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3D vs. 2D MRI radiomics in
skeletal Ewing sarcoma: Feature
reproducibility and preliminary
machine learning analysis on
neoadjuvant chemotherapy
response prediction
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Objective: The extent of response to neoadjuvant chemotherapy predicts

survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal

Ewing sarcoma and aims to investigate feature reproducibility and machine

learning prediction of response to neoadjuvant chemotherapy.

Materials and methods: This retrospective study included thirty patients with

biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant

chemotherapy before surgery at two tertiary sarcoma centres. 7 patients were

poor responders and 23 were good responders based on pathological

assessment of the surgical specimen. On pre-treatment T1-weighted and

T2-weighted MRI, 2D and 3D tumour segmentations were manually

performed. Features were extracted from original and wavelet-transformed

images. Feature reproducibility was assessed through small geometrical

transformations of the regions of interest mimicking multiple manual

delineations, and intraclass correlation coefficient >0.75 defined feature
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coefficient; k-NN, k-nearest neighbours; LR, logis
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reproducibility. Feature selection also consisted of collinearity and significance

analysis. After class balancing in the training cohort, three machine learning

classifiers were trained and tested on unseen data using hold-out cross-

validation.

Results: 1303 (77%) 3D and 620 (65%) 2D radiomic features were reproducible.

4 3D and 4 2D features passed feature selection. Logistic regression built upon

3D features achieved the best performance with 85% accuracy (AUC=0.9) in

predicting response to neoadjuvant chemotherapy.

Conclusion: Compared to 2D approach, 3D MRI radiomics of Ewing sarcoma

had superior reproducibility and higher accuracy in predicting response to

neoadjuvant chemotherapy, particularly when using logistic regression

classifier.
KEYWORDS

artificial intelligence, Ewing sarcoma, machine learning, magnetic resonance imaging,
radiomics, texture analysis
Introduction

Ewing sarcoma is the second most common bone sarcoma in

children and adolescents after osteosarcoma (1). The standard of

treatment in non-metastatic patients is represented by

neoadjuvant chemotherapy, surgical resection and adjuvant

chemotherapy (1). Radiotherapy can be administered to

achieve local control post-operatively if surgical margins are

inadequate or alone when complete resection is not feasible,

particularly in certain anatomic locations (1). Five-year survival

is 60-75% in localized disease, but it decreases substantially to <

20% in case of local or distant relapse (2). The extent of response

to neoadjuvant chemotherapy predicts survival (3).

Unfortunately, this can be assessed only after surgery based on

histopathology (1). However, it would be desirable to know how

the patient responded before surgery to tailor subsequent

treatment accordingly. Furthermore, pathological response

data are unavailable in non-operated patients treated

with radiotherapy.

Radiomics includes extraction and analysis of quantitative

parameters from medical images, known as radiomic features

(4). Several features are routinely extracted in radiomic studies,

but many of them are redundant or not informative for the

clinical question of interest (5). Thus, a selection of radiomic

features is necessary and feature reproducibility or stability

assessment is an essential step of this process (5). However, a
intraclass correlation

tic regression; MRI,

region of interest.
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recent systematic review dealing with radiomics of

musculoskeletal sarcomas highlighted that more than half of

the papers lacked a preliminary analysis of feature

reproducibility (6). In studies where this analysis was

performed, intraclass correlation coefficient (ICC) was the

most employed method to assess reproducibility (6). After

selection, the optimal subset of radiomic features can be

combined with machine learning algorithms for prediction

purposes, including therapy response or outcome prediction

(7, 8).

The aim of this study is twofold: (i) to assess the

reproducibility of 3D and 2D radiomic features of skeletal

Ewing sarcoma extracted from pre-treatment magnetic

resonance imaging (MRI); and (ii) to preliminarily investigate

3D vs. 2D radiomics-based machine learning performance for

prediction of response to neoadjuvant chemotherapy.
Materials and methods

Ethics

Institutional Review Board approved this retrospective study

and waived the need for informed consent. All included patients

granted written permission for anonymized data use for research

purposes at the time of the MRI. After matching imaging,

pathological and surgical data, our database was anonymized

to delete any connections between data and patients’ identity

according to the General Data Protection Regulation for

Research Hospitals.
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Dataset description

This study was designed to meet the numerical requirements

of reliability analyses in terms of patients involved, namely a

minimum of 30, according to the ICC guidelines by Koo et al.

(9). Thirty patients were retrospectively included at two tertiary

bone sarcoma centres (centre 1, IRCCS Orthopaedic Institute

Galeazzi, Milan, Italy; centre 2, IRCCS Regina Elena National

Cancer Institute, Rome, Italy). Information was retrieved

through medical records from the orthopaedic and pathology

departments. Inclusion criteria were: (i) biopsy-proven Ewing

sarcoma of the bone treated with neoadjuvant chemotherapy

before surgery; (ii) response to neoadjuvant chemotherapy

evaluated after surgery based on histopathology; (iii) 1.5- or

3-T MRI performed within two months before chemotherapy

including turbo spin echo T1-weighted and T2-weighted

sequences. Externally obtained MRI scans of patients referred

to centres 1 and 2 were also included in this study as long as the

minimal MRI protocol was available (MRI sequence parameters

are detailed in Supplementary Material). Exclusion criteria were:

(i) recurrent tumours; (ii) metastatic tumours; and (iii) image

noise (motion or metal artifacts) affecting tumour segmentation.

Neoadjuvant chemotherapy regimen consisted of 3-6 cycles

including five to six drug combinations, namely doxorubicin,

cyclophosphamide, ifosfamide, vincristine, dactinomycin and

etoposide, as per current guidelines (1). Histopathologic

response to neoadjuvant chemotherapy was assessed using the

grading system by Picci et al. (also known as the “Bologna

system”), where grade I (macroscopic residual tumour) defined

poor response and grade II or III (microscopic or no residual

disease, respectively) defined good response (10, 11). In our

population of study, 7 patients were poor responders (all

included at centre 1) and 23 were good responders (n=10

included at centre 1 and n=13 included at centre 2). Clinical

data and demographics of the study population are detailed

in Table 1.
Frontiers in Oncology 03
Segmentation

All DICOM images were extracted and imported to the

freely available, open-source software ITK-SNAP (v3.8) (12) for

segmentation. On T1-weighted and T2-weighted MRI, manual

segmentations were obtained by drawing both 2D regions of

interest (ROIs) along tumour borders on the slice showing the

largest tumour area and 3D ROIs including the whole tumour

volume. The “polygon mode” ITK-SNAP tool was used for all

segmentations (Figure 1). A musculoskeletal radiologist

performed all segmentations. The radiologist knew the study

would deal with Ewing sarcoma but was blinded to any

information regarding disease course.
Pre-processing and feature extraction

Image pre-processing and radiomic feature extraction were

performed using PyRadiomics 3.0 (13). Five pre-processing steps

were employed, including (i) grey-level normalization, (ii) pixel

resampling and rescaling using cubic B-spline interpolation

(resultant pixel size, 2x2x2 mm3), (iii) grey-level discretization

(bin count, 32), (iv) denoising through the implementation of a

3D Gaussian filter, and (v) inhomogeneity correction using the

open-source software 3D slicer (14). The default parameters of

PyRadiomics were used, except for discretization. Particularly,

intensity discretization with a fixed bin number was used instead

of the fixed bin size discretization (default in PyRadiomics). The

features extracted from each original image were grouped as

follows (https://pyradiomics.readthedocs.io/en/latest/features.

html): first-order features; shape-based features; grey-level

cooccurrence matrix features; grey-level run length matrix

features; grey-level size zone matrix features; grey-level

dependence matrix features; neighbouring grey tone difference

matrix features. First-order and textural features were extracted

from both the original volumes and the 8 volumes obtained by

first level wavelet decomposition (or 4 wavelet decompositions

for 2D images) (15). For the full list of radiomic features, refer to

PyRadiomics official documentation.
Reproducibility analysis and
feature selection

Reproducibility analysis was performed to evaluate the

robustness of radiomic features. Feature reproducibility was

assessed through small geometrical transformations of the

ROIs mimicking multiple manual delineations and the

potential sources of intra- and inter-observer variability when

multiple ROIs are drawn by the same or different readers,

respectively (16, 17). Different translations of the ROI in the

positive and negative direction of the x and y axes were applied.
TABLE 1 Clinical data and demographics of the study population.

Clinical data and demographics

Age [median (1st-3rd quartiles)] 18 (12-27) years

Sex 14 men; 16 women

Tumour location Lower extremity: n=13

Pelvis: n=7

Spine: n=6

Upper extremity: n=4

Histopathologic grading (10) Grade I (poor response): n=7

Grade II (good response): n=15

Grade III (good response): n=8
Years of age are approximated to the nearest whole number.
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The entity of the translation was 10% of the length of the

bounding box including the tumour (Figure 2). For each

patient, radiomic features were extracted from five different

ROIs, namely the original and 4 translated ROIs. ICC was

used to quantify reproducibility, and radiomic features were

considered stable if ICC > 0.75 (9). Among stable features,

further dimensionality reduction was performed through

collinearity and significance analysis. Collinearity was

evaluated using Pearson correlation coefficient (r). The

threshold for collinearity was set as r = 0.8. If a pair of features

had high collinearity, the one with higher collinearity with others

was excluded. Significance analysis addressed the ability of

radiomic features to discriminate between good and poor

responders. Wilcoxon rank-sum test was used. Radiomic

features with statistically different distribution between these

two groups (p-value < 0.05) were kept and ranked by their

p-value.
Machine learning-based classification

Based on the optimal subsets of radiomic features,

classification models were built using three machine learning
Frontiers in Oncology 04
classifiers, namely k-nearest neighbours (k-NN, k = 1 linear

nearest neighbour search with Euclidean distance function and

no distance weighting), logistic regression (LR) and random

forest (RF). To evaluate the unbiased performance of the

classifiers, a cross-validation approach was used with a hold-

out partition of 80-20 (80% for training and 20% for test sets,

repeated 100 times). The same hold-out partition was used for

3D and 2D radiomics-based analysis. An imbalance between

groups existed in our data (23 good vs. 7 poor responders),

which could adversely affect classification performance.

Therefore, prior to the training of the classifiers, class

balancing was performed in the training cohort using the

synthetic minority oversampling technique (18). This

technique is used to artificially oversample the minority class,

namely the poor responders in our study. After tuning on the

training cohort, the classifiers were tested on unseen data,

namely the test set.
Statistical analysis

Continuous data are presented as median and interquartile

(1st-3rd) range. Categorical data are presented as value counts
frontiersin.org
FIGURE 2

Original (green) and translated (red) version of 2D region of interest drawn around tumor borders on T2-weighted axial image.
FIGURE 1

On the slice showing the largest tumor area (A), 2D manual segmentation was obtained by drawing a polygonal region of interest (B) to include
the whole tumor area (C). The same procedure was repeated slice by slice to obtain 3D segmentation including the whole tumor volume.
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and proportions. Differences in age and sex between good and

poor responders were evaluated using Mann-Whitney U and

chi-square tests, respectively. The reproducibility of 2D and 3D

features was compared using t-test. The performances of the

classifiers were evaluated and compared using area under the

curve (AUC), accuracy, sensitivity, specificity, precision and

balanced accuracy (i.e., the average between sensitivity and

specificity) averaged on the test sets. Since LR and RF return

continuous values, a binarization was necessary (the threshold

for binarization was selected on the training set and then used on

the test set). A two-tailed p-value < 0.05 was considered

statistically significant. The statistical analysis was performed

using MATLAB 2018b (Mathworks, Natick, MA, USA).
Results

No statistical difference in age (p = 0.841; 19 [12-29] vs. 18

[13-23] years) and sex (p = 0.526; 10 men and 13 women vs. 4

men and 3 women) was found between good and poor

responders, respectively. A total of 1702 3D and 958 2D

features were extracted per each patient. In detail, they were

851 3D and 479 2D features obtained from each MRI sequence.

Among them, 1303 (77%) 3D and 620 (65%) 2D radiomic

features were stable to geometrical transformations of the ROI

(for 3D: 92% of the first order, 39% textural, 76% wavelet; for 2D:

89% of the first order, 33% textural, 61% wavelet), as shown

in Figure 3.

After excluding features with high collinearity, the numbers

of 3D and 2D features were further reduced to 101 and 58,

respectively. Significance analysis yielded to four 3D and four 2D

features, which were finally selected. In particular, the selected

3D features were all computed on the wavelet-transformed

images and the selected 2D features were all obtained from the

original images, respectively, as detailed in Table 2.

The evaluation metrics for all classifiers are reported in

Table 3. LR and RF classifiers achieved better accuracies when

using 3D features compared to 2D features. Conversely, k-NN

classifier showed better accuracy when built upon 2D features.
Frontiers in Oncology 05
As shown in column charts in Figure 4, only 7 patients were

correctly classified with all 2D radiomics-based classifiers when

using a percentage threshold of 80%. An improvement was

obtained with 3D radiomics, as 14 patients were correctly

classified at least 80% of times with all classifiers. LR built

upon 3D features achieved the best performance with 85%

sensitivity, 87% specificity and 85% accuracy (AUC=0.9) in

predicting response to neoadjuvant chemotherapy, with 24

patients correctly classified at least 80% of the times.
Discussion

This retrospective study compared the reproducibility of

MRI radiomic features obtained from 2D and 3D segmentations

and investigated radiomics-based machine learning prediction

of response to neoadjuvant chemotherapy in Ewing sarcoma of

the bone. 3D segmentations yielded higher rates of reproducible

features compared to 2D approach. Additionally, LR built upon

3D features was the most accurate classifier in differentiating

good from poor responders and achieved 85% accuracy (AUC

= 0.9).

Despite its great potential to non-invasively quantify several

tumour characteristics, radiomics still faces challenges

preventing clinical transferability (8). A great variability in

radiomic features has emerged as a major issue across studies,

and segmentation is the most critical step (4). Therefore, in

radiomic studies, preliminary methodological analyses are

advisable to assess the robustness of different segmentation

approaches and avoid biases due to non-reproducible, noisy

features. This is in line with recent literature emphasizing the

importance of reproducibility in artificial intelligence and

radiology (19). Several strategies can be used to assess feature

reproducibility, such as changes in image acquisition parameters

(20) and multiple ROI delineations performed by different

readers (21, 22), which are however time-consuming. In our

study, feature reproducibility was evaluated through a time-

saving method based on geometrical transformations of the

ROIs mimicking multiple manual delineations (16, 17). In 3D
FIGURE 3

Radiomic features ranked by their ICC values.
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and 2D segmentations, 77% and 65% MRI radiomic features

were respectively stable to these transformations and then

showed good overall reproducibility, although a certain degree

of variability existed and highlighted the need for a preliminary

reliability assessment.

With the introduction of neoadjuvant chemotherapy, the

survival rates of Ewing sarcoma have substantially improved,

although they are still low in patients with poor response (2).

Accurate response evaluation using non-invasive approaches

would be of paramount importance before surgery, as
Frontiers in Oncology 06
chemotherapeutic regimen can be adjusted and surgical

options range from limb-sparing to radical surgery (1). Several

imaging methods have been proposed to identify good and poor

responders. Promising results have been obtained using

diffusion MRI (23), dynamic contrast-enhanced MRI (24) or

positron emission tomography-computed tomography (25).

However, these methods often use a mean value to depict

whole tumours, potentially overlooking tumour heterogeneity.

Radiomics and machine learning have the potential to overcome

these limitations (26–29), thus improving prognosis prediction.
TABLE 2 List of selected features by feature class, ROI, MRI sequence and source image.

Selected feature Feature class ROI Sequence Source

Correlation GLCM 3D T1w Wavelet

Minimum First order 3D T2w Wavelet

Small Dependence High Gray Level Emphasis GLDM 3D T2w Wavelet

Cluster Shade GLCM 3D T2w Wavelet

Minimum First order 2D T1w Original

Strength NGTDM 2D T1w Original

Sphericity Shape 2D T2w Original

Strength NGTDM 2D T2w Original
frontie
GLCM, Gray Level Co-occurrence Matrix; GLDM, Gray Level Dependence Matrix; NGTDM, neighbouring grey tone difference matrix.
TABLE 3 Evaluation metrics for LR, RF and k-NN classifiers using 2D and 3D radiomic features.

3D - LR 3D - RF 3D – k-NN 2D - LR 2D - RF 2D – k-NN

Specificity 0.87 ± 0.34* 0.19 ± 0.39* 0.53 ± 0.50 1 ± 0.10 0.6 ± 0.49 0.54 ± 0.50

Sensitivity 0.85 ± 0.15* 0.92 ± 0.16* 0.66 ± 0.25* 0.47 ± 0.25 0.62 ± 0.24 0.74 ± 0.25

Balanced accuracy 0.86 ± 0.18* 0.55 ± 0.21 0.59 ± 0.25 0.73 ± 0.13 0.61 ± 0.26 0.64 ± 0.26

AUC 0.9 ± 0.13 0.72 ± 0.32 0.59 ± 0.25 0.86 ± 0.20 0.65 ± 0.32 0.64 ± 0.26

Accuracy 0.85 ± 0.13* 0.77 ± 0.14* 0.63 ± 0.20* 0.57 ± 0.20 0.62 ± 0.20 0.7 ± 0.21

Precision 0.97 ± 0.08* 0.82 ± 0.10* 0.87 ± 0.17 1 ± 0.03 0.88 ± 0.16 0.88 ± 0.14
*p < 0.05 comparison 2D vs. 3D.
FIGURE 4

Column charts illustrating 2D and 3D radiomics-based machine learning classification performance. On the left, when using a percentage
threshold of 80%, it is possible to note that only 7 patients were correctly classified with all classifiers in 2D analysis. On the right, an
improvement was obtained in 3D analysis, where 14 patients were correctly classified at least 80% of times with all classifiers (correctly classified
patients are marked with an asterisk). With 3D LR classifier (the best perforning one) 24 patients were correctly classified at least 80% of times.
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Our results showed that MRI radiomics-based machine learning

could predict neoadjuvant chemotherapy response with up to

85% accuracy. Similar good performance has been described in

previous studies dealing with neoadjuvant chemotherapy

response prediction in osteosarcoma (30–32), where the

superior predictive capacity of LR was also reported (30), as

we observed with Ewing sarcoma. Based on our preliminary

findings, we expect that radiomics-based machine learning may

facil i tate individualized assessment of neoadjuvant

chemotherapy response and provide an effective tool for

clinical decision-making.

Some limitations of this study need to be acknowledged.

First, the design is retrospective, as a prospective analysis is not

strictly necessary for radiomic studies (8). Second, the sample

size was small. However, Ewing sarcoma of the bone is very rare,

and our aim was first to evaluate the reproducibility of 3D and

2D MRI radiomic features. Consequently, our population met

the minimum numerical requirements of a reliability analysis in

terms of patients involved, according to ICC guidelines (9).

Secondarily, machine learning prediction of neoadjuvant

chemotherapy response was preliminarily explored. Third,

good responders were over-represented compared to poor

responders in our population of study. However, this reflected

the incidence of good and poor response in our clinical practice,

and class balancing was performed to artificially oversample the

minority class in the training cohort (18). Fourth, the

retrospective design accounts for the exclusion of contrast-

enhanced MRI, which was not available in all our cases but

helps in diagnosis of Ewing sarcoma (33) and deserves

investigation in future radiomic studies. Fifth, a validation of

the machine learning classifiers was not performed in an

independent or external test cohort. The number of patients

included at both our institutions was too small to be split into

training and external test cohorts. Given the rarity of Ewing

sarcoma, further multicentre investigations are warranted to

involve more than two institutions, possibly located in

different countries. This would allow for machine-learning

model training, validation and independent testing on separate

datasets, thus moving forward to clinical application.

In conclusion, 3D MRI radiomics of Ewing sarcoma had

superior reproducibility and higher accuracy in predicting

response to neoadjuvant chemotherapy, particularly when

using LR classifier, compared to 2D approach. Although 3D

segmentations are relatively time-consuming, they should be

preferred in future studies needed to validate our machine

learning model for therapy response prediction. If our

preliminary findings are confirmed in a larger population, this

method will allow for an individualized assessment of therapy

response and subsequent treatment planning before surgery is

performed, thus offering clinical decision support and having

enormous potential for precision medicine.
Frontiers in Oncology 07
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