts at a ratio of 7:3. Feature selection and

model construction of the training and validation cohorts were

used to verify the generalization of the model.

To select the most distinctive radiomics features between the

ER and non-ER groups, the selected features were screened using

the AK native algorithm. The Analysis of Variance + Mann–

Whitney algorithm was initially used to exclude features with no

significant differences (variance difference is 0), and Spearman’s

rank correlation test was used to eliminate redundant features

(correlation coefficient was greater than 0.90). Then, using the

random forest importance algorithm (28), we further selected

the 25 features with the highest importance. Finally, features that

were highly related to ER were extracted by the least absolute

shrinkage and selection operator algorithm (29).

Then, a radiomics model in each MRI sequence was

constructed using logistic regression analysis to predict ER,

and models based on the combination of different MRI

sequences were established, including CE-MRI (AP+PVP+DP)

and mpMRI (T1WI+T2WI+AP+PVP+DP). The rad-score was

calculated according to the selected features and their

corresponding coefficients using the formula: rad-score =

constant + coefficients × features. The area under the receiver
FIGURE 1

The workflow of radiomics in the current study. Tumor 2D segmentation was performed on mpMRI and applied to extract 1316 radiomics
features, including first-order feature, shape feature, texture feature and higher-order feature. After interobserver agreement analysis, the most
predictive radiomics features were selected via the Anova+MW, Spearman’s rank correlation test, RF-importance, and LASSO analysis. The
radiomics model was established by multivariate logistic regression analysis. The predictive nomogram was constructed based on the radiomics
score and clinical predictors.
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operating characteristic (ROC) curve (AUC) of each model in

the validation cohort was compared to evaluate the model with

the best predictive performance.
2.7 Combined nomogram model building

The combined model was established using the rad-score of

the radiomics model with the best prediction performance and

the highly related clinical indicators of ER by logistic regression

analysis, which was presented in the form of a nomogram.

Accuracy of quantitative prediction was evaluated using the

AUC. The consistency between the predicted results and the

actual results was evaluated using a calibration curve, and its

clinical effectiveness was evaluated using a decision curve

analysis (DCA).
2.8 Statistical analysis

Statistical analysis was performed using the SPSS 26.0

software and R software (3.6.0, http://www.r-project.org). P <

0.05 indicated a statistically significant difference.

Clinical data were analyzed using the SPSS software. The

chi-square test was used for classified variable analysis, t-test for

continuous variables of normal distribution, and Mann–

Whitney U test for abnormal or unknown distribution.
Frontiers in Oncology 05
Univariate and multivariate logistic analyses were performed

to screen for clinical indicators with a high correlation with ER.

The R software was used to establish and evaluate the

nomogram. The software packages of “car,” “rms,” “pROC,”

and “DecisionCurve” were used to analyze the nomogram, ROC

curve, calibration curve, and DCA.
3 Results

3.1 Patient characteristics

The statistical analysis results for the baseline data of the ER

and non-ER groups are shown in Table 1. There were significant

differences in age (P=0.036), preoperative ALB level (P=0.015),

and tumor number (P=0.010). However, other baseline

characteristics were not significantly different between the

two groups.
3.2 Correlation between clinical factors
and occurrence of ER in patients

The results of the univariate and multivariate logistic

regression analyses of the ER and non-ER groups are shown in

Table 2. Univariate logistic regression analysis preliminarily

screened all clinical features and found that age (P=0.040;
TABLE 1 The baseline data of patients with small liver cancer in ER cohort and NER cohort.

ER group (n = 38) NER group (n = 52) P value

Age(Y) 59.29±8.71 54.29±12.40 0.036*

Gender 0.225

male
female

32 (84.2)
6 (15.8)

41 (78.8)
11 (21.2)

TBIL(mmol/L) 18.31±10.31 20.22±23.32 0.637

ALB(U/L) 38.01±5.26 41.04±6.06 0.015*

ALT(U/L) 57.62±117.03 52.07±57.71 0.767

AST(U/L) 50.49±63.26 52.57±59.43 0.874

AFP(U/L) 114.40±252.34 90.66±174.13 0.599

HBsAg 35 (92.1) 41 (78.8) 0.085

Child—Pugh 0.157

A
B

28 (73.6)
10 (26.4)

46 (88.5)
6 (11.5)

Liver cirrhosis 34 (89.5) 39 (75.0) 0.106

Tumor size(cm) 1.98±0.70 1.73±0.70 0.095

Tumor number 0.010*

≥2
1

11 (28.9)
27 (71.1)

4 (7.6)
48 (92.3)

Tumor location 0.066

right lobe
left lobe

30 (78.9)
8 (21.1)

48 (92.3)
4 (7.6)
front
*P < 0.05 indicates a significant difference.
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hazard ratio [HR]=1.043; 95% confidence interval [CI]:1.002–

1.087), ALB level (P=0.018; HR=0.913; 95% CI:0.846–0.985),

and number of tumors (P=0.012; HR=4.889; 95% CI:1.418–

16.885) were variables with P < 0.05. Multivariate logistic

regression analysis further confirmed that the ALB level

(P=0.037; HR=0.919; 95% CI:0.850–0.995) and number of

tumors (P=0.041; HR=3.829; 95% CI:1.058–13.851) were

independent predictors of ER for small HCC.
3.3 Feature selection and establishment
of image group model

After repeatability analysis among observers, the remaining

characteristics of the T1WI, T2WI, AP, PVP, and DP sequences

were 1064, 1148, 1156, 1017, and 946, respectively (ICC ranges:

0.751–1.000, 0.750–1.000, 0.750–0.999, 0.750–1.000, and 0.750–

1.000, respectively).

T1WI, T2WI, AP, PVP, DP, and AP radiomics models

retained 8, 9, 10, 10, and 8 non-zero coefficient features,

respectively, while the combined CE-MRI and mpMRI models

both retained nine non-zero coefficient features. The predictive

performance of the radiomics model in the validation cohort is
Frontiers in Oncology 06
shown in Table 3. Among the five models based on a single MRI

sequence, the AP model performed better, with an AUC of 0.816

in the training cohort and 0.781 in the validation cohort, with an

accuracy of 0.750, specificity of 0.687, and sensitivity of 0.833.

The predictive performance of the combined model was better

than that of the single-sequence model, and the mpMRI model

(Figure 2) showed the best predictive performance in all models

with an AUC of 0.822 in the training cohort and 0.812 in the

validation cohort, with an accuracy of 0.821, specificity of 0.875,

and sensitivity of 0.750.
3.4 ER predictive
nomogram construction

ALB level, tumor number, and rad-score of the mpMRI

model were combined to establish a predictive nomogrammodel

(Figure 3). This model showed good diagnostic efficiency in

predicting the occurrence of ER, wherein the AUC in the

training and validation cohorts were 0.869 and 0.812,

respectively (Figure 4). The calibration curve showed that the

predicted results for ER and non-ER were in good agreement

with the actual results in the training and validation cohorts
TABLE 3 Prediction performance of each radiomics model in validation cohorts.

T1WI T2WI AP PVP DP CE-MRI mpMRI

AUC 0.729 0.776 0.781 0.760 0.739 0.792 0.812

Accuracy 0.714 0.714 0.750 0.785 0.750 0.750 0.821

Specificity 0.750 0.750 0.687 0.812 0.812 0.750 0.875

Sensitivity 0.667 0.667 0.833 0.750 0.667 0.750 0.750
fron
CE-MRI: AP+PVP+DP;mpMRI: T1WI+T2WI+AP+PVP+DP.
TABLE 2 Univariate and multivariate logistic regression analysis of risk factors for ER after RFA.

Variable Univariate Analysis Multivariate Analysis

HR P value HR P value

Age(Y) 0.392(0.116,1.329) 0.133

Gender 1.043(1.002,1.087) 0.040 1.041(0.997,1.041) 0.069

TBIL 0.994(0.970,1.019) 0.637

ALB 0.913(0.846,0.985) 0.018 0.919(0.850,0.995) 0.037*

ALT 1.001(0.996,1.006) 0.766

AST 0.999(0.992,1.006) 0.872

AFP 1.001(0.999,1.003) 0.597

HBsAg 3.500(0.913,13.421) 0.068

Child-Pugh 2.379(0.767,7.386) 0.134

Liver cirrhosis 2.833(0.844,9.514) 0.092

Tumor size 1.682(0.911,3.106) 0.096

Tumor number 4.889(1.418,16.885) 0.012 3.829(1.058,13.851) 0.041*

Tumor location 3.200(0.886,11.555) 0.076
t

*P < 0.05 indicates a correlation between ER and factor.
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(Figure 5). The DCA curve showed that the nomogram model

can obtain a greater net income when the threshold probability is

between 20% and 90% (Figure 6), indicating that the nomogram

can individualize the prediction of ER and has good value in

clinical applications (Figures 7, 8).
Frontiers in Oncology 07
4 Discussion

Radiomics uses a variety of computer algorithms to extract

massive features from medical images to improve image analysis

technology and the predictive performance of imaging data (30).
FIGURE 3

The combined nomogram incorporated ALB, tumor number, and the radiomics score. The nomogram is valued to obtain the probability of ER
by adding up the points identified on the points scale for each variable albumin.
FIGURE 2

The selected features with correlation coefficients of mpMRI radiomics model. The x-axis represents radiomics features, with their coefficients
in the multivariate logistic regression analysis plotted on the y-axis.
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Hui et al. (31) analyzed the maximum cross-section of tumors on

T2WI, DWI, and CE-MRI sequences in 50 patients with HCC,

wherein it was found that the single radiomics features of MRI

before surgical resection might predict ER. Zhao et al. (32) also
Frontiers in Oncology 08
found that a radiomics model based on I-T1WI, O-T1WI, T2WI,

and CE-MRI sequences could effectively predict ER in patients

with HCC after surgical resection. Radiomics has shown good

potential for predicting postoperative recurrence of HCC.
A B

FIGURE 5

Calibration curves of the combined nomogram in the training cohort (A) and the validation cohort (B). The vertical axis displays the actual results. The
horizontal axis represents the probability of prediction. The slash dotted line represents the reference line and represents the “ideal” prediction. The
solid line represents the performance of the nomogram. If the solid line is closer to the diagonal dashed line, it means that the prediction is better.
A B

FIGURE 4

ROC curves of the combined nomogram in training (A) and Validation Cohorts (B).
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However, these studies included only patients who underwent

HCC resection. Wen et al. (33) analyzed tumor radiomics features

on T2WI, T1WI, and CE-MRI sequences in 111 patients with

small HCC treated with surgical resection and RFA. Preoperative
Frontiers in Oncology 09
MRI radiomics features could predict ER with high accuracy. Shan

et al. (34) further established the peritumoral feature model of CT

image and found that the CT-based peritumoral radiomics can

effectively predict ER of HCC. However, the subjects included not
FIGURE 7

Images of a 54-year-old man with HCC without early recurrence. (A-D) The tumor demonstrated the typical enhancement mode of “fast in and
fast out”. (E) There was no obvious blood supply to the tumor after RFA. (F) The patient was followed up for 5 years without tumor recurrence.
The patient had a single tumor. The Rad-score of this patient was 1.16, and his ALB was 50.9g/l. Based on the Nomogram, his total point was
about 63, indicating the risk of ER was less than 0.1.
A B

FIGURE 6

DCA of the nomogram to evaluate the clinical practicability in training (A) and validation cohorts (B). The vertical axis displays standardized net
benefit. The two horizontal axes show the correspondence between risk threshold and cost: benefit ratio. The combined nomogram achieves
more net benefit across the majority of the range of threshold probabilities compared with the treat-all strategy (gray line), and treat-none
strategy (horizontal black line).
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only patients who underwent RFA but also those who underwent

surgical resection. Different therapeutic methods have varied

effects, and their influencing factors are also different, which

cannot be generalized. The ER rate of HCC with RFA is higher

than that with resection. The possible reason is that the ER of

HCC after RFA is related to not only tumor biology but also

technology itself, such as minimal ablative margin or thermal

injury-induced hepatic parenchymal hypoperfusion (35). Only

patients with small HCC who were treated with RFA were

included in our study. The radiomics features were obtained

from the maximum cross-section of the tumor to predict the

ER, and radiomics models based on single and combined

sequences were established to evaluate the model with the best

predictive performance.

In our study, we found that the predictive performance of the

radiomics model based on the AP sequence was better than that of

other models based on a single MRI sequence, which indicates

that preoperative AP images are more likely to show the

heterogeneity of HCC. The predictive performance of the multi-

sequence combined radiomics model was better than that of the

single-sequence model, and the predictive performance of the

mpMRI model was the best among all radiomics models, which

indicates that multi-parameter imaging contains more potential

tumor heterogeneity information and can be used to analyze the

prognosis of HCC after RFA. In the mpMRI radiomics model,

most features were processed using local binary pattern. By
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comparing each voxel with its neighboring voxels and saving

the results as binary numbers, it quantifies tumor heterogeneity

and has a strong discrimination ability. The selected features

include two first-order features (Interquartile Range, 10

Percentile), two gray-level co-occurrence matrix-based features

(Cluster Shade, Difference Entropy), three gray-level run length

matrix-based features (Run Entropy, Short Run Low Gray Level

Emphasis), and two gray-level dependence matrix-based features

(Dependence Variance, Large Dependence Low Gray Level

Emphasis). These features describe the voxel intensity

distribution, spatial relationship, voxel proportion, and gray

relationship with neighborhood pixels in the image. The

differences in tumor image texture were quantitatively evaluated

from the aspects of gray-level distribution symmetry, uniformity,

texture granularity, and complexity (22, 24). It has been suggested

that tumor heterogeneity can affect the prognosis of patients with

small HCC treated with RFA.

Because the correlation between individual radiomics features

and tumor biological behavior is difficult to perceive intuitively,

the rad-score calculated according to histological features and

their coefficients has become a more common measurement tool

(36). In this study, the mpMRI model rad-score showed good

discrimination in both the training cohort and validation cohorts

(AUC 0.822, 0.812, respectively). Therefore, radiomics can be used

to predict the occurrence of ER in patients with small HCC who

are treated with RFA. Compared to the interpretation of
FIGURE 8

Images of a 68-year-old man with HCC with early recurrence. (A-C) The tumor demonstrated the typical enhancement mode of “fast in and
fast out”. (D) No obvious blood supply was found in the tumor after RFA. (E-F) After follow-up for 15 months, the blood supply of the primary
lesion increased, and cancerous nodules appeared in the right posterior lobe of the liver. The patient had a single tumor. The Rad-score of this
patient was -1.00, and his ALB was 33g/l. According to the Nomogram, the patient’s total score was about 110, indicating that the risk of ER was
between 0.8-0.9.
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conventional imaging examinations, radiomics is more objective

and can be used to comprehensively analyze tumors from

many dimensions.

In our study, ALB levels and the number of tumors were

independent risk factors for ER. Previous studies have confirmed

that the number of tumors is an important prognostic factor in

patients with HCC after RFA (19, 37–39). Multifocal tumors

were closely related to small HCC, suggesting that tumors are

more invasive, more prone to occult metastasis, and have a poor

prognosis, similar to previous studies, which have shown that

ALB level is also a risk factor for HCC recurrence and prognosis

(19, 37, 40). Patients with low ALB levels were more likely to

relapse soon after RFA. This may be because ALB reflects the

synthetic and reserve function of the liver, wherein the

recurrence of HCC is accompanied by impairment of normal

hepatocyte function, and the continuous decline of synthetic

ALB. Although this study concluded that ALB is an independent

risk factor for ER after RFA for small HCC, further Child-Pugh

classification did not show any correlation with ER. A possible

reason is that this study was a retrospective study, wherein the

subjects were patients with very early or early HCC, and the

number of patients with poor liver function grade was lower.

Finally, a nomogram model including clinical features and

rad-score was established to predict the ER of small HCC after

RFA, and its diagnostic efficiency was high, indicating that the

degree of discrimination of the nomogram model was good.

Compared to the individual image group model, the overall

prediction performance of the combined model was better than

that of the single radiomics model. Considering that the

combined model covers more aspects, its performance is more

stable. The calibration curve showed good consistency between

the predicted and actual results of the ER and non-ER groups in

the training and validation cohorts. Therefore, the nomogram

model has good differentiation and calibration, making it

convenient for clinical guidance in performing personalized

follow-up to provide timely intervention for patients at high

risk of ER. For patients with high risk of ER, expanding the scope

of RFA or trying new adjuvant therapy may reduce the incidence

of ER (19, 41). In a previous study, Laimer et al. showed that the

minimal ablative margin was the only significant independent

predictor of local tumor progression, and the relative risk

decreased by 30% for every 1 mm increase in minimal ablative

margin (41). Active follow-up should be undertaken after RFA

to detect tumor recurrence as early as possible.
4.1 Limitations

First, as this was a single-center retrospective study, it may

be difficult to avoid selection bias, and the sample size was

limited. More accurate conclusions need to be drawn after

further evaluation by means of a joint multicenter study and
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by expanding the sample size. Secondly, 1.5T and 3.0T scanners

with different parameters were used for MRI inspection, which is

not conducive to the normalization of signal strength. However,

before image feature extraction, we preprocessed the image to

reduce possible variability. Third, taking the maximum cross-

section of the tumor as the ROI may not be the best way to

represent the tumor. However, a 2D analysis can be considered a

simplification. Previous studies have shown that sufficient data

can be obtained on the maximum cross-section of the tumor,

and 2D analysis is not as cumbersome and time-consuming as

3D analysis. Finally, the image group analysis of this study was

carried out using the AK software, which is integrated with a

variety of algorithm components and has the advantages of easy

operation. However, the process of data processing is carried out

in the background, and the underlying data of some processes

cannot be obtained. It was necessary to utilize the R software to

further verify and expand the research results.
4.2 Conclusion

Radiomics has the potential to predict ER after RFA of small

HCC. The combined model based on mpMRI and clinical

features shows good differentiation, calibration, and clinical

practical value. It can be used to identify patients at a high risk

of ER after RFA for small HCC, which is helpful for personalized

risk stratification and further treatment decision-making in

patients with small HCC.
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