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KRAS mutations are among the most commonly occurring mutations in

cancer. After being deemed undruggable for decades, KRAS G12C specific

inhibitors showed that small molecule inhibitors can be developed against this

notorious target. At the same time, there is still no agent that could target KRAS

G12D which is the most common KRASmutation and is found in themajority of

KRAS-mutated pancreatic tumors. Nevertheless, significant progress is now

being made in the G12D space with the development of several compounds

that can bind to and inhibit KRAS G12D, most notably MRTX1133. Exciting

advances in this field also include an immunotherapeutic approach that uses

adoptive T-cell transfer to specifically target G12D in pancreatic cancer. In this

mini-review, we discuss recent advances in KRAS G12D targeting and the

potential for further clinical development of the various approaches.
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Introduction

RAS genes (KRAS, HRAS, NRAS) are the most commonly mutated oncogenes in

cancers, resulting in increased downstream signaling that drives incessant proliferation

and tumorigenesis. Certain tumors are more dependent on KRAS mutation, especially

pancreatic ductal adenocarcinoma (PDAC) which remains one of the most lethal cancers,

with a 5-year survival rate of 11% in the United States (1). Advances in our

understanding of PDAC molecular pathology and subtypes have not translated into

significant improvements in patient outcomes (2). Genetic alterations in the oncogene

KRAS, and the tumor suppressors CDKN2A, SMAD4, and TP53 are the most common

mutational drivers in PDAC, in addition to various genes identified at low mutation

frequency. This complex genetic landscape has created a tremendous challenge for

therapeutic targeting.
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KRAS mutations in PDAC

Mutations in KRAS, CDKN2A, TP53, and SMAD4 are the

major genetic mutations that underly PDAC development

(Figure 1A). The KRAS oncogene is the major oncogenic

driver of PDAC (86 – 91%) (3), and is considered a master

oncogenic regulator that drives cancer hallmarks including

sustained proliferative signaling and evading growth

suppression. KRAS mutations are found at the earliest stage of

PDAC development in patient samples, and are required for the
Frontiers in Oncology 02
initiation and maintenance of PDAC in genetically engineered

mouse models, suggesting that KRAS mutations are important

for both PDAC initiation and progression (4–6). The most

predominant KRAS mutation site in PDAC occurs at codon

12; most commonly G12D (45%), followed by G12V (35%), and

G12R at 17% (Figure 1B) (3). Other mutations such as G12C and

G12F occur at a lower frequency.

Mutant KRAS is notoriously difficult to target. It had been

deemed undruggable until the recent success of inhibitors that

target KRAS with a G12C mutation, AMG510 (sotorasib) and
A B

D

C

FIGURE 1

KRAS Oncogene in PDAC and the chemical structure of some of mutant KRAS small molecule inhibitors. (A) Multi-stage development model of
KRAS-mutated PDAC. As cells acquire mutations in KRAS, CDKN2A, SMAD4 and TP53 in addition to less commonly mutated genes, the lesion
progresses from low grade pancreatic intraepithelial neoplasia (PanIN1), through PanIN2, and high grade PanIN3 to become invasive carcinoma.
(B) Most common KRAS mutations in PDAC are G12D (45%), G12V (35%), G12R (17%) representing important targets for PDAC patients. Other
mutations such as G12C, G12A and others are less common (3%). (C) Sotorasib and adagrasib are mutant KRAS G12C inhibitors. They bind
specifically to the mutant form by making covalent interactions with Cys12 in the switch-II pocket of mutant KRAS, locking it in the inactive
state, and preventing downstream signaling. These agents have been investigated in clinical trials, and sotorasib is currently FDA approved for
the treatment of KRAS G12C-mutated NSCLC. (D) Novel KRAS G12D inhibitors with available chemical structures, MRTX1133, TH-Z827, TH-
Z835, and KD-8. These agents bind specifically and non-covalently to mutant KRAS G12D, thereby inhibiting proliferation in mutated cells.
These agents are currently in preclinical development, and details on further clinical development are not currently known.
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MRTX849 (adagrasib) (Figure 1C) (7). Sotorasib has been

granted approval by the US Food and Drug Administration

(FDA) for the treatment of certain patients with KRAS-mutated

non-small cell lung cancer (NSCLC); and adagrasib has been

given a breakthrough therapy designation by the FDA also for

NSCLC (8). For PDAC patients, however, a mutation that

replaces Glycine at codon 12 with Aspartic Acid (G12D) is the

most common mutational event in KRAS, representing

approximately 45% of KRAS mutations, as previously

mentioned (3), and only a very modest proportion of patients

would benefit from G12C targeted therapy. Nonetheless, since

KRAS was found to be potentially druggable, multiple groups

have aptly been working to develop inhibitors targeting the most

common KRAS G12D mutation.
Overview of KRAS oncogene and
targeting efforts

KRAS is a small GTPase protein that is encoded by the KRAS

proto-oncogene (9). It is activated by extracellular growth

signaling that is transmitted by growth receptors such as

EGFR family (10). Growth signaling allows KRAS to exchange

its GDP for GTP, thereby affecting conformational change and

further transmission of downstream signals. KRAS is upstream

of critical signaling pathways, such as RAF/MEK/ERK MAPK,

and PI3K signaling pathways.

KRAS cycles between GDP and GTP with the activity of

guanine exchange factors (GEFs) that catalyze the exchange of

GDP for GTP, and GTPase activating proteins (GAPs) that

enhance the intrinsic KRAS GTPase activity. Son of Sevenless 1

(SOS1) is the main GEF to act on KRAS, and together with

GAPs, it is responsible for the regulation of the guanine

exchange cycle, and maintenance of KRAS in an inactive state

in the absence of proper growth signaling (11). Mutations in

KRAS change the dynamics of the guanine exchange cycle,

resulting in hyperactive KRAS and increased pools of GTP-

bound KRAS. This leads to the constant activation of

downstream signaling cascades such as MAPK and PI3K, and

consequently incessant cellular proliferation.

KRAS is frequently mutated in pancreatic cancer, colorectal

cancer (CRC), and lung cancer (3). Therefore, looking for ways

to target KRAS, whether directly or indirectly, has garnered great

attention from researchers (12). Directly targeting KRAS had

been elusive for decades. KRAS lacks a suitable deep

hydrophobic binding pocket to design small molecule

inhibitors, other than the GTP/GDP binding pocket. However,

GTP is highly abundant in the cell, thus precluding efficacious

nucleotide competitive inhibitors. Additionally, indirect

targeting of KRAS through upstream or downstream

regulators or effectors was either ineffective or caused major

toxicities (13). The major breakthrough in the field came when
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undruggable KRAS was finally drugged with the discovery of the

first KRAS G12C inhibitors.
The Discovery of KRAS G12C
inhibitors and its targetable pocket

Pioneering work by Shokat and colleagues paved the way for

the clinical development of mutant KRAS G12C inhibitors (14).

They were able to identify a druggable pocket termed the switch

II pocket, which contains a reactive cysteine as a result of the

G12C mutation in mutant KRAS (14). The co-crystal structure

of hit compound and KRAS showed the compound binding in a

pocket that lies beneath the switch II region of KRAS protein

(14). Within the switch II allosteric pocket Cys12 is present,

which contains a nucleophilic thiol group, making it a prime

target for covalent drugs (15). It also affords the inhibitor high

specificity over the other RAS isoforms (HRAS and NRAS) as

well as wild-type KRAS, thereby reducing off-target effects

and toxicities.

The early G12C inhibitor, compound 12, is a covalent

inhibitor that binds in the switch II pocket of KRAS G12C in

its GDP-bound form. Several other compounds were

subsequently discovered and reported to have activity against

cancer cells with KRAS G12C mutations (16, 17). An early

compound, ARS-1620, was shown to inhibit tumor growth in

cell-derived and patient-derived xenograft models (18). These

efforts provided proof of concept for targeting KRAS G12C,

which culminated in the development of the clinical agents

sotorasib and adagrasib (19–23). Based on the safety,

tolerability, and efficacy results of a phase 1/2 study of

sotorasib (CodeBreaK 100, NCT03600883), it has received

FDA approval for advanced NSCLC with KRAS G12C

mutations. Results from the trial demonstrated an 80.6%

disease control rate, with four patients achieving a complete

response, and a median progression free survival of 6.3 months

(22). A phase III trial (CodeBreaK 200, NCT04303780) is

ongoing, which compares sotorasib with docetaxel

chemotherapy in previously treated NSCLC patients. Sotorasib

is also being investigated clinically as first-line therapy for stage 4

NSCLC patients (NCT04933695).

Adagrasib is being investigated in a phase I/II clinical trial

(KRYSTAL-1, NCT03785249). In patients with measurable

disease at baseline, the objective response rate was 42.9%,

median progression free survival of 6.5 months, and overall

survival of 12.6 months after 15.6 months of follow-up (23).

The limitation of any single agent treatment is the inevitable

emergence of resistance. Studies have shown that resistance to

G12C inhibitors could be inherent or acquired (24). Mechanisms

of resistance include activation of receptor tyrosine kinase

(RTKs), resulting in downstream activation of KRAS via SHP2

(25). Several mechanisms of resistance have been reported in
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patient samples treated with adagrasib including secondary

activating mutations in KRAS, amplification of KRAS(G12C),

and mutations in compensatory pathways that bypass KRAS

such as MET amplification, and NRAS, BRAF, MAP2K1, and

RET mutations (26). To combat resistance to G12C inhibitors,

several trials are looking to combine mutation specific inhibitors

with other agents. In CodeBreaK 101 (NCT04185883) several

drugs are being investigated in combination with sotorasib, such

as trametinib, TNO155, everolimus, palbociclib, pembrolizumab

or several other agents. Adagrasib is also being evaluated in

combination with other agents, such as pembrolizumab

(NCT04613596), and TNO155 (NCT04330664). Although

these trials would primarily benefit lung cancer patients, they

provide valuable strategies for future targeting of non-

G12C mutations.

As discussed, sotorasib has been given FDA approval for the

treatment of certain patients with NSCLC (27). Despite

encouraging results from the trials, and FDA approval, these

drugs have provided little hope for the majority of PDAC

patients. While KRAS G12C mutations are more prevalent in

lung cancer, KRAS G12D mutation is the most common in

PDAC as well as CRC. Available G12C inhibitors rely on the

reactivity of the thiol group in Cys12 of mutant KRAS. To

benefit PDAC patients and target the G12D mutation, an

approach that does not rely on a reactive cysteine is required.
Small molecule inhibitors targeting
KRAS G12D

Discovery of KRAS G12D
inhibitor MRTX1133

As previously mentioned, G12D mutations are present in a

large proportion of PDAC patients. The covalent G12C

inhibitors relied on the presence of a strongly nucleophilic

cysteine in the switch II pocket, as well as the unique

biochemical properties of the KRAS G12C mutant, which has

a higher rate of GTP hydrolysis compared to other mutants (28).

The switch II pocket in KRAS G12D, however, lacks a reactive

cysteine to target with a covalent inhibitor, and aspartic acid is

not considered a good target for covalent attack.

A structure-based medicinal chemistry approach has been

employed to identify compounds that can react through a salt

bridge with Asp12 of the switch II pocket in KRAS G12D (29).

Using adagrasib as a starting point, chemical modifications to the

reactive warhead and various other groups in the compound were

introduced to increase the binding affinity within the pocket.

Optimization of hit compounds resulted in the discovery of

MRTX1133 (Figure 1D), which selectively and reversibly binds

KRAS G12D with low nanomolar affinity in cellular assays (30).

Binding of MRTX1133 to KRAS G12D prevents

downstream signaling through inhibition of nucleotide
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compound was shown to inhibit oncogenic KRAS signaling

selectively in tumor cells (30). In a xenograft mouse model,

MRTX1133 was able to significantly reduce tumor growth and

decrease the phosphorylation of downstream signaling molecule

ERK in a dose-dependent manner (30). So far, this agent remains

an in vitro tool compound, and its clinical progress is not known.
Other KRAS G12D inhibitors

Besides MRTX1133 described above, other groups have been

pursuing the development of KRAS G12D inhibitors as well. For

example, using a medicinal chemistry approach to find

inhibitors that bind to Asp12 in KRAS G12D, two inhibitors

TH-Z827 and TH-Z835 were discovered (Figure 1D) (31). These

inhibitors form a salt bridge with Asp12 within the switch-II

pocket resulting in the inhibition of KRAS signaling in G12D

mutant PDAC cell lines (31). These compounds were able to

bind the G12D mutant specifically, and not KRAS G12C or WT.

The compounds also showed in vivo inhibition of tumor growth

in xenograft tumor mouse models (31). Another set of inhibitors

was discovered using virtual combinatorial chemistry and

compound screening approach (32). In this approach, they

used the backbone of G12C inhibitors in combination with

piperazine-based compounds as building blocks for the

compound library, followed by molecular docking to discover

compounds with predicted selective binding. Compound ‘KD-8’

was discovered, which resulted in the inhibition of cellular and

tumor growth of KRAS G12D mutated cells (32). However,

further development of these compounds is required to increase

their potency and minimize off-target effects. While these agents

are not yet ready for clinical development, they provide further

proof of principle that several classes of G12D inhibitors could

be potentially discovered as clinical anti-cancer agents.

A tricomplex inhibitor, RMC-9805, is a novel covalent

KRAS G12D inhibitor that binds KRAS in the GTP-bound

state, thus termed a KRAS-G12D(ON) inhibitor (33).

Tricomplex inhibitors bind a chaperone protein, Cyclophilin

A, which is ubiquitously found inside the cell (34), which then

binds the target protein, creating a target-inhibitor-Cyclophilin-

A complex. RMC-9805 reacts covalently with Asp12, thereby

attenuating KRAS G12D downstream signaling specifically over

KRAS WT and other KRAS mutants, and it restricts tumor

growth in xenograft PDAC and CRCmouse models (33). Within

this class of inhibitors, there are several other compounds being

developed to target various KRAS mutants, as well.

An emerging strategy to target oncogenic RAS is using

monobodies to target the a4-a5 interface of KRAS, thus

preventing its dimerization and downstream signaling (35–37).

A monobody termed NS-1 was able to inhibit growth of G12D

mutated PDAC in mice (35). However, the limitation of this

strategy is the low cellular permeability of these large molecules.
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Therefore, further optimization is required for this approach

prior to clinical testing.

Various efforts are now focused on research and discovery of

novel KRAS G12D inhibitors. The development of agents, such

as MRTX1133, is exciting for the field of PDAC research and

provides evidence that KRAS G12D can be effectively targeted

with a small molecule inhibitor. As with the G12C inhibitors,

perhaps this discovery could lead to more small molecules

entering the arsenal against G12D. As we await to see further

clinical development of MRTX1133, the optimization of hits and

potential discovery of more targeted compounds is anticipated.

These efforts are critical for patients with KRAS G12D

mutations, which make up a large subset of Ras-mutated

cancers, especially for PDAC where the therapeutics currently

available are providing meager benefits in the majority of cases.
Immunotherapy targeting KRAS
G12D in PDAC

Immunotherapeutic approaches have not had great success

for PDAC patients (38). In other Ras-mutated cancers, immune

checkpoint inhibitors (ICIs) have improved patient outcomes in

clinical trials and thus have been approved by the FDA for the

treatment of NSCLC and melanoma (39). However, ICIs did not

achieve similar success in PDAC, even in combinatorial

approaches. PDAC is characterized by a desmoplastic tumor

microenvironment (TME) with low numbers of tumor-

infiltrating lymphocytes (TILs) and is largely considered to be

immunosuppressive (40). Immune cells that are found within the

PDAC TME include tumor-associated macrophages (TAMs),

myeloid-derived suppressive cells (MDSCs), and regulatory T

cells (Tregs) which contribute to immune evasion, PDAC

progression, and resistance to immunotherapies (38, 41). These

factors could explain the observed low response of PDAC to ICIs

in clinical trials (42–44). The exception is a small subset of PDAC

patients with high microsatellite instability (MSI-H) tumors or

mismatch repair deficiency (<1%) who can benefit from anti-PD-

1 therapy (45, 46). Nevertheless, attempts are being made to

identify targets that could reinvigorate the immune suppressive

tumor microenvironment to become more immunogenic and

better responsive to immunotherapy.
Mutant KRAS modulates tumor
immune microenvironment

Several studies have highlighted the role of oncogenic KRAS in

establishing a pro-inflammatory microenvironment that enables

PDAC tumorigenesis and progression (47–50). Oncogenic KRAS

G12D signaling in tumor cells regulates the signaling of

surrounding stromal cells and establishes reciprocal signaling

between tumor and stromal cells (49, 51). PD-L1 expression is
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mutation have lower PD-L1 expression compared to other KRAS

mutants (52, 53). Additional evidence for the role of oncogenic

KRAS in modulating the TME comes from a recent study utilizing

the anti-KRAS G12C agent AMG510 (19); where treatment with

AMG510 increased the number of cytotoxic CD8+ T cells that

infiltrated tumors in mice. Anti-KRAS therapy also synergized with

anti-PD-1 treatment and produced durable anti-tumor responses

(19). This provides strong evidence that KRAS signaling is involved

in modulating the TME and maintaining an immune evasive

environment, which hinders the development of ICIs as

monotherapy in PDAC. Nevertheless, it also shows that using the

right tools, the TME can be modulated and PDAC can potentially

become responsive to immunotherapeutic approaches.
T cell therapy targeting KRAS G12D

Adoptive cell therapy utilizes the patient’s own lymphocytes

which may be engineered to express receptors that specifically

target tumor neoantigens (54). This immunotherapeutic approach

may be suitable to target KRAS neoantigens for PDAC therapy

and to address the challenge of targeting KRAS, as well as the

challenge of implementation of immunotherapies in PDAC. A

study identified HLA-A*11:01 to be able to present KRAS

neoantigens, and then generated murine T cells that recognize

G12D mutated PDAC in an HLA-A*11:01 restricted manner and

could inhibit the growth of tumors in vivo. (55). An ongoing phase

I/II clinical trial is investigating transfer of T-cells engineered to

express a G12D specific murine T-cell receptor (TCR) in HLA-

A*11:01 patients with solid tumors, including pancreatic cancer,

harboring the KRAS G12D mutation (NCT03745326).

In a recent report, a patient with metastatic G12D-mutated

PDAC received adoptive cell transfer therapy using engineered

autologous T cells that target KRAS G12D mutant protein in the

tumor, resulting in regression of metastases in the patient (Figure 2)

(56). A patient with CRC had been previously reported to receive an

infusion of ex-vivo expanded T cells with HLA-C*08:02 restriction

and KRAS G12D reactivity, resulting in the regression of metastatic

lung lesions (57). Based on the previous success of this approach, a

heavily pretreated PDAC patient with lung metastases was treated

with T-cells that were engineered to express HLA-C*08:02 restricted

TCRs with specificity against KRAS G12D (56). A single infusion of

16.2×109 T-cells was given to the patient, which contained 85%

CD8+ T-cells, and 15% CD4+ T cells, with high-dose interleukin-2

therapy to support T-cell expansion. One month follow-up revealed

regression of metastatic lung lesions, which continued to regress at

the 6-month follow-up with an overall objective partial response of

72% according to RECIST, version 1.1, criteria (56). Additionally,

the infused T-cells were found to persist in circulation at 6 months,

making up 2.4% of total circulating T cells.

This reported case shows that engineered TCRs could be

beneficial to some patients with metastatic PDAC. The drawback
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of this therapy is that TCRs were restricted by a specific HLA-

C*08:02, which is expressed by a small subset of patients. Further

studies and clinical trials are needed to investigate this therapy

on a larger scale, and to identify other KRAS-G12D-reactive

TCRs which could be utilized for similar therapies (58, 59).

Meanwhile, results from the ongoing clinical trial for HLA-

A*11:01+ patients are eagerly awaited.
Targeting KRAS mutations
beyond G12D

Since the discovery of G12C inhibitors, there has been

growing interest in finding novel mutant-specific inhibitors to

other common KRAS mutants. For a more detailed review,

Nagasaka and colleagues have recently published an article

highlighting novel strategies to target KRAS beyond G12C

inhibitors including cancer vaccines, adoptive cell therapy,

PROTACs and CRISPR/Cas9 (60).

KRAS G12R mutation is present in 17% of PDAC cases

(Figure 1) and is therefore an important target for PDAC. Recent

work has shown that the mutant arginine 12 in KRAS G12R can

be targeted covalently with small molecule electrophiles (61).

Although the molecules that target G12R have not shown
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develop more potent molecules, and thus this presents an

important proof of concept for targeting G12R. Less prevalent

in PDAC, the G12S mutation in KRAS has also been targeted

recently with compounds that acylate the noncatalytic mutant

serine 12 residue (62). These compounds have shown selectivity

for cells harboring the G12S mutation, but currently remain in

vitro tools that require further optimization. Another class of

drugs mentioned previously, is the tricomplex Ras(On)

inhibitors, which are being developed against various KRAS

mutants including G12C, G12D, and G13C, in addition to a

G12X inhibitor that targets several G12 mutants (63).
Conclusion

RAS genes are the most commonly mutated oncogenes in

cancers. A mutation in KRAS is the most common oncogenic

driver in PDAC and is also a known driver of NSCLC and CRC.

Until the recent discovery of KRAS G12C inhibitors, KRAS had

been considered an undruggable target for decades (64). Given

the success of translating this discovery to the clinic, research

efforts are focusing on drugging KRAS G12D, the most common

hotspot mutation. The discovery of the preclinical agent
FIGURE 2

Treatment of metastatic PDAC with mutant KRAS-targeting genetically engineered T-cells. A heavily pretreated patient with metastatic PDAC to
the lungs underwent an expiremental immunotherapy that targets mutant KRAS. Autologous T-cells were isolated and transfected with genes
encoding two HLA-restricted T-cell receptors targeting KRAS G12D epitopes. The infusion product contained 16.2x109 T cells, and supportive
high dose interleukin-2 therapy was administered. Metastatic lung lesions regressed at 1 month follow up, with continued regression at 6-
months and an overall partial response rate of 72%.
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MRTX1133 is an exciting advance for pancreatic cancer

research. MRTX1133 binds potently and reversibly in the

switch II pocket of mutant KRAS G12D. We hope that this

discovery will lead to precipitous efforts by various groups to

introduce optimized agents that can be tested clinically for

PDAC patients.

The switch-II pocket seems to be a druggable pocket in

various KRAS mutants and is susceptible to reversible non-

covalent inhibition. Additionally, this pocket could potentially

be targeted in both the GDP as well as the GTP-bound states of

KRAS (31, 65), meaning it is possible to develop inhibitors that

target KRAS mutants with low intrinsic GTPase activity (28).

Cancer immunotherapy using ICIs and the observed durable

responses with limited toxicities has generated a lot of

excitement within the cancer research field. Despite many

approvals for various cancers, immunotherapeutic approaches

are yet to be approved for the treatment of PDAC. Targeting

KRAS G12D using engineered T cells is an exciting development

for immunotherapy in the PDAC KRAS G12D space.

To answer the question, has the KRAS G12D fortress been

conquered? At this point in time, there are definitely exciting

advances towards that goal, but G12D agents have a few more

hurdles to overcome. The fortress may not have been conquered

yet, but the walls we once thought were impervious have

certainly been breached.
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