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Understanding emerging
bioactive metabolites with
putative roles in cancer biology

Olivier Philips, Mukhayyo Sultonova, Beau Blackmore
and J. Patrick Murphy*

Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
Dysregulated metabolism in cancers is, by now, well established. Although

metabolic adaptations provide cancers with the ability to synthesize the

precursors required for rapid biosynthesis, some metabolites have direct

functional, or bioactive, effects in human cells. Here we summarize recently

identified metabolites that have bioactive roles either as post-translational

modifications (PTMs) on proteins or in, yet unknown ways. We propose that

these metabolites could play a bioactive role in promoting or inhibiting cancer

cell phenotypes in a manner that is mostly unexplored. To study these

potentially important bioactive roles, we discuss several novel metabolomic

and proteomic approaches aimed at defining novel PTMs and metabolite-

protein interactions. Understanding metabolite PTMs and protein interactors of

bioactive metabolites may provide entirely new therapeutic targets for cancer.
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Introduction

The importance of altered metabolism in most cancers to meet the biosynthetic

requirements of cell proliferation, angiogenesis, and immune evasion is well established

(1). Beyond these anabolic and catabolic roles of metabolites in cancer, metabolites also

function as regulators of gene expression and protein activity which affects cancer cell

phenotypes. These include the classical oncometabolite, 2-hydroxyglutarate, (2-HG) (1)

which is structurally similar to a-ketoglutarate (a-KG) and functions in part by

inhibition of a-KG-dependent histone demethylases (2). This inhibition results in

widespread changes to DNA methylation and gene expression as the main tumor-

promoting mechanism of action of 2-HG. Although this mechanism is well established,

many a-KG-independent effects have also been proposed in recent years (3). Along these

lines, the roles of the 1-carbon pool and S-adenosyl-methionine (SAM) in providing
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methyl groups for DNA methylation and the requirement for

NAD+ metabolism in activating the sirtuin family of

transcriptional repressors are additional classical examples of

direct links between metabolism and cancer biology. The

identification of these functional metabolites has led to the

development of small molecule inhibitors of the 2-HG-

producing IDH1/IDH2 mutant proteins in gliomas (4) and

acute myeloid leukemia (5) as well as a variety of sirtuin

inhibitors (6). Based on these classic examples, we propose

that efforts to understand the full repertoire of bioactive

metabolites could lead to the development of exciting new

treatment approaches for cancer and may even serve as

diagnostic biomarkers in some cases (7).

Emerging data from the fields of neurobiology, immunology,

exercise physiology, diabetes, and others have recently unveiled

bioactive roles for several endogenous metabolites in human

cells. Ultimately, these newly revealed bioactive functions of

metabolites result in phenotypes with wide-ranging importance

from exercise metabolism to cancer biology. Some of these

metabolites enact their bioactive roles as, previously

unappreciated, PTMs of proteins. Like other PTMs such as

phosphorylation, acetylation, and ubiquitination, these PTMs

could reside on proteins with roles in cancer biology. Yet other

newly appreciated bioactive metabolites have unclear

mechanisms of action. Both the proteins decorated by, and

interacting with, bioactive metabolites could serve as new

targetable modalities in cancer. Fortunately, new proteomic

and metabolomic technologies enable mapping of novel PTMs

as well as metabolite-protein interactions, providing a unique

opportunity to develop bioactive metabolite-inspired therapies.

Here, we briefly summarize the most recent developments in

metabolite based PTMs and other emerging bioactive

metabolites with unknown mechanisms of action. We also

discuss emerging technologies that are enabling the field to

identify new PTMs and study their interactions with proteins

to elucidate new bioactive roles for metabolites.
Metabolites as post-translational
and epigenetic modifiers

The effects of PTMs such as phosphorylation, glycosylation,

acetylation, ubiquitylation, and methylation are well established in

cancer biology. Indeed, the most prominent cancer-causing

mutations result in dysregulated phosphorylation such as those

residing in PI3K and Rb (8). Recent studies involving high-

resolution mass spectrometry experiments have expanded the

number of known types of PTMs, all of which most likely regulate

signaling and gene expression related to cancer proteins. Here, we

highlight the most recent discoveries in metabolic-based PTMs.
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Lactylation

Lactate is the major end-product of glycolysis and is excreted

by cultured cancer cells undergoing aerobic glycolysis (9),

known as the classic “Warburg Effect”. However, lactate itself

alters the transcription of genes involved in metabolic

reprograming, regulation of cell cycle, and proliferation (10).

Recently, the presence of lactate modification of lysine residues

(lactylation) on several core histones has been reported (11).

Furthermore, lactylation of lysines on histone H3 appears to be

modulated by glucose uptake and lactate levels in the cell (11).

Beyond glucose flux and mitochondrial inhibitors and hypoxia

have also been observed to amplify lysine lactylation. More

recent evidence of lactylation in aerobic glycolysis has also

been observed during macrophage differentiation under the

control of the B-cell adapter for PI3K (BCAP) (12) and in

lung myofibroblasts (13). Although preliminary evidence

suggests that the histone deacetylase p300 may serve as a

histone lactylase, the precise control of histone lactylation will

be an important topic of further study. Although these data

potentially provide a direct functional link between glycolysis

and gene expression whether lactylation of histones is required

or is correlative with methylation is currently still unclear.

Future work demonstrating the effects of mutations in key

lactylated lysine residues on methylation will be required to

establish this effect.
Serotonylation

Although the tryptophan metabolite, serotonin is a classical

neurotransmitter, it has also been proposed to have both cancer

growth-promoting and anti-cancer roles (14). Due to these

conflicting roles, understanding novel mechanisms of action

for serotonin will be critical to investigate the putative role of

serotonin in cancer. Like lactylation, serotonin has also been

observed as a metabolite-based PTM on GTPases and vascular

proteins, ultimately playing a role in vasoconstriction (15, 16).

More recently, mass spectrometry experiments have shown

evidence of post-translational modification of histones by

serotonin (serotonylation). Serotonlylation was observed to

occur on glutamine 5 of histone H3 trimethylated lysine 4

(H3K4me3)-marked nucleosomes resulting in the presence of

detectable H3K4me3Q5ser in several mouse tissues and cell lines

(17). Although the addition of serotonin has been shown to be

performed by transglutaminase 2 (TGM2), how this process is

fully regulated is still unclear (15). Ultimately, serotonylated

histones could alter methylation status and cell fate and have

significant effects on tumorigenesis and we propose should be an

active area of further study.
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Succinylation

Succinate is a fundamental TCA cycle metabolite but, like 2-

hydroxyglutarate, has also gained attention as an oncometabolite in

cancers harbouring mutations in succinate dehydrogenase (SDH)

enzymes (18). At least some of the oncometabolite function of

succinate occurs via lysine succinylation, which was observed in

E.coli several years ago (19, 20) and has more recently been mapped

on 779 human proteins by mass spectrometry (21). SDH loss in a

variety of cancers also results in hypersuccinylation of many

metabolic proteins (22) which may also contribute to

dysregulated metabolism in cancer. In recent years, the study of

lysine succinylation biology has been active, revealing roles for

succinylation of APP and tau in Alzheimer’s disease (23) and for

regulating core histones in human cells (24, 25). Like lactylation and

serotonylation, the proteins that succinylate and desuccinylate

lysine residues and their phenotypic relationships with cancer are

only beginning to be explored. For example, SIRT5, which also has

roles in cancer (26) has been proposed as a desuccinylating enzyme

for metabolic proteins (21). A recent study also showed that

carnitine palmitoyl transferase 1A (CPT1A)-mediated

succinylation increased human gastric cancer invasion through

succinylation of S100A10 at lysine 47 (27). Furthermore, lysine

succinylation may occur by a non-enzymatic chemical reaction,

originating directly from succinyl-CoA. This suggests that the

abundance of succinyl-CoA would be one of the main governing

factors of lysine succinylation. For example, it has been shown that

succinyl-CoA could non-enzymatically succinylate BSA and

ovalbumin in vitro in a concentration-dependent manner,

demonstrating that succinylation may at least partly depend on

intracellular succinyl-CoA levels (28). Continued efforts to

determine the full plethora of succinylated proteins and

mechanisms by which they are regulated will be important since

they have the potential to reveal entirely new therapeutic avenues

for cancer biology.
Others

Although we have attempted to describe the more recently-

identified metabolite PTMs (Table 1), others have been under

study over the last 10-15 years, including different forms of
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lysine acylation such as crotonylation (29, 30). Like several other

metabolite-based PTMs, crotonylation has mainly been

observed on histones and has been shown to be dysregulated

in hepatocellular carcinoma (31). S-nitrosylaton, the addition of

an NO group to cysteine residues, is another well-established

functional PTM that has critical roles in the immune response

and also has roles in cancer (32) but may be pro- or anti-

tumorigenic, depending on concentration.
Recently revealed functional
metabolites with unknown
mechanisms of action

In addition to bioactive metabolites that are PTMs, several

emerging metabolites that have been shown to have phenotypic

effects on cells may also have roles in cancer cell biology that

appear independent of catabolism and anabolism, but for which

the mechanisms are poorly described. These metabolic

discoveries provide an opportunity to target proteins that elicit

functional metabolite mechanism of action that could provide

therapeutic treatment in cancer.
Methylmalonic acid

Methylmalonic acid (MMA) is a by-product of propionate

metabolism that is best known as a marker for vitamin B12

deficiency due to its production by an impairment in L-

methylmalonyl-CoA mutase (33). Recently, by applying both

young and old patient serum to cultured cancer cells, MMA has

been shown to be a key component of older individuals serum

that promotes epithelial to mesenchymal transition and

contributes tumor aggressiveness (34) (Figure 1A). Since

cancer risk increases with age, the accumulation of MMA may

link ageing and cancer progression and understanding MMA

function may be a promising strategy to reveal new therapeutic

targets for cancer. Mechanistically, the effects of MMA were

shown to be dependent on TGFb release which in turn induced

SOX4 expression, a key promoter of EMT genes, in an autocrine

manner (34). Prior work has shown that MMA caused
TABLE 1 Recent metabolite-based post-translational modifiers of proteins.

Post Translational Modifier Proteins Modified Proposed Writers Study

Lactate Histone H3 BCAP, HDACp300 (11–13)

Serotonin Histone H3 TGM2 (15–17)

Succinate APP/Tau unknown (23)

Core Histones unknown (22, 25)

Many Proteins SIRT5 (21)

S100A10 CPT1A (27)
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CoEnzymeQ deficiency in vitro (35), induced DNA damage in

rat brain (36), impaired the differentiation of neuronal cells (37),

and decreased cellular energetics in the C6 astrocyte-like cell line

(37). Although together these data begin to explain the

mechanism of action MMA, more research is required to

determine the cellular targets of MMA and how it’s effects on

EMT and tumor aggressiveness can be targeted therapeutically.
Indole-3-propionic acid

Metabolites derived from gut microbiota are increasingly

being shown to exert bioactive roles in cancer (38). Tryptophan-

derived microbial products are of particular interest and in

recent years several studies have revealed novel roles of 3-

indolepropionic acid (3-IPA), a gut microbial-derived

metabolite derived from tryptophan by Clostridium sporogenes

(39). More recently, 3-IPA has been shown to promote axonal

nerve regeneration following intermittent fasting (40)

(Figure 1B). Given the observations that intermittent fasting

(IF) can have in providing anti-cancer benefits (41), the role of
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IF-induced 3-IPA should also be investigated. Indeed, 3-IPA has

been shown to decrease cell proliferation in breast cancer (42)

and protects against radiation toxicity (43). The metabolite may

also suppress cancer immunity since recent untargeted

metabolomic analyses revealed that 3-IPA is elevated in

exhausted T cells and was shown to suppress T-cell responses

when supplied exogenously (44). The effects of 3-IPA are

proposed to be exerted through pregnane X receptor (PXR)

and the aryl hydrocarbon receptor (AHR) (42, 43) but the full

mechanisms of action remain to be elucidated.
PAHSAs

About 10 years ago, intriguing, endogenously-produced,

bioactive fatty acid esters of hydroxy–fatty acids (FAHSAs)

were discovered in mice with proposed roles in regulating

glucose levels (45). Of the hundreds of FAHSA isomers, the

palmitic esters of hydroxy stearic acids (PAHSAs) have

particularly strong bioactive roles as anti-inflammatory and

anti-diabetic metabolites (46) and we propose their bioactive
FIGURE 1

Emerging metabolites with unknown mode of action. (A) Methylmalonic is elevated during aging and may promote the expression of genes
involved in epithelial-mesenchyme transition (EMT), relying on SOX4 but through undefined mechanism. (B) Gut microbes produce 3-IPA that
result in nerve regeneration and other phenotypes by unknown mechanisms. (C) Increased PAHSAs have been observed in diabetic models that
my have a role in cancer by activation of cell signaling through GPRs. (D) N-lactoyl-phenylalalanine (Phe-Lac) is elevated during exercise and
functions in an unknown manner to reduce feeding and obesity in mice.
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roles in cancer should also be investigated. Mechanistically,

PAHSAs have been shown to activate G protein-coupled

receptors known to be activated by free fatty acids. In this

regard, both GPR120 (45) and GPR40 (47) are activated by 5-

PAHSA and 9-PAHSA to regulate glucose uptake through

glucose transporter 4 (GLUT4) translocation and glucagon-like

peptide 1 (GLP-1) release (Figure 1C). Since GPR40 and

GPR120 are expressed in cancers (48) and invoke specific

signalling responses that lead to glucose uptake, PAHSAs may

have bioactive roles in glucose uptake in cancer cells. Consistent

with their function in glucose regulation, PAHSAs are also

negatively correlated with high-fat diets and insulin resistance

which may highlight an unexplored connection between

PAHSAs, glucose uptake, cancer, and diet. However, although

there may be a proposed positive link between PAHSAs and

cancer through glucose uptake regulation, 9-PAHSA has been

proposed to promote apoptosis in cells (49), others have not

observed these effects in colon cancer cells HCT11-116 and HT-

29 cells (50) suggesting the links between FAHSAs and cancer

are complex. Ultimately, these findings emphasize the need for

further study of FAHSAs in cancer biology.
Phenyl-lactate

The avid production of lactate by cancer cells was originally

made by Otto Warburg and is consistently observed in cancers

and during bouts of intense exercise. Recently, N-lactoyl-amino

acids, which are lactate-conjugated amino acids, have been

detected by mass spectrometry and include N-lactoyl-

isoleucine, N-lactoyl-tyrosine, N-lactoyl-tryptophan, and N-

lactoyl-phenylalanine (51). It was recently shown that N-

lactoyl-phenylalanine (Lac-Phe) is highly elevated during

exercise alongside lactate and produced by carnosine

dipeptidase 2 (CNDP2) in macrophages, monocytes and other

immune and epithelial cells (52) (Figure 1D). By a, yet unknown

mechanism, Lac-Phe has been shown to act as blood-borne

signalling metabolite that suppresses feeding and obesity (52).

Whether the concentrations of Lac-Phe used in an experimental

setting reflect those found in circulation, either in healthy or

cancer patients is not clear. Furthermore, the mechanism of

action of Lac-Phe is completely unknown and investigating the

role of Lac-Phe in cancer may provide insight into the bioactive

role of Phe-Lac and reveal new targetable links between exercise-

induced signaling metabolites and cancer.
Others

These recently revealed bioactive metabolites whether acting

as new post-translations on proteins or yet unknown functions,

are not a comprehensive description of functional metabolites
Frontiers in Oncology 05
but a summary of more recent ones with potential roles in

cancer. Others continue to emerge, whereby, for example, a

recent untargeted mass spectrometry-based metabolomics study

identified a form of 2-HG, 2-hydroxyglutarate-lactone, that

exists in human cells for which the regulation and putative

function apart from 2-HG is unknown (53). Although we do not

summarize the vast number of diet-derived bioactive metabolites

that also continue to emerge such as phytoestrogens (54).

Furthermore, some endogenous metabolites act as riboswitches

to influence gene expression (55). It is thus clear that although

the metabolic “parts list” of metabolites in human cells is nearly

complete, the next steps are to understand how they influence

cancer phenotypes such as proliferation, metastasis, and

immune evasion through their bioactive roles in cells.
New tools to unveil metabolite
PTMs and bioactive roles in cancer

Over the last few years, new mass spectrometry technologies

have provided increasing opportunities to identify new bioactive

metabolites or metabolite-based PTMs. Exploring chemical

modifications on proteins, such as metabolites in an unbiased

manner was first established using mass tolerant searching of

LC-MS/MS spectra against predicted spectra based on the

annotated proteome database (56). The speed and

approachability of this strategy have improved with the release

of tools like MSFragger (57, 58), TagGraph (59), MODa (60),

and PIPI (61). These methods may also be deployed to search for

novel metabolite-based PTMs in mass spectrometry datasets

collected from bulk tumor tissue, cell lines, or histone extracts

(62) under different conditions.

Understanding the bioactive roles of newly-discovered

metabolites may best be achieved by determining protein-

metabolite interactions (63) since they serve as conveyers of

bioactivity in cells (64). Multiple groups have developed both

protein-centric or metabolite-centric approaches to examine

metabolite-protein interactions. The protein-centric

approaches identify endogenous metabolites that potentially

bind to a given, purified, protein target. Key among these

approaches is Mass Spectrometry Integrated with equilibrium

Dialysis for the discovery of Allostery Systematically (MIDAS)

(65). This approach incubates purified proteins on one side of a

metabolite-permeable dialysis membrane and examines

differences in metabolite abundance on the opposite side by

LC-MS. In preliminary findings, the approach has recently been

deployed to identify metabolite interactions across 33 enzymes

of central carbon metabolism (66) as well as with eukaryotic

initiation factor 2B (eIF2B) (67), both of which reveal novel

metabolite-protein interactions.
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Alternative, metabolite-centric metabolite-protein interaction

approaches aim to determine the protein interactors for a given

metabolite and several of these approaches have emerged that can

be divided into chemical probe-based and structure/stability-based

(68, 69). The chemical probe-based approaches rely on metabolite

derivatization with a tag that can be purified by affinity

chromatography followed by target identification by mass

spectrometry. This approach has mostly been deployed for

identifying drug targets (70, 71). Probe-based approaches are

challenging since the chemistry must be redesigned for each

metabolite and may also affect the binding to the cognate protein.

Alternative to probe-based approaches, stability-based strategies

measure the differences in biophysical properties of proteins on a

global scale imparted by unmodified small molecule drug or

metabolite binding. Key among these approaches is thermal

proteomic profiling (TPP), which monitors protein thermal

stability over a temperature gradient by combining the principles

of a non-global cellular thermal shift assay (CETSA) with

multiplexed quantitative mass spectrometry‐based proteomics

(72). TPP has been successfully applied to identify targets and off‐

targets of drugs and to study the protein interactors of the crucial

metabolite, ATP (73). Along these lines, Stability of Proteins from

Rates of Oxidation (SPROX) (74) uses a chemical denaturation

gradient and Solvent Proteome Profiling (SPP) (75) uses a solvent

gradient instead of temperature. Finally, two additional approaches,

termed Drug Affinity Responsive Target Stability (DARTS) (76)

and Limited Proteolysis Mass Spectrometry (LiP-MS) (63) reveal

information about protein binding through proteolytic footprints

caused by metabolite binding.

Finally, like the many available tools that are available to

predict well established PTMs, in-silico prediction of PTMs may

be orthogonal to empirical methods. For example, lipid

modification of proteins can be identified by using prediction

models such as CSS-Palm 2.0 (77) or those based on the primary

amino acid composition of k-spaced amino acid pairs

(CKSAAP) (78). Furthermore, although recent breakthroughs

in structure prediction using AlphaFold (79) did not encorporate

ligand binding, emerging tools are undergoing preliminary work

take ligands into account (80). These advances in identifying

protein modification will be key in the discovery of metabolites

that induce PTMs in cancer cells. How successful any of these

small molecule-protein interaction profiling techniques

(empirical or predicted) will be in determining protein

interactors of newly discovered bioactive metabolites such as

MMA, 3-IPA, PAHSAs, Phenyl-lactate, and others remains to be

explored but could reveal valuable insight into the bioactivity of

these metabolites. One difficulty in extending these methods

from the study of exogenous small molecule engagement is the

typically transient and low-affinity nature of metabolite-protein

interactions. As such, we suggest that improved metabolite-

protein interaction technologies will need to be developed to

harness the therapeutic potential of bioactive metabolites.
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Conclusion

Bioactive, or “functional”, metabolites continue to emerge in

human cells and tissues and may reveal previously

underappreciated biological pathways in cancer while at the

same time providing a scaffold from which new classes of small

molecule therapeutics may be developed. Although we have

briefly summarized several of the more exciting and recent

findings in this regard, many other longstanding bioactive

roles exist for metabolites that remain incompletely

understood. Along these lines, new proteomics technologies

have revealed underappreciated metabolite-protein interactions

for well-known metabolites like ATP (63) for which the

relevance is not yet known. The continued development of

new technologies in metabolite-protein interactions and their

application to understanding their bioactive roles will be an

exciting and fruitful area of discovery moving forward.
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