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Metabolic targeting,
immunotherapy and radiation
in locally advanced non-small
cell lung cancer: Where do
we go from here?
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In the US, there are ~250,000 new lung cancer diagnoses and ~130,000 deaths

per year, and worldwide there are an estimated 1.6 million deaths per year from

this deadly disease. Lung cancer is the most common cause of cancer death

worldwide, and it accounts for roughly a quarter of all cancer deaths in the US.

Non-small cell lung cancer (NSCLC) represents 80-85% of these cases. Due to

an enormous tobacco cessation effort, NSCLC rates in the US are decreasing,

and the implementation of lung cancer screening guidelines and other

programs have resulted in a higher percentage of patients presenting with

potentially curable locoregional disease, instead of distant disease. Exciting

developments in molecular targeted therapy and immunotherapy have

resulted in dramatic improvement in patients’ survival, in combination with

new surgical, pathological, radiographical, and radiation techniques.

Concurrent platinum-based doublet chemoradiation therapy followed by

immunotherapy has set the benchmark for survival in these patients.

However, despite these advances, ~50% of patients diagnosed with locally

advanced NSCLC (LA-NSCLC) survive long-term. In patients with local and/or

locoregional disease, chemoradiation is a critical component of curative

therapy. However, there remains a significant clinical gap in improving the

efficacy of this combined therapy, and the development of non-overlapping

treatment approaches to improve treatment outcomes is needed. One

potential promising avenue of research is targeting cancer metabolism. In

this review, we will initially provide a brief general overview of tumor

metabolism as it relates to therapeutic targeting. We will then focus on the

intersection of metabolism on both oxidative stress and anti-tumor immunity.

This will be followed by discussion of both tumor- and patient-specific

opportunities for metabolic targeting in NSCLC. We will then conclude with a

discussion of additional agents currently in development that may be

advantageous to combine with chemo-immuno-radiation in NSCLC.
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Introduction

In the US, there are ~250,000 new lung cancer diagnoses

and ~130,000 deaths per year, and worldwide there are an

estimated 1.6 million deaths per year from this disease. Lung

cancer is the most common cause of cancer death worldwide,

and it accounts for roughly a quarter of all cancer deaths in the US

(1, 2). Non-small cell lung cancer (NSCLC) represents 80-85% of

these cases. Due to an enormous tobacco cessation effort, NSCLC

rates in the US are decreasing, and the implementation of lung

cancer screening guidelines and other programs have resulted in a

higher percentage of patients presenting with potentially curable

locoregional disease, instead of distant disease (3). Exciting

developments in molecular targeted therapy and immunotherapy

have resulted in dramatic improvement in patients’ survival, in

combination with new surgical, pathological, radiographical, and

radiation techniques. Concurrent platinum-base doublet

chemoradiation therapy followed by immunotherapy has set the

benchmark for survival in these patients (4). However, despite these

advances, ~50% of patients diagnosed with locally advanced

NSCLC (LA-NSCLC) survive long-term (4). In patients with local

and/or locoregional disease, chemoradiation is a critical component

of curative therapy. However, there remains a significant clinical

gap in improving the efficacy of this combined approach, and the

development of non-overlapping treatment approaches to improve

treatment outcomes is needed.

One potential promising avenue of research is targeting

cancer metabolism. In this review, we will initially provide a

brief general overview of tumor metabolism as it relates to

therapeutic targeting. We will then focus on the intersection of

metabolism on both oxidative stress and anti-tumor immunity.

This will be followed by discussion of both tumor- and patient-

specific opportunities for metabolic targeting in NSCLC. We will

then conclude with a discussion of additional agents currently in

development that may be advantageous to combine with chemo-

immuno-radiation in NSCLC.
Metabolic shifts during cancer
development uncover
therapeutic vulnerabilities

As first detailed by Otto Warburg nearly a century ago,

metabolic activity within tumor cells diverges significantly from

normal eukaryotic homeostasis (5). Whereas normal cells

balance energy and biomass to support specialized functions

and proliferation, tumor cells disproportionately favor high

proliferative activity. This results in a metabolic program

designed to generate high biomass turnover at the expense of

balanced energy production (6). Common metabolic pathways

including glycolysis, pentose phosphate, tricarboxylic acid
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(TCA) cycle, and oxidative phosphorylation are all affected,

and their activity is coordinated to support enhanced

proliferation even at the expense of energetic efficiency.

Intermittent and variable hypoxia, which is ubiquitous in solid

tumors, further exacerbates this phenotype.

Cancer cells frequently encounter hypoxic conditions which

result in mitochondrial membrane hyperpolarization, leading to

inhibition of mitochondrial transition pores that normally release

pro-apoptotic factors. In these hypoxic conditions, hypoxia-

induced factor 1-alpha (HIF1a) is activated, which increases

glucose transporter expression. This allows increased glucose

into the cell, amplifies transcription of glycolytic enzymes, and

prompts a switch to aerobic glycolysis to produce ATP (7, 8).

HIF1a activates pyruvate dehydrogenase kinase 1 (PDK1) which

inhibits pyruvate dehydrogenase (PDH), and therefore reduces

the supply of acetyl-CoA entering the TCA cycle, shunting carbon

flux elsewhere (7). This mitochondrial dysregulation, in both

normoxic and hypoxic conditions, allows cancer cells to use

excess pyruvate for anabolic synthesis (7). Cancer cells

addit ional ly show increased glutamine uptake for

glutaminolysis, which refills TCA intermediates that are shunted

into heightened biosynthetic processes (9).

Cancer cells also undergo metabolic shifts during treatment

with radiation and chemotherapy (10). Radiation’s therapeutic

effect is the result of unrepaired DNA damage leading to cell

death, and cells must use DNA damage repair pathways to avoid

death. DNA damage repair is an energy intensive process, and

cancer cells already have a high energy demand making it difficult

to allocate excess energy for this process (11, 12). Radiation also

induces PI3K and NF-kB pathways along with epithelial-

mesenchymal transition transcription factors (SNAI1, HIF1,

ZEB1, and STAT3) which can result in metabolic reprograming

(11, 13, 14). The effect of chemotherapies on metabolism is vast,

depends upon the agent in question, and has been extensively

reviewed previously (8, 15). Different chemotherapies can affect

glycolysis, fatty acid synthases, glutaminolysis, and other

metabolic pathways (15). Chemotherapies promote metabolism

shifts that result in drug resistance (16).

Although well designed for maximal proliferation, these

metabolic adaptations toward higher biomass turnover present

interesting opportunities for therapeutic intervention. First, it is

important to note that under conditions of stress such as that

generated by chemoradiation, the biomass requirements for

survival may surpass even those of normal cancer proliferation

and thus present an opportunity for effective combinatorial

strategies. Second, targeting of biomass-generating pathways

may be preferentially effective in cancer cells while limiting

toxicity in normal tissue. It is important to remember that

metabolic pathways which are partially dysregulated can

become severely sensitive to disruption even with limited

inhibition. As such, a third opportunity arises from minimal

inhibition of a generally altered pathway (e.g., oxidative
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phosphorylation) to generate disproportionate reductions in

energy and biomass resulting in catastrophic tumor cell death.
Metabolic regulation of
oxidative stress

How tumor cells regulate intra-cellular ROS remains

unclear, but it appears to require a careful interplay between

intrinsic tumor biology and the tumor microenvironment

(TME). The TME includes the surrounding host immune cells,

extracellular matrix (ECM), blood vessels, fibroblasts,

lymphocytes, other bone marrow-derived inflammatory cells,

and signaling molecules (17). Often, in solid tumors, the TME is

characterized by hypoxia, low pH, and high interstitial fluid

pressure (18). These conditions further the shift from oxidative

respiration to glycolysis and increase lactic acid production

resulting in an acidic TME (19). This acidosis boosts reactive

oxygen species (ROS) formations leading to RAS-RAF-MEK-

MAPK pathway activation, thereby promoting cell proliferation

(19, 20).

However, free radicals are a double-edged sword in the

context of solid tumors. On the one hand, tumor cells–

particularly aggressive, highly proliferative and metastatic

cells–appear to thrive in the presence of slightly elevated ROS

levels, suggesting that higher ROS levels may be pro-tumorigenic

(21). On the other hand, conventional chemotherapy and

radiation generate much of their anti-tumorigenic activity by

dramatically increasing ROS levels above those which tumor

cells can absorb without catastrophic damage to their DNA (22).

The TME is a site of significant interaction between these cancer

therapeutics and cancer metabolism, and the TME can promote

cancer survival by impairing the efficacy of radiation,

chemotherapy, and immunotherapy (18, 23–25). Since the

cytotoxic effects of radiation are potentiated by oxygen,

hypoxic tumor stromal regions of the TME can drive

radioresistance and local treatment failure (18). The

acidification of the TME promotes cancer cell metabolic

reprogramming, selects for cancer cells that are resistant to

hypoxic conditions, and therefore promotes chemoresistance

and metastatic development (25). The TME and ROS

production present a targetable area for cancer therapeutics

that will be discussed further in this review.
Metabolic effects on
anti-tumor immunity

Even in the absence of immunotherapy, a functional

immune system is important for maximal response to

treatment in solid tumors, including NSCLC (26). In patients

with NSCLC, the presence of tumor-infiltrating lymphocytes
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(TILs) is associated with improved distant-free survival and

overall survival (27–30). Radiation improves antitumoral

immunity in the TME by increasing the release of tumor

antigens and allowing antigen-presenting cells to activate CD8

+ T-cells. This ultimately results in tumor cell death (31, 32).

As demonstrated in the PACIFIC trial, the benefit of

adjuvant PD-L1 blockade us ing durvalumab after

chemoradiation in NSCLC is thought to be at least partially

due to its ability to block inhibition of CD8+ cytotoxic T cells,

which are presumably activated following chemoradiation. The

interplay between a broadly immunosuppressive therapy –

namely chemoradiation – with these immunogenic

characteristics leads to a complicated and not completely

understood interaction. The timing of immune-checkpoint

blockade is critical as initial studies in other cancers that used

immune - che ckpo in t b l o ckade concur r en t l y w i th

chemoradiation have underperformed (33), unlike in the

consolidation setting of immune checkpoint blockade

in PACIFIC.

Adding to this complexity is the effect of tumor metabolism

on the TME. In the TME, excess lactate is immunosuppressive

(25, 34). The tumor stroma suppresses host immune responses

against malignant tumor cells: restricting T-cells from making

contact with the cancer cells, secreting immunosuppressive

cytokines, and metabolic competition between tumor cells and

immune cells (32). Members of the host immune system such as

B-cells, T-cells, NK cells, dendritic cells, and macrophages are

present in the TME, yet the interactions between malignant and

non-malignant cells in the TME create a carcinogenic

environment with metabolic stress and often render immune

cells less functional (24). The TME induces host immune cells to

become tolerogenic to cancer cells, and the immune cells become

unproductive in cancer suppression. This ultimately results in

decreased immunotherapy effectiveness (35).

Drugs targeting cancer metabolism may synergistically

enhance immunotherapy due to the significant overlap with

the TME (36). Indeed, agents targeting tumor metabolism could

have multiple benefits on immune response both by creating a

TME more favorable to immune function as well as directly

affecting the tumor-infiltrating lymphocytes to improve their

cytotoxic function (37). Some examples of metabolic

intervention tactics to improve immunotherapy response

include: 1) PI3K-AKT-mTOR blockade which can

simultaneously inhibit cancer metabolism and disinhibit the

immune system via inhibition of regulatory T cells (38) and 2)

targeting glutaminolysis via glutaminase (GLS) or arginase 1 to

promote differentiation and function of CD4 and CD8 T cells

(39–42). In an in-depth analysis, Guerra et al. argue that different

players in the TME use or modify energetic pathways in different

types of cancers which could be used to design cancer-specific

immune metabolic modulators. These approaches in metabolic

manipulation in combination with chemoradiation may

enhance immune cell fitness in the TME. Specifically, because
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radio- and chemotherapy induce tumor cell death, more

nutrients become available in the TME for immune cells to

use to their own advantage (35).

The complexity of the immune system with multiple

immune cell types using different metabolic pathways and

responding to different stimuli should not be understated (43).

Metabolic manipulation must be done in a thoughtful way to

promote anti-tumor immunity and not blunt its response (14,

44). For example, once stimulated, effector T cells increase

glycolysis and macronutrient production (45), but memory T

cells rely on OXPHOS with a lower glycolysis rate (45, 46).

Tumor cells have also been demonstrated to competitively

uptake glucose to inhibit TILs (47), whereas PD-1 blockade

increases glucose in TILs and promotes glycolysis (35). An in-

depth review of different immune cell metabolic profiles has

been previously published (48). These findings suggest caution

when using metabolic modulation anti-cancer therapies in

combination with immunotherapy, and that temporal and

spatial interaction will be important.

As noted previously, cancer’s metabolic adaptations to

the tumor microenvironment create barriers to effective

immunotherapy applications, supporting the addition of

metabolic modulators to therapeutic regimens for NSCLC (34).

Metabolic modulator use in the treatment of NSCLC may

improve radiotherapy and immunotherapy efficacy, and the

interplay between therapeutic agents in the TME supports the

continued exploration of chemoradiation, immunotherapy, and

metabolic modulators.
Opportunities for metabolic
targeting in lung cancer

Completion of TCGA-led efforts over the last decade have

unraveled the genomic, transcriptomic, and proteomic landscape of

lung cancer in a manner never previously thought possible (49, 50).

Among NSCLC subtypes, adenocarcinomas have a higher

incidence of actionable mutations and are more prevalent in non-

smokers (50). Squamous cell carcinomas have a higher frequency of

non-actionable mutations such as TP53 (~80-90% of cases) and are

more common in smokers (49, 51). The two most commonly

mutated genes in NSCLC are TP53 and KRAS, with KRAS being

almost exclusively in adenocarcinomas. The two most commonly

mutated signaling pathways are PI3K-Akt-mTOR and RAF-MEK-

MAPK (50). By examining these mutations, potential candidates for

metabolic modulation can be identified.

TP53 is mutated in 46% of NSCLC tumors (50), and mutated

TP53 is associated with worse patient outcomes (52). Although not

directly actionable currently, TP53 mutations result in loss of

normal protein function which provide several unique

opportunities for metabolic intervention. First, mutated TP53

results in reduced apoptosis by TP53-induced glycolysis and
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apoptosis regulator (TIGAR) suppression and increased glycolysis

and glucose transport by expression of phosphoglucomutase

(PGM), losing the ability to block G6PD activity (53). Second,

when glycolysis is pharmacologically inhibited, mutant TP53

NSCLC tumor cells lines are unable to upregulate OXPHOS

compared to wild type TP53, suggesting a mechanism to target

mutant TP53 (54). The high prevalence of TP53mutations makes it

an attractive target in NSCLC.

The RAS-RAF-MEK-MAPK pathway is mutated in 58% of

all NSCLC tumors and 76% of lung adenocarcinomas (50, 55). In

lung adenocarcinoma, activating mutations in oncogenes KRAS

(32%), EGFR (11%), and BRAF (7%) are common (50). It should

be noted that KRAS and EGFRmutations are mutually exclusive.

Alteration in this pathway results in heightened expression of

central glycolytic enzymes. Oncogenic RAS mutations keep RAS

membrane proteins in their GTP-bound, active state, resulting in

uncontrolled growth (8). KRAS mutations have higher

prevalence in smokers, but are still seen in non-smokers (56).

Mutated KRAS is associated with radioresistance in NSCLC and

other cancers (57–59). Mutated KRAS NSCLC tumors are

associated with higher expression of PD-L1/2, promoting an

immunoevasive environment (60). Once thought to be

untargetable, a newly approved KRAS small-molecular

inhibitor for patients with KRASC12C demonstrated an

objective response rate of ~33%, and provides hope of being

able to improve outcomes in these patients (61). Mutated KRAS

affects reactive oxygen species (ROS) regulation and promotes

radio- and chemoresistance (59, 62).

The PI3K-Akt-mTOR signal transduction pathway manages

glucose regulation and activates oncogenic mutations leading to

angiogenesis, proliferation, and differentiation among other

downstream effects (8). Therefore, it provides a direct link

between tumorigenesis, treatment response, and metabolic

targeting. In NSCLC, common mutations of this pathway

include serine/threonine kinase 11 (STK11 aka LKB1) which is

inactivated in 17% of cases, PTEN (3%), PIK3CA (4%), and

AKT1 (1%) (50). STK11 encodes the tumor suppressor enzyme

serine/threonine kinase 11, which when lost can increase flux of

glucose-derived carbon towards serine biosynthesis, support

DNA methylation, and promote oncogenic metabolic

phenotypes (63). Loss of STK11 is associated with locoregional

recurrence after radiation (64).The mechanism of resistance is in

part driven by the Kelch-like ECH-associated protein 1 (Keap1)/

nuclear factor erythroid-2-related factor 2 (NFR2) pathway

(64, 65).

The Keap1/NRF2 pathway is essential in metabolic and ROS

regulation. In homeostatic conditions, Keap1 with other proteins

ubiquitinates Nrf2 leading to its degradation via proteosomes

(66). When cells undergo an oxidative stress, Keap1 is oxidized

preventing Nrf2 ubiquitination which results in Nrf2

accumulation (67). Nrf2 is able to translocate to the nucleus,

interacts with nuclear proteins, and transcriptionally activates

antioxidant gene response (68). Nrf2 regulates Mdm2, NAD(P)
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H quinone dehydrogenase 1 (NQO1), heme oxygenase 1

(HMOX1), and glutamate-cysteine ligase modifier subunit

(GCLM) among others (69–72). As an oxidative stress

regulator, Nrf2 is important in the regulation of cancer

metabolism. It up-regulates metabolic pathways including

glycolysis/gluconeogenesis, pyruvate metabolism, pentose

phosphate pathway, glutathione metabolism, and others leads

to increased production of catabolic building blocks of nucleic

acids (73), carbohydrates, amino acids, and lipids which are vital

for tumor survival (65). Because KEAP1 is inactivated by high

levels of ROS resulting in activation of Nrf2, Nrf2 is one of the

master regulators of anti-oxidative transcription factors.

In NSCLC, loss-of-function mutations in Keap1 and gain-of-

functions of Nrf2 have been observed in 11.3% and 3.5% of

patients, respectively (74). These mutations result in a

constitutively active Nrf2 (75, 76). In patients with lung

adenocarcinoma, patients with high Keap1 and low Nrf2 have

better clinical outcomes than patients with low Keap1 and high

Nrf2 (74, 76). In NSCLC, mutated KRAS leads to NRF2

upregulation promoting chemoresistance and radioresistance

(62, 77). Nrf-2 inhibition has been demonstrated to be a

radiosensitizer in other cancers as well (78). Co-mutation of

KRAS and KEAP1/NFE2L2 predicts worse survival to

chemotherapy and immunotherapy (79), and Nrf-2-regulated

ROS homeostasis has been linked to chemotherapy resistance in

NSCLC and other cancers (76, 80–83). Knockdown of NRF2 in

NSCLC cell lines results in higher basal ROS causing

radiosensitization (84). When examining subtype-specific

transcriptional phenotypes in both KRAS mutant and wild

type NSCLC, the proliferative tumor subtype were STK11/

KEAP1 deficient in ~90% and ~75% of KRAS mutant and wild

type tumors, respectively (85), and the proliferative tumor

subtype appeared to respond to MEK inhibition (85). The

small molecule inhibitor of Nrf-2, IM3829, resulted in

radiosensitization in in vitro and in vivo experiments in

NSCLC and demonstrated expected increase in ROS and

apoptosis (86). Due to Nrf-2 promoting both radioresistance

and chemoresistance, NRF-2 inhibition makes for a rational

target for improving NSCLC chemoradiation. Targeting the

KEAP1/NFR2 pathway by inhibiting glutaminase may

radiosensitize tumors with the STK11 mutation (64).

Glutaminase (GLS) inhibition blocks the conversion of

glutamine to glutamate, decreasing glutathione production.

Inhibition of GLS by CB-938 leads to NSCLC tumor cell

sensitization to radiation (87–89). GLS inhibitors are currently

in clinical trials in solid tumors with chemotherapy

combination, but not currently any with radiation (90, 91).

This example demonstrates the potential for metabolic

modulators to improve concurrent chemoradiation.

Moreover, bioinformatic analysis of multiple smoking

related malignancies including NSCLC has identified a strong

correlation between Nrf2 hyperactivation and a suppressive

tumor immune microenvironment, depleted of effector
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immunocytes (Sandulache et al., In press). Experimental data

both in vitro and in immunocompetent pre-clinical models have

identified glutathione peroxidase 2 (GPX2), an Nrf2 target and a

critical regulator of oxidative stress response, as a primary driver

of suppressed immunity, manifested through reduced cytokine

and chemokine production by tumor cells, development of

tumors depleted of cytotoxic T cells, and enriched for myeloid

derived suppressor cells.

AMP-activated protein kinase (AMPK) is a key regulator of

cellular energy metabolism implicated in the PI3K-Akt-mTOR cell

signaling pathway, an important molecule in both metabolic and

genomic signaling pathways (92–94), and induces p53 activation

promoting cell survival and senescence (95–97). AMPK is targeted

in metabolic syndrome and type 2 diabetes mellitus, and it has

been proposed as a metabolic tumor suppressor in cancer

treatment (98). In cancer microenvironments, insulin activates

the PI3K/Akt signal transduction pathway and inhibits GSK3, a

tumor suppressor that inactivates glycogen synthase by

phosphorylation (99, 100). GSK3 inhibition results in cancer cells

storing and synthesizing glycogen in abnormally high quantities,

promoting cancer cell survival (101). SKT11 (aka LKB1) is

upstream of AMPK, normally leading to its activation, however

this effect may not be present in the setting of STK11 mutation

(102). As radiation normally activates AMPK, and reversal of this

activation leads to radioresistance, this may be a mechanism by

which STK11mutation drives therapeutic response independent of

Keap1/Nrf2 (92, 93).

The high rates of mutations of TP53 and KRAS and

dysregulation of PI3K-Akt-mTOR and RAF-MEK-MAPK

mechanistically supports and demonstrates the importance of

enhanced biomass requirements of rapidly proliferating cells.

This is particularly seen in conditions of energy deprivation seen

in the TME (e.g., AMPK sensing low ATP levels). Although

aberrant in cancer, NSCLCmust tightly regulate the metabolism,

otherwise, the most likely outcome is a catastrophic metabolic

disruption resulting in cell death. By exploiting this careful

balance, metabolic modulators may enhance the effects of

radiation, chemotherapy, and immunotherapy.
Systemic metabolic dysregulation
and NSCLC

Metabolic dysfunction is a risk factor for many types of

cancer. Hyperinsulinemia and hyperglycemia predict for

increased cancer incidence and worse patient survival

outcomes in a variety of cancers (103, 104). Diabetic cancer

patients experience worse prognoses than non-diabetic patients,

resulting in a 0-40% increase in overall mortality for different

types of cancer (105). Diabetes mellitus is an independent

prognostic factor for worse outcomes in patients with locally

advanced NSCLC (106), and hyperglycemia predicted for worse

survival in these patients when treated with concurrent
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chemoradiation (107). Paradoxically, obesity is linked with

decreased risk of lung cancer and better outcomes. This has

been attributed to confounders such as smoking and lung

cancer-associated weight loss (108–110). In metabolic

syndrome (characterized by three of five characteristics of

abdominal obesity, hypertriglyceridemia, hyperlipidemia,

hypertension and/or hyperglycemia), there has also been

association with increased risk of certain cancers (111). Both

obesity and metabolic dysfunction are associated with a state of

chronic inflammation (111, 112). Emerging evidence

demonstrates that obesity creates an immunosuppressive

environment in the TME (113), but there is evidence

demonstrating patients with obesity have better responses to

immunotherapy, especially in NSCLC (114). Because of these

links between metabolic dysregulation and cancer, investigation

into effective metabolic modulators is warranted to potentially

incorporate them into cancer therapeutics and understand the

full implications between these two diseases.

In patients with type 2 diabetes, metformin is considered the

initial drug of choice for management of hyperglycemia (115).

Metformin inhibits hepatic gluconeogenesis via interaction with

the mitochondrial electron transport chain and disrupts cAMP-

PKA signaling (116). Epidemiologic studies in diabetic patients

show that metformin use is associated with decreased risk of

cancer in comparison to other anti-diabetic treatments (117),

and specifically in NSCLC incidence (118–120). In diabetic

patients taking metformin there is a survival benefit compared

to diabetic patients not taking metformin or the nondiabetic

population in all cancers (121). In other solid cancer subsites,

metformin use is associated with improved outcomes with

radiotherapy and chemoradiotherapy (122–124). In advanced

NSCLC, patients with type II diabetes taking metformin had

improved PFS and OS compared to those patients taking insulin

or other anti-diabetic medications (125). In patients with

diabetes and non-operable NSCLC, metformin use is

associated with significantly longer overall survival suggesting

that metformin may have an anti-tumorigenic effect (126).

In preclinical models, metformin suppresses oncogenic

pathways such as EGFR signaling, insulin-like growth factor,

and acts as a radiation sensitizer in NSCLC by activating AMPK,

suppressing mTOR, and inducing G1 cell-cycle arrest (98, 127–

129). Metformin inhibits NSCLC cancer growth and increases

radiosensitivity with limited effect on normal lung cells (128).

The mechanism of action of metformin is thought to be

inhibition of the mitochondrial complex I of oxidative

phosphorylation via mitochondrial complex I (130).

Phenformin, a mitochondrial inhibitor and analog of

metformin, has been shown to selectively induce apoptosis in

STK11-deficient NSCLC cells and prolong survival in murine

models of NSCLC tumors with KRAS and STK11

mutations (131).

Metformin also demonstrates potentiation of antitumor

immunity. In a preclinical model of head and neck cancer,
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long-term metformin treatment reduces tumor growth

velocity, increases tumor infiltrating lymphocyte levels, and

increases the CD8+/T-reg ratio (a measure of immune cell

upregulation) thereby creating local and systemic immune

effects (132). Furthermore, given that hypoxia in the TME acts

as a barrier to immunotherapy, a recent study determined that

metformin led to reduction of tumor hypoxia which improved

the efficacy of PD-1 blockade and could reduce immunotherapy

resistance (133).

Based on this promising preclinical work and retrospective

clinical data, metformin has been pursued as a therapeutic

sensitizing agent. Metformin is one of the top ten prescribed

pharmaceuticals in the US, with a favorable adverse effects

profi le . Metformin is associated with low rates of

hypoglycemia and is generally well-tolerated, with most

common side effects being gastrointestinal. While rare, lactic

acidosis is the most severe side effect of metformin use as a

diabetic treatment. This safety and side effect profile made

metformin an optimal target for incorporation with

chemoradiation in NSCLC clinical trials in non-diabetic

NSCLC patients and its potential synergy with immunotherapy.

Unfortunately, the integration of metformin into clinical trials

for cancers has underperformed. In the locally advanced NSCLC

definitive chemoradiation setting, recent clinical trials

demonstrate no benefit of metformin use. NRG-LU001, a phase

II clinical trial of non-diabetic patients with locally advanced

unresectable NSCLC, tested the addition of metformin to

concurrent chemoradiation. It demonstrated no significant

difference in PFS or OS at one year compared to standard

chemoradiation, failing to meet its primary endpoint (134, 135).

The OCOG-ALMERA trial, a phase II clinical trial in non-diabetic

patients with unresectable locally advanced NSCLC,

demonstrated that concurrent and adjuvant metformin with

chemoradiation compared to chemoradiation alone had worse

1-year treatment failure, 69.2% versus 42.9%, p =0.05, and 1-year

PFS, 34.8% versus 63.0%, respectively (136). There were also

higher rates of grade 3+ adverse events in the metformin arm

(136). These trials demonstrate that metformin does not improve

outcomes with standard of care chemoradiation in an unselected

non-diabetic patient population.

A phase II clinical trial in inoperable early-stage NSCLC

tested the addition of neoadjuvant and concurrent metformin to

hypofractionated radiation (50 Gy in 4 fractions or 70 Gy in 10

fractions). Metformin resulted in increased SUV in tumors at

mid-treatment PET after neoadjuvant metformin use, contrary

to its expected effect on most physiologic tissues. Metabolic

responses determined with PERCIST criteria on PET imaging

show complete metabolic response in 69% of the metformin

cohort 6 months post-radiation treatment (137). In a Phase II

trial of non-diabetic stage IIIB/IV patients with EGFR-mutated

lung adenocarcinoma, the addition of metformin to EGFR

tyrosine kinase resulted in improved PFS and OS (138). These

results offer hope for properly selected NSCLC patient
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populations such as those patients with EGFR or KRAS/STK11

mutations (139).

Metformin became an attractive target for investigation in

the clinical setting for two reasons. First, the preclinical data in

multiple disease models was fairly compelling both in the single

agent setting and when combined with chemoradiation (98,

127–129). Second, metformin has an unparalleled safety profile

as a systemic agent used for DM management. This made it

perfect for repurposing. Unfortunately, metformin failed to

benefit an unselected patient population in combination with

chemoradiation in NSCLC. This highlights the complexity of

interactions between radiation, chemotherapy, cancer

metabolism, and the TME. However, results such as those in

EGFR-mutated lung adenocarcinoma gives hope that in an

appropriately selected patient population, metformin could

improve outcomes.
Novel metabolic modulators,
targets, and strategies

Most strategies rely on inhibition of major metabolic

pathways, predominantly glycolysis with the exception of the

Nrf2 based strategies outlined above. This poses substantial

challenges as they relate to both efficacy and normal tissue

toxicity. Multiple potential metabolic enzyme-targeting

therapies currently in preclinical and clinical trials not

involving NSCLC are shown in Table 1. Those being tested in

NSCLC are discussed here and summarized in Table 2. Future

exploration focuses on inhibition of glucose transport and

metabolism and inhibition of monocarboxylate transport to

prevent lactate excretion.

Glucose transporters (GLUT) inhibitors (fasentin, phloretin,

STF-31, DRB18 and WZB117) are in preclinical development for

lung cancer (8). WZB117 and DRB18 demonstrated in vitro and

in vivo inhibition in NSCLC cancer models (149, 150). Pyruvate

kinase M2 (PKM2) activation results in a higher ratio of glycolysis
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to glucose oxidation and appears to be inactivated in cancer (7).

Shikonin, a PMK2 inhibitor, demonstrated response rates in late-

stage lung cancer in patients who were not candidates for surgery,

radiotherapy, or chemotherapy (152, 153). Pyruvate

dehydrogenase kinase 1 (PDK1) blocks PDH activity.

Dichloroacetate (DCA), a PDK inhibitor, is an orally available

drug that shows potential benefit in many cancer types, including

reduced tumor growth, increased apoptosis in vivo, and a shift

from glycolysis to OXPHOS in NSCLC 7 (Table 1) (154).

However, a phase II clinical trial in metastatic NSCLC or breast

cancer investigating DCA response demonstrated safety and risk

concerns and was stopped prematurely (8). Lactate dehydrogenase

A (LDHA), which converts cytosolic pyruvate into lactate (157),

has been associated with radioresistance and chemoresistance in

other cancers (158, 158). LDHA is clinically targetable by PSTMB,

which demonstrates induction of apoptosis in NSCLC cancer cell

lines (8). It has been proposed that LDHA inhibitionmust be done

with careful dose and temporal control due to the significant off-

target side effects of this molecule (159). Due to the importance of

these metabolic proteins, this might apply to a substantial number

of metabolic inhibitors and possibly limit the translation to the

clinic. Another potential metabolic target is fructose-1,6-

bisphosphatase (FBP1), which when aberrant causes dysfunction

in NK cells of the immune system. Inhibition of FBP1 suggests

restoration of NK cell function during tumor growth (160).

However, it remains unclear whether these approaches can

achieve significant efficacy without normal tissue toxicity.
Metabolic imaging and
treatment modulation

Although most of this discussion has focused on the

addition of potential metabolic modulators to concurrent

chemoradiation, the use of metabolic imaging is vital for target

delineation of current radiation therapy. Molecular imaging in

lung cancer has been discussed extensively in these previous
TABLE 1 Inhibitors of metabolic enzymes in (pre)clinical development among various cancer types.

Drug Target Cancer Type Status

AG-120 (ivosidenib)
IDH305
BAY1436032

Mutant IDH 1/2
Mutant IDH 1/2
Mutant IDH 1/2

Glioma and Leukemia Preclinical (140–143)

AZD3965 MCT1 B cell lymphoma models Phase 1 clinical trial NCT01791595 (144, 145)

TVB-2640 Fatty acid synthase Breast cancer Preclinical (146)

IACS-010759 Mitochondrial respiratory
complex I

In-vitro hypoxic tumor cells Preclinical (147)

Dichloroacetate PDK Variety of cancers (NSCLC, breast cancer,
glioblastoma)

Orally available for metabolic conditions (7)

Lonidamine HK Breast cancer Hepatic toxicity in Phase III human trials (8,
148)
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reviews (161–163). Fluorodeoxyglucose (FDG)-PET scans are

standard of care for the appropriate staging of newly diagnosed

patients with NSCLC. Use of PET-CT has been demonstrated to

increase compliance with stage appropriate treatment and result

in a decreased 5-year mortality (164). When used in conjunction

with invasive mediastinal staging techniques, FDG-PET has a

high sensitivity and specificity for mediastinal lymph node

staging, allowing for improved target delineation when

designing radiation treatment plans. By treating only involved

mediastinal lymph nodes and avoiding traditional elective

lymph nodes, PET-CT radiation planning technique has

demonstrated at least equivalent local-regional control rate

with decreased pneumonitis (165–167). Current studies are

examining the role of mid-treatment FDG PET-guided

imaging to guide treatment intensification (168).

Different metabolic pathways are currently under

investigation for improving NSCLC prognostication and

prediction. As discussed above, tumor hypoxia is an area of

radioresistance within a tumor. Metabolic hypoxia PET tracers

are being studied to guide radiation intensification. The most

commonly used hypoxia markers are the nitroimidazole class of

compounds with (18)F-fluoromisonidazole ((18)FMISO-) (169,

170) being the most studied. When using both FDG-PET and

(18)F-FMISO imaging, a combined pattern can predict for

risk of recurrence after SBRT (171). In head and neck cancer

(18), F-FMISO PET/CT has been used to identify tumor areas

with hypoxia requiring dose escalation (172).

Additionally, over the last decade, MRI of hyperpolarized 13C

pyruvate - lactate conversion has matured in a technology which

can be used to identify high risk solid tumors in early stage clinical

trials (173, 174). In preclinical studies, 13C pyruvate HP-MRI has

been advanced as a near real-time readout of intra-tumoral shifts

in oxidative stress, and corresponding changes in carbon flux from

pyruvate into lactate are able to be determined. At a basic level,

HP-MRI leverages all of the aspects of altered solid tumor

metabolism outlined above and may provide the first real-time

biomarker of chemotherapy and radiation response in solid

tumors. This may be more challenging to implement in lung

cancer based upon motion artifact, but, along with CT-based

imaging with dedicated radiotracers, represents an interesting

avenue to explore (175–177).
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Discussion

Cancer cells have significant changes in glucose transport

and metabolism, glycolysis, catabolic metabolism, mitochondrial

oxidative cycle and aerobic fermentation, and the cancer TME.

A better understanding of these complex interactions can help

developing cancer therapeutics to improve chemoradiation and

immunotherapy in patients with NSCLC. In this subset of locally

advanced patients requiring chemoradiation, the prognosis has

improved significantly with the addition of immunotherapy, but

it still remains poor.

Metformin generated significant interest because initial

retrospective data in diabetic patients suggested that metformin

improved outcomes in patients receiving chemoradiation.

Unfortunately, recent phase II clinical trials in nondiabetic

patients did not show benefit of the addition of metformin.

Taken together, these results demonstrate that in unselected

nondiabetic patient populations, metformin does not improve

outcomes with chemoradiation. So, how do we explain these

findings and where does this leave metformin in NSCLC? Due to

metformin being first-line treatment for type II diabetes mellitus,

retrospective analysis could possibly be confounded in patients

receiving appropriate management or patients taking metformin

have less severe disease. As discussed previously, obesity is

associated with type II diabetes mellitus, and the possibility that

the previously discussed obesity paradox impacted patient

outcomes instead of metformin cannot be excluded. Also, the

hyperglycemia and hyperinsulinemia state in diabetic patients

could cause differential effect on tumors such as the known

increase in AMPK. The question if metformin will be useful in

any clinical situations will likely depend on patient selection. As

discussed previously, metformin may work better in certain

patient populations such as KRAS and STK11 mutations,

suggesting there may be certain genetic mutations that would

benefit. However, more preclinical and clinical data will be needed

to confirm this. It remains to be seen how metabolic modulators

can be used improve immunotherapy outcomes. Could

metformin be added to adjuvant immunotherapy after

chemoradiation to improve outcomes? Does the concurrent and

adjuvant timingmatter? Now that adjuvant immunotherapy is the

standard of care, this question will become more important.
TABLE 2 Inhibitors of metabolic enzymes in preclinical/clinical development for NSCLC.

Drug Target Status

WZB117
DRB18
Fasentin

GLUT
GLUT
GLUT

Preclinical (149–151)

Shikonin PKM2 Response in late-stage NSCLC (152, 153)

Dichloroacetate (DCA) PDK Preclinical development for NSCLC. Safety concerns in clinical trials (154, 155).

PSTMB LDHA Preclinical (8, 156)
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Incorporation of future metabolic modulators into

chemoradiation therapy is not ready for prime time. Further

work-up will be needed before incorporation of many of these

metabolic modulators into clinical trials. However, there is

rationale for incorporation in chemoradiation and

immunotherapy which deserves significant consideration.
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