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A novel risk model construction
and immune landscape analysis
of gastric cancer based on
cuproptosis-related long
noncoding RNAs
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Xinyi Zhou1, Quan Cheng1, Li Hu1, Hao Fan1, Peidong Ni1,
Zekuan Xu1, Diancai Zhang1* and Li Yang1,2*

1Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of General Surgery, Liyang People’s Hospital, Liyang Branch Hospital
of Jiangsu Province Hospital, Liyang, China
Recent studies have identified cuproptosis, a newmechanism of regulating cell

death. Accumulating evidence suggests that copper homeostasis is associated

with tumorigenesis and tumor progression, however, the clinical significance of

cuproptosis in gastric cancer (GC) is unclear. In this study, we obtained 26

prognostic cuproptosis-related lncRNAs (CRLs) based on 19 cuproptosis-

related genes (CRGs) via Pearson correlation analysis, differential expression

analysis, and univariate Cox analysis. A risk model based on 10 CRLs was

established with the least absolute shrinkage and selection operator (LASSO)

Cox regression analysis and multivariate Cox proportional hazards model to

predict the prognosis and immune landscape of GC patients from The Cancer

Genome Atlas (TCGA). The risk model has excellent accuracy and efficiency in

predicting prognosis of GC patients (Area Under Curve (AUC) = 0.742, 0.803,

0.806 at 1,3,5 years, respectively, P < 0.05). In addition, we found that the risk

score was negatively correlated with the infiltration of natural killer (NK) cells

and helper T cells, while positively correlated with the infiltration of monocytes,

macrophages, mast cells, and neutrophils. Moreover, we evaluated the

difference in drug sensitivity of patients with different risk patterns.

Furthermore, low-risk patients showed higher tumor mutation burden (TMB)

and better immunotherapy response than high-risk patients. In the end, we

confirmed the oncogenic role of AL121748.1 which exhibited the highest

Hazard Ratio (HR) value among 10 CRLs in GC via cellular functional

experiments. In conclusion, our risk model shows a significant role in tumor

immunity and could be applied to predict the prognosis of GC patients.

KEYWORDS

cuproptosis-related lncRNA, gastric cancer, prognosis, tumor immunemicroenvironment,
immunotherapy, risk model
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Introduction

Gastric cancer (GC) remains one of the most common

malignant tumors of the gastrointestinal tract, with more than

one million new cases and an estimated 0.76 million new deaths

each year globally. Despite improvements in the diagnosis and

treatment of GC, the overall survival of patients with advanced

gastric cancer (AGC) remains poor (1). HER2, microsatellite

instability (MSI), and PD-L1 are only three targeted therapy

biomarkers that can predict the therapeutic response of GC

patients (2). Therefore, it is crucial to identify novel biomarkers

that can predict prognosis and therapeutic response in patients

with GC.

Long non-coding RNA (LncRNA) is a class of transcripts

longer than 200 nucleotides with limited or no protein-coding

properties (3, 4). Accumulated evidence suggests that lncRNAs

are implicated in regulating various biological processes during

tumor development (5). They are critical operators in

tumorigenesis, metastasis, progression, and treatment

resistance (5–7). Studies have shown that several lncRNAs that

are elevated in GC, such as H19, HOXA11-AS, PVT1, and

MALAT1, are involved in the tumorigenesis, metastasis, and

angiogenesis of GC (8–11). Meanwhile, several downregulated

lncRNAs such as TUSC7 and MEG3 were identified as tumor

suppressors (12–14). These findings imply the potential use of

GC-specific LncRNAs as biomarkers and therapeutic targets.

A recent study found that the accumulation of intracellular

copper causes the aggregation of mitochondrial lipoylated

proteins and the destabilization of Fe-S cluster proteins,

leading to a unique type of cell death termed cuproptosis (15).

Cuproptosis is mediated by protein lipoylation, which differs

from other mechanisms of regulated cell death, such as

ferroptosis, apoptosis, necroptosis, and pyroptosis (16).

According to the research conducted by Tsvetkov and

colleagues, respiring cells and TCA-cycle active cells had

higher quantities of lipoylated tricarboxylic acid cycle (TCA)

enzymes, and the lipoyl moiety functions as a direct copper

binder, leading to aggregation of the lipoylated protein, Fe-S

cluster-containing proteins loss, and HSP70 induction, reflective

of acute proteotoxic stress (16). In more detail, in the

extracellular environment, elesclomol binds copper (Cu2+) and

transports it to intracellular compartments. Cuproptosis is
Abbreviations: GC, gastric cancer; TCGA, The Cancer Genome Atlas; AGC,

advanced gastric cancer; MSI, microsatellite instability; LncRNA, Long non-

coding RNA; CRGs, cuproptosis-related genes; CNV, copy number variation;

CRLs, cuproptosis-related lncRNAs; TCA, tricarboxylic acid; PCA, principal

components analysis; IC50, 50% inhibiting concentration (IC50); TMB,

Tumor mutation burden; OS, overall survival; PFS, progression-free

survival; GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology;

KEGG, Kyoto Encyclopaedia of Genes and Genomes; TIDE, Tumor

Immune Dysfunction and Exclusion.
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primarily brought on by increased Cu concentration through

mitochondrial proteotoxic stress, which is mediated by

ferredoxin 1 (FDX1). FDX1 facilitates the lipoylation and

aggregation of enzymes responsible for the regulation of the

mitochondrial TCA cycle by reducing Cu2+ to Cu+. However,

the instability of iron-sulfur proteins (Fe-S) cluster proteins is

brought on by FDX1. In addition to Cu ionophores, Cu

exporters such as ATPase Copper Transporting Beta

(ATP7B) and importers like Solute Carrier Family 31 Member

1 (SLC31A1) control intracellular Cu+ levels to regulate

cuproptosis sensitivity (15).

In our study, we identified 10 CRLs and established a risk

model. We evaluated the prognostic value of the model

established in GC patients and compared the predictive

prognosis efficiency of the risk model with those of other

clinical characteristics. In addition, in GC patients, we

explored the association between risk scores and clinical

characteristics, immune cell infiltration, immunotherapy score,

drug sensitivity, and TMB. Moreover, we confirmed the

oncogenic role of lncRNA AL121748.1 in GC via CCK-8

assay, colony formation assay, wound healing assay, and

transwell assays. This study aimed to find a new biomarker for

the clinical prediction of therapeutic response and prognosis

in GC.
Materials and methods

Data acquisition and processing

From The Cancer Genome Atlas (TCGA), we obtained the

expression matrix and corresponding clinical data of GC

patients and excluded those with a survival time of fewer than

30 days. A total of 342 patients were randomly assigned to two

groups, with 172 patients in the training set and 170 patients in

the validation set. To annotate mRNA and lncRNA, we used the

annotation human GTF file from Ensembl (http://asia.

ensembl.org).
Obtaining cuproptosis-related lncRNAs

Based on previous research (15, 17, 18), we obtained 19

CRGs and obtained gene expression data via the “limma”

package in R. We then identified 1218 CRLs based on 19

CRGs from lncRNA expression data via Pearson’s correlation

analysis (|Pearson ratio| > 0.3, P < 0.001).
Establishment of the risk model

After acquiring 1218 CRLs, 26 prognostic CRLs were

obtained via univariate analysis. LASSO regression analysis
frontiersin.org
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and multi-cox analysis were then conducted to gain the risk

model based on 26 prognostic CRLs. 10 lncRNAs were finally

identified for the construction of the model. We calculated the

risk score as follows:

Risk score (patients) = o
n

k=1

Coefvalue (genek) ∗ expression (genek)

The terms n, k, coef, and expression in this formula stand for

the numbers of lncRNAs, selected lncRNAs, the value of the

regression coefficient, and the value of the lncRNA expression,

respectively. The cutoff value was assumed to be the median of

the risk score in the training set.
Validation of the risk model

A Kaplan-Meier analysis was conducted to investigate the

differences in patients’ survival between the two groups. Receiver

operating characteristic (ROC) curves were used to determine

the model’s accuracy. The survival status of patients with various

risk patterns was also plotted. In the above analysis, the R

packages “timeROC”, “ survminer ”, and “survival” were used.

By using the “pheatmap” package in R, the RNA level of 10

lncRNAs in the risk model was visualized. The model’s

effectiveness and accuracy were further validated in the

testing set.
Prognostic function of the risk model

The chi-square test was applied to determine the

relationship between risk patterns and clinical characteristics

of GC patients. To confirm the model’s independent prognostic

function, both univariate and multivariate analyses were

performed. Clinically relevant ROC curves and decision curves

were used to validate the risk model’s clinical application value.

A nomogram was used to calculate the predicted survival time of

GC patients, and the accuracy of it was determined via the

calibration and ROC curves. The R packages “rms”, “ggDCA”,

“survival”, “ replot ”, and “ timeROC” were used in the above

analysis. The difference in overall survival (OS) among patients

with various clinicopathological characteristics was evaluated via

Kaplan-Meier survival analysis.
Immune cells infiltration in GC patients

We obtained integrated TCGA immune cell infiltration data

(CIBERSORT, TIMER, QUANTISEQ, XCELL, EPIC, and

MCPCOUNTER) from TIMER2.0 (https://timer.comp-

genomics.org). Spearman correlation analysis was used to

determine the relationship between immune infiltrating cells

and risk score. The R packages “limma”, “ ggplot2”, “scales”, “
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pheatmap”, “ ggpubr”, “reshape2”, “tidyverse”, and “ ggtext ”

were used in the above analyses.
Therapeutic sensitivity prediction of
patients with different risk patterns

Using the pRophetic algorithm, we evaluated the 50 percent

inhibiting concentration (IC50) of drugs to determine the value

of the risk score in predicting chemotherapies/targeted drug

sensitivity. The drugs with p < 0.001 were displayed. We gained

the patients’ immunotherapy score data from (http://tide.dfci.

harvard.edu/) and the therapeutic sensitivity to immunotherapy

of patients in different risk groups was evaluated. The R packages

“limma”, “ ggpubr ”, “reshape2”, and “ ggplot2” were used in the

above analysis.
Relationship between the risk model and
tumor mutation burden

We obtained tumor mutational burden (TMB) data from the

TCGA database. The relationship between TMB and risk score

was then evaluated and visualized via the R packages “ggpubr”,

“ggplot2”, and “reshape2”. The difference in TMB level was

visualized via the R package “maftools”. The difference in

survival between patients with various patterns of TMB and

risk was evaluated via Kaplan-Meier analysis.
Statistical analysis

All bioinformatic results were obtained and generated by

using Perl (5.32.1.1) or R (version 4.1.2). Each section’s statistical

methods were described above. Other materials and methods

used in this study can be seen in Supplementary Material

and Methods.
Results

Landscape of cuproptosis-related genes
in GC patients

We first evaluated the differences in the expression of 19

CRGs between GC patients and normal individuals.

Interestingly, the boxplot showed that 13 of 19 CRGs were

aberrantly expressed in GC patients (Figure 1A). In addition, we

investigated the association between the 19 CRGs and showed

that DLAT and PDHA1 had the highest positive correlation

(r=0.42) while NLRP3 and GCSH had the highest negative

correlation (r=0.26) (Figure 1B). We also explored the

mutation and copy number variation (CNV) of 19 CRGs in
frontiersin.org
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FIGURE 1

Landscape of CRGs and identification of CRLs in GC patients. (A) The expression of 19 CRGs in GC and normal tissues. (B) Correlation analysis
of 19 CRGs. (C) The mutation frequency of 19 CRGs in STAD. (D) The CNV variation frequency of 19 CRGs in STAD. (E) The location of CNV
alteration of 19 CRGs on 23 chromosomes in STAD. (F) Gene coexpression network map of CRGs and lncRNAs. (G) Volcano plot shows
differentially expressed CRLs. (H) Heatmap showed the top 50 differentially expressed CRLs. *p < 0.05, **p < 0.01, and ***p < 0.001.
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GC patients, showing that mutations were present in 83/433 GC

patients, missense mutation was the most common form of

mutation in CRGs, and the ATP7B had the highest mutation rate

of about 4% among the 19 CRGs (Figure 1C). We then explored

the copy number variation of the 19 CRGs and showed that copy

number deletions were present in all CRGs, with CDKN2A

having the highest copy number deletion of about 15%, similarly,

copy number amplifications were also present in all CRGs, with

NLRP3 having the highest copy number amplification of about

9% (Figures 1D, E).

Considering the important role of lncRNAs in regulating

gastric carcinogenesis and progression, we conducted a Pearson

correlation analysis (|cor| > 0.3, p < 0.001) on 14086 lncRNAs

and 19 CRGs to screen out 1218 CRLs (Figure1F), and we

subsequently performed differential analysis (|logFC| > 1, FDR <

0.05) on these 1218 lncRNAs to screen out 687 differentially

expressed lncRNAs for subsequent analysis (Figures 1G, H).
Construction of the risk model

To identify prognosis-related lncRNAs, the survival data of GC

patients were combined with the expression data of lncRNAs, and

we subsequently obtained 26 prognosis-related lncRNAs via

univariate analysis (Figure 2A). We excluded patients with a
Frontiers in Oncology 05
survival time of fewer than 30 days or no survival data. Then 342

GC patients were randomly assigned to two groups (training set or

testing set), and there were no statistical differences in the clinical

characteristics of all patients between the two sets (Supplementary

Table 1).Toreduce thenumberof genes for constructing themodel,

we performed a lasso regression analysis to obtain 18 modeled

prognosis-related lncRNAs (Figures 2B, C). Subsequently, we

performed a multivariate regression analysis on these 18

lncRNAs and screened 10 lncRNAs for the construction of the

risk model finally (Figures 2D, E and Supplementary Table 2). The

relationship between 10 lncRNAs in the model and CRGs was

visualized (Figure 2F). The risk score of each patient was calculated

according to the formula mentioned previously. We performed a

principal component analysis (PCA) based on the risk pattern of

each patient to confirm whether the established risk model could

distinguishbetweenhigh-risk and low-riskpatients in the entire set,

and the results showed that the 10 lncRNAs could better classify

patients into different risk patterns. (Figures 3A–C).
ROC analysis and survival analysis based
on the risk model

We separated patients of the two sets into high-risk and low-

risk groups based on the median of the risk score in the training
A B

D E F

C

FIGURE 2

Establishment of the risk model. (A) Forest plot of 26 prognosis-related lncRNAs after univariate Cox regression analysis (p < 0.05). (B, C) LASSO
regression of 26 prognosis-related lncRNAs. (D, E) The HR and coefficient of 10 CRLs involved in the multivariate Cox proportional hazards
model. (F) The correlation between 19 CRGs and 10 CRLs in the risk model was visualized. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3

Survival analysis and validation of the risk model in the training set and testing set. (A) PCA analysis was conducted for the entire gene set, (B) 19
CRGs, and (C) 10 CRLs in the risk model. (D, E) The survival difference of patients with different risk patterns in the training set and testing set.
(F) A time-dependent ROC curve was plotted to test the accuracy of the risk model. (G, H) Patients in the training set and testing set were
ranked according to the risk score. Then, the survival status difference of the patients between the two groups was visualized. (I, J) Heatmap
showed the RNA level of the 10 CRLs in the training set and testing set.
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set to investigate the risk model’s prognostic value. In both

groups, patients in the high-risk group had substantially lower

overall survival (OS) andprogression-free survival (PFS) than those

in the low-risk group. (Figures 3D, E). The ROC curves confirmed

the prognostic value of the risk model, showing that the AUCs for

predicting survival were 0.758, 0.852, and 0.884 at 1, 3, and 5 years

in the training group, and those in the testing set were 0.720, 0.745

and 0.720 (Figure 3F), respectively. Interestingly, in the two sets, we

found that high-risk patients exhibited higher mortality than low-

risk patients. (Figures 3G, H). The RNA expression levels of the 10

CRLs in the risk models in two sets were shown in heatmaps

(Figures 3I, J). These results confirmed the value of our model in

predicting the prognosis of GC patients.
Prognostic value of the risk model

To investigate the relationship between clinical characteristics

and the risk model in GC patients, we analyzed the overall

distribution of different clinical characteristics between the two

risk groups based on the 10 CRLs expression. Subsequently, we

analyzed the correlation between the different risk groups and the

corresponding clinical characteristics, and the results showed that

elevated risk scores correlated with the gender of the patients (p <

0.05), but not with other clinical characteristics (Figure 4A). Next,

to evaluate whether the risk score could be applied as an

independent prognostic factor in predicting the prognosis of GC

patients, we performed univariate andmultivariate analyses, which

confirmed that the risk score was a high-risk factor and could be

applied as an independent prognostic factor in predicting survival

in GC patients (Figures 4B, C). To further validate the value of the

risk score as a predictor of prognosis over other clinical

characteristics for GC patients, we plotted clinically relevant ROC

curves and decision curves and found that the risk score was the

most valuable predictor of prognosis compared to other clinical

characteristics (Figures 4D, E). Besides, we plotted a nomogram to

gain the predicted survival time forGCpatients, andwe established

calibration curves and ROC curves to determine the accuracy of it

(Figures 4F–H). To further confirm the prognostic value of the risk

model among patients with different clinical features, we separated

the patients into two different subgroups based on their clinical

characteristics and assessed the survival differences of patients with

different riskpatternswithin thedifferent subgroups.Wefound that

except for the M1 and T1-2 subgroups, where there was no

statistical difference in survival of patients, patients with high risk

showed a worse prognostic outcome than low-risk patients in all

other subgroups (Figures 5A–N).
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) revealed that

numerous pathways were activated in high-risk patients, and
Frontiers in Oncology 07
these pathways were mainly involved in Focal adhesion, ECM

receptor interaction, Gap junction, Hedgehog signaling pathway,

MAPK signaling pathway, and JAK-STAT signaling pathway,

suggesting that these CRLs may be directly related to the

development of gastric cancer. The pathways activated in low-

risk patients mainly include Base excision repair, DNA

replication, Cell cycle, Homologous recombination, Mismatch

repair, and Nucleotide excision repair, and the activation of

these pathways may somehow promote normal cell cycle

progression and thus inhibit tumor development (Figure 5O).
Comprehensive immune infiltration
analysis based on risk signature
subgroups

We further analyzed differentially expressed genes between

two risk groups and then performed Gene Ontology (GO)

enrichment analysis and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathway analysis based on these genes. The

results showed that the genes were mainly associated with the

immune response, cGMP−PKG signaling pathway, and PI3K

−Akt signaling pathway (Figures 6A, B). Based on the

functional analyses, we sought to investigate the relationship

between risk models and the tumor immune microenvironment.

Then we downloaded TCGA tumor immune infiltration data

from TIMER 2.0 and visualized the results of immune cell

infiltration differences between high-risk and low-risk patients

via heatmap based on six algorithms (QUANTISEQ,

MCPCOUNTER, XCELL, EPIC, CIBERSORT, and TIMER)

(Figure 6C). Interestingly, we observed the infiltration of helper

T cells and NK cells was negatively associated with the risk score,

while the relationship between the risk score and the infiltration of

macrophages, mast cells, neutrophils and monocytes was just the

opposite (Figure 6D). Immune function analysis revealed

significant differences in immune function between the two risk

groups except for cytolytic activity, inflammation-promoting, and

the relevant immune functions were more active in the high-risk

group (Figure 6E). In addition, we scored the tumor

microenvironment for each sample in the dataset, including

immune score, stromal score, and estimate score, and then we

analyzed the differences in these scores between the two risk

groups. The results showed that the high-risk group had higher

levels of immune infiltration score, stromal score, and a higher

estimate score compared to the low-risk group (Figure 6F). These

results suggest that our risk model can be applied to predict the

immune profile of patients with GC.
Clinical application of the risk model

In order to evaluate the value of the clinical application of

the risk model, we examined the difference in sensitivity of
frontiersin.org
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chemotherapeutic agents/targeted drugs between two risk

groups. The results revealed that high-risk patients were more

sensitive to dasatinib, crizotinib (PF.02341066), Dactolisib

(NVP.BEZ235), etc., while low-risk patients were more

sensitive to Afatinib (BIBW2992), ABT.888 (PARP inhibitor),

BIRB.0796 (P38 MAPK inhibitor) (Figures 7A–F).
Frontiers in Oncology 08
Relationship between tumor mutation
burden and the risk model

To investigate whether there is a correlation between tumor

mutation burden (TMB) and the risk model, we acquired TMB

data of GC patients from TCGA and compared the difference in
A

B

D

E

F

G H

C

FIGURE 4

Clinical application of the risk model. (A) Correlation between the risk model and the clinicopathological characteristics of GC patients.
(B, C) Univariate analysis and multivariate analysis were conducted to confirm the independent prognosis function of the model. (D, E) ROC,
and DCA curves were performed to confirm the superiority of the risk score in clinical application. (F) The nomogram was plotted to obtain the
predicting survival time of GC patients. (G) A calibration curve was applied to assess the accuracy of the model in predicting patients’ survival
time. (H) The AUC value of the nomogram. *p < 0.05, and ***p < 0.001.
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TMB between the two risk groups. The results showed that the

high-risk group had a lower level of TMB and the risk score was

negatively associated with TMB levels (Figures 7G, S1K). In

addition, we visualized the top 20 mutated genes between the

two risk groups and observed that these 20 genes had

significantly lower mutation levels in the high-risk group than

in the low-risk group (Figures 7H, I). As to the relationship

between TMB and immunotherapy, a tumor immune

dysfunction and exclusion (TIDE) analysis was conducted to

evaluate whether there are differences in immunotherapy

responses among patients with different risk patterns. The

results showed that the low-risk group had a lower TIDE

score, indicating a better response to immunotherapy

(Figure 7J). We then assessed the prognosis of patients with

different TMB levels and different risk patterns and observed

that low-risk patients with high TMB had the best prognosis,

while high-risk patients with low TMB had the worst prognosis

(Figures 7K, L)
Frontiers in Oncology 09
Expression of CRLs in GC samples

To identify the key genes in the risk model, we examined the

expression differences of 10CRLs in normal and tumor tissues, and

the results revealed that all 10 lncRNAs in the risk model were

highly expressed in tumor tissues (Figures S1A-J). Interestingly, we

found thatAL121748.1 exhibited thehighestHRvalue among these

10 lncRNAs (Figure 2E), andwe subsequently conducted a survival

analysis on AL121748.1. We found that patients with a high

expression level of AL121748.1 exhibited a poorer prognosis than

those with a low expression level (Figure 8A).

AL121748.1 is upregulated in GC cells
and promotes GC cell vitality and
proliferation

We explored AL121748.1 expression in GC cell lines and

found that it was highly expressed in the GC cell lines, especially
A B D

E F G

I

H

J K L

M N

C

O

FIGURE 5

The prognostic function of the risk model and GSEA of 10 lncRNAs in the risk model. (A–N) The survival outcome of patients with different risk
patterns was assessed in different subgroups. (O) GSEA results of 10 lncRNAs were visualized. (p < 0.05).
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in MKN45 and AGS (Figure 8B). Thus, we knocked down

AL121748.1 expression in MKN45 and AGS with siRNA

(Figure 8C). Then we conducted CCK-8 and colony formation

assay in the two cell lines. The results revealed that cells with a

reduced expression of AL121748.1 exhibited a lower vitality and

a substantial drop in the number of colonies when compared

with the siRNA negative control (Figures 8D, E). These results

suggested that AL121748.1 might play a crucial role in GC cell

survival and proliferation.
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AL121748.1 promotes migration and
invasion of GC cells

The wound healing assay showed that a significant reduction

in wound healing rate was detected in cells with decreased

AL121748.1 gene expression (Figure 8F). We further evaluated

the migration and invasion capacity of GC cells after knocking

down AL121748.1 via transwell assay. The results revealed that

the AL121748.1 knockdown reduced both GC cell migration and
A B

D

E F

C

FIGURE 6

Relationship between the risk model and tumor immune microenvironment. (A, B) GO, and KEGG analysis of differentially expressed genes
between high-risk and low-risk groups. (C, D) The infiltration status of immune cells of patients with different risk patterns. (E) Immune function
differences of patients with different risk patterns. (F) The score of tumor immune microenvironment in different risk groups. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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invasion. (Figure 8G). These results confirmed that AL121748.1

could promote migration and invasion of GC cells.
Discussion

Copper (Cu), an essential mineral nutrient for all organisms,

is involved in a variety of biological processes such as

mitochondrial respiration, antioxidant/detoxification processes,

and iron uptake (19). For its redox properties, it is both
Frontiers in Oncology 11
beneficial and toxic to cells (17). Accumulated evidence

suggests that Cu is not limited to being a static cofactor, but

that it is also a dynamic signaling element with considerable

effects on a variety of processes including lipolysis, autophagy,

cytotoxicity, cell proliferation, and oxidative stress (18, 20, 21).

Cellular copper homeostasis is essential for cell maintenance and

metabolism, and disorders of copper metabolism are connected

with the development of many diseases (22–24). As to the

relationship between copper and cancer, numerous

observations suggest that tumors need higher concentrations

of copper compared to normal tissue (25). According to previous
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FIGURE 7

The relationship between the risk model and immunotherapy or TMB. (A–F) Drug sensitivity of patients with different risk patterns. (G) The
relationship between risk score value and TMB level. (H, I) TMB status of the top 20 genes was visualized in two groups. (J) TIDE score of
patients in two risk groups. (K) The survival outcome of the patients with different TMB levels. (L) The prognosis of patients with different tumor
mutation burdens and different risk patterns was accessed. ***p < 0.001.
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research, copper concentrations were elevated in tumors or

serum from animal models and patients with a variety of

cancers, including breast (26–28), lung (29), gastrointestinal

(30–32), oral (33), thyroid (34), gallbladder (35), gynecological

(36), and prostate cancers (37). In humans, mutations that cause

excessive copper accumulation are life-threatening, but there

may be a window in which a more concentrated increase in

intracellular copper can be used to kill cancer cells selectively
Frontiers in Oncology 12
(17, 38). According to the research conducted by Tsvetkov and

colleagues, copper toxicity involves the disruption of specific

mitochondrial metabolic enzymes, which triggers an unusual cell

death mechanism defined as cuproptosis, mediated by an

ancient mechanism: protein lipoylation, which differs from all

other known regulated cell death mechanisms such as apoptosis,

pyroptosis, ferroptosis and necroptosis (16). This mechanism

could explain the pathology associated with hereditary copper
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FIGURE 8

Cellular functional experiment. (A) Survival analysis of AL121748.1 in GC. (B) qRT-PCR to evaluate the expression of AL121748.1 in GC cell lines
and GES-1. (C) qRT-PCR to evaluate the transfection efficiency. (D) Colony formation assay was conducted to detect the proliferation ability of
GC cells after transfection. (E) The effect of AL121748.1 on proliferation was explored by the CCK-8 assay. (F) Wound healing assay was used to
determine the effect of migration of AL121748.1(scale bar = 100 mm). (G) Transwell assays were used to show the effect of AL121748.1 on GC
cell migration and invasion (scale bar = 200 mm). **p < 0.01, and ***p < 0.001.
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overload diseases and help to harness copper toxicity for cancer

treatment (16).

In this study, we first identified 19 CRGs from previous

research and we found that most of them were differentially

expressed in GC. To further explored the CRLs, we conducted

Pearson’s correlation analysis and achieved 1218 lncRNAs for

the following analysis. Based on this, we obtained 27 prognostic

lncRNAs via univariate COX analysis. We then established a 10

lncRNAs-based risk model via LASSO Cox regression analysis

and multivariate COX analysis. As to the 10 CRLs in the risk

model, AL121748.1 (39), LINC01980 (40), AL355574.1 (41),

AL391152.1 (42), TYMSOS (43, 44), AC016737.1, AL512506.1

(45), AC104809.2 (46) were reported to have a relationship with

various tumors, however, other lncRNAs were first reported.

Due to cuproptosis being a novel discovered form of regulating

cell death, there are few direct studies about it. To our

knowledge, the 10 lncRNAs did not show any relationship

with cuproptosis according to the previous research. Although

we have found no research evidence that the 10 lncRNAs are

directly related to cuproptosis, our research may supply

significant clues to exploring the relationship between these

lncRNAs and cuproptosis.

Then, we assigned all GC patients into two risk groups, and

PCA results revealed that the model could classify patients into a

high-risk or low-risk group efficiently. In addition, patients with

high risk exhibited worse survival outcomes than those with low

risk. To determine the accuracy of the model, we conducted

ROC curves, and the AUCs values exceed 0.75 at one, three, and

five years, meanwhile, the maximum AUC value (0.884) was

detected at 5 years. We then confirmed the model we established

could be assumed as an independent prognostic indicator via

univariate and multivariate analyzes. Besides, the clinically

relevant ROC curve and decision curve revealed that the risk

score outperforms other clinical characteristics in terms of

clinical application efficiency. Moreover, we also found that

patients with low risk exhibit a better survival outcome than

those with high risk in most subgroups except patients with T1-2

and M1. These results indicated that the model could be applied

to predict the prognosis of GC patients.

The tumor immune microenvironment plays a significant

role in tumor development. Differential infiltration of various

immune cells in tumors might have an influence on patients’

prognosis (47, 48). In our study, we explored the level of immune

cell infiltration, immunotherapy score, and TMB in GC patients

with different risk patterns. High infiltration levels of NK cells

and helper T cells are correlated with better prognosis, while the

same infiltration levels of macrophages, mast cells, neutrophils,

and monocytes are correlated with poor tumor prognosis (49–

55). Besides, macrophages, mast cells, neutrophils, and

monocytes have been reported to promote tumor progression

(52, 56–59). In our study, we observed the infiltration of NK cells

and T cells was negatively correlated with the risk score, while
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the correlation between the risk score and the infiltration of

macrophages, mast cells, neutrophils, and monocytes was just

the opposite. The results suggested that patients with high risk

may show worse survival outcomes, which was consistent with

the prognosis we analyzed. Thus, our risk model performs well

in predicting immune infiltration in patients with GC.

As to TMB, previous research suggested that patients with a

higher level of TMB may show a better sensitivity to

immunotherapy (60). In our study, we found that the TMB

level was inversely related to the risk score, which suggested that

the low TMB level might perform as a protective factor. Thus, we

performed survival analysis and found that low-risk patients

with a high tumor mutation burden had the best prognosis,

whereas high-risk patients with a low tumor mutation burden

had the worst prognosis. According to previous research, we

found that a variety of factors may affect the efficacy of immune

checkpoint inhibition therapy, including mutation or

neoantigen load, the level of cytotoxic T cell infiltration, PD-

L1 levels, defective antigen presentation, defective mismatch

repair, interferon signaling, tumor aneuploidy, and gut

microbes. While the TIDE score combines T cell dysfunction

and exclusion characteristics to simulate tumor immune escape

with varying levels of tumor-infiltrating cytotoxic T cells and is

superior to other biomarkers used to predict the efficacy of

immune checkpoint inhibition therapy (61). Based on this, we

evaluated the TIDE scores of the two groups and we found that

the high-risk group has a higher TIDE score, which suggested

patients in this group may be less sensitive to immunotherapy.

These findings offered additional evidence that our risk model is

related to the immunological landscape and can be applied to

predict the prognosis of GC patients

AL121748.1 has been identified as a ferroptosis-related

lncRNA that is related to immunotherapy and chemotherapy

responses in GC patients. However, there is no experimental

evidence for its role in GC. AL121748.1 was first identified as the

most significant HR among the ten modeled lncRNAs in our

research, and further survival analysis revealed that high

expression of AL121748.1 was related to a bad prognosis in

GC patients. Cellular functional experiments proved that

knocking down AL121748.1 in GC cell lines greatly reduced

GC cell activity, proliferation, migration, and invasion. This

suggests a possible treatment target for GC.
Conclusion

In conclusion, we established a 10 CRLs-based risk model.

The model performed better in predicting the prognosis of GC

patients than other clinical characteristics. Besides, the model

was significantly related to tumor immune microenvironment,

tumor mutation burden, drug sensitivity, and immunotherapy

response of GC patients. Furthermore, we confirmed the
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oncogenic role of AL121748.1 in GC via cellular functional

experiments. These findings provided critical clues for future

immunological research on GC as well as a potential therapeutic

target for GC.
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