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Background: Early identification of synchronous distant metastasis (SDM) in

patients with clear cell Renal cell carcinoma (ccRCC) can certify the reasonable

diagnostic examinations.

Methods: This retrospective study recruited 463 ccRCC patients who were

divided into two cohorts (training and internal validation) at a 7:3 ratio. Besides,

115 patients from other hospital were assigned external validation cohort. A

radiomics signature was developed based on features by means of the least

absolute shrinkage and selection operator method. Demographics, laboratory

variables and CT findings were combined to develop clinical factors model.

Integrating radiomics signature and clinical factors model, a radiomics

nomogram was developed.

Results: Ten features were used to build radiomics signature, which yielded an

area under the curve (AUC) 0.882 in the external validation cohort. By

incorporating the clinical independent predictors, the clinical model was

developed with AUC of 0.920 in the external validation cohort. Radiomics

nomogram (external validation, 0.925) had better performance than clinical

factors model or radiomics signature. Decision curve analysis demonstrated

the superiority of the radiomics nomogram in terms of clinical usefulness.

Conclusions: The CT-based nomogram could help in predicting SDM status in

patients with ccRCC, which might provide assistance for clinicians in making

diagnostic examinations.
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Introduction

Renal cell carcinoma (RCC) represents the seventh most

prevalent malignant tumors, leading to around 140,000 deaths

every year (1). Clear cell RCC (ccRCC) is the major histological

subtype, accounting for about 80% of all cases (2). Owing to the

widespread use of advantage radiologic diagnostic techniques, as

well as the popularization in regular checkups, most incidentally

detected renal lesions are small low-grade tumors. Nevertheless,

20%-30% of ccRCC patients have distant metastases at the time

of diagnosis (synchronous distant metastasis, SDM) (3). Surgery

is no longer suitable for metastatic ccRCC due to widespread

metastatic disease; thus, systemic therapy is applicable in this

setting (4, 5). ccRCC with SDM has poor prognosis, with median

survival of 16 months and a five-year survival rate of 3.6% (3).

Early identification of SDM can certify the reasonable,

personalized, and efficient treatment strategies were timely

performed and ultimately improve patient survival (6). Hence,

it was of great value to estimate the possibility of combined

distant metastasis, by which we can fully make individualized

examination and treatment plans.

Several clinicopathological parameters have been identified

to establish the nomogram for predicting SDM of ccRCC

patients (7, 8): T stage, pathological differentiation grade,

lymph node status, tumor size, and the invasion beyond the

capsule. One of the most meaningful risk factors is the tumor

size of the primary tumor. However, even small ccRCC have the

potential to present SDM (9, 10), which is mean that relying too

heavily on tumor size can lead to underestimate the true

incidence of SDM. Many advanced imaging manners can

contribute to the detection of SDM. However, using

multitudinous imaging methods to check all potential

metastatic sites for every ccRCC patient will heighten the extra

economic and physical burden. On the other hand, some

metastatic lesions may be small or share the overlapping

imaging characteristics with other tumors, which can lead to

the risk of missed diagnosis or misdiagnosis even though

imaging examinations were performed (11–14).

Radiomics is a promising technique using computerized

quantitative imaging analysis to extract an enormous quantity

of image-related features, such as intensity, geometry, and

texture, from medical images (15, 16). Radiomics features

extracted from computed tomography (CT), and magnetic

resonance imaging (MRI) have been successfully applied in

predict SDM in ccRCC patients (17, 18). However, these

models were developed with limited samples or without

external validation, making their clinical usefulness very

limited. Moreover, clinical risk factors, which could improve

predictive accuracy, have been overlooked.

In this multicenter study, we aim to develop and validate a

CT-based radiomics nomogram, incorporating radiomics

signature and clinical risk factors, for preoperative prediction
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of SDM in patients with ccRCC, based on a large collection of

patient data from two different institutions.
Materials and methods

Patients

The study was conducted in accordance with the Declaration

of Helsinki (as revised in 2013). This retrospective study was

approved by the Institutional Review Board of Shandong

Provincial Hospital Affiliated to Shandong First Medical

University and individual consent for this retrospective

analysis was waived. The study population flowchart is

illustrated in Figure 1.

Data for surgically and pathologically confirmed ccRCC

cases were acquired by searching through the institutional

database and medical record system. The inclusion and

exclusion criteria of the patients are presented in

Supplementary S1. Four hundred sixty-three patients from

Shandong Provincial Hospital Affiliated to Shandong First

Medical University diagnosed between January 2012 to

December 2020, including 127 SDM ccRCC patients and 336

without SDM ccRCC patients, were randomly assigned to either

the training cohort and internal validation cohort in a 7:3 ratio,

using a stratified random split in patient level. External

validation cohort consisted of 115 patients from Shandong

Medical Imaging Research Institute between January 2015 to

December 2019, including 29 SDM ccRCC patients and 86

without SDM ccRCC patients. A total of 58 SDM were

confirmed by pathology, and the other SDM were diagnosed

by radiologic features, that is, there was an increase in volume or

number of suspected metastases during follow-up. SDM was

defined as the distant metastatic lesion existing at the time of

initial diagnosis before nephrectomy.

Demographic and clinical characteristics, including age,

gender, weight, coronary heart disease, diabetes, hypertension,

history of smoking, hemoglobin, red blood cell distribution

width (RDW), neutrophil count, lymphocyte count, platelet

count, creatinine, calcium, albumin, fibrinogen were derived

from medical records. Besides, we also calculated neutrophil-

to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),

RDW-to-lymphocyte ratio (RLR), and albumin-to-fibrinogen

ratio (AFR).
CT image acquisition and
radiologic evaluation

The details of image acquisition parameters are shown in

Supplementary S2. Each CT study was analyzed by a radiology

resident (Reader 1, BK) and a radiologist (Reader 2, XMW) with 5
frontiersin.org

https://doi.org/10.3389/fonc.2022.1016583
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.1016583
and 20 years of experience in abdominal imaging, respectively.

Aware of the diagnosis of ccRCC but blinded to the radiological

reports and pathologic details, the two researchers construed the

following CT features by consensus: the maximum diameter of

tumor on the axial CT image; tumor polarity (superior/middle/

inferior); tumor side (left/right); tumor margin (well defined/poorly

defined); tumor shape (round/lobulated/irregular); enhancement

degree (lower than cortex/higher than or similar to cortex); and

necrosis (absence/presence). The maximum diameter of the tumor

was measured by the two radiologists, and the average value was

applied to the evaluation. For those qualitative parameters, in the

event of disagreement, the two readers jointly reviewed the findings

to reach a consensus for further analysis.
Development of clinical factor model

Univariate regression analysis was applied to the clinical factors,

including clinical data (age, gender, weight, coronary heart disease,

diabetes, hypertension, history of smoking), laboratory variables

(hemoglobin, PLR, NLR, RLR, AFR, calcium, and creatinine), and

CT features to find the factor that significantly affected the event

occurrence probability. Then a multiple logistic regression analysis

with a step-wise backwards elimination was subsequently applied to

build the clinical factors model in the training cohort. Odds ratios

(OR) as estimates of relative risk with 95% confidence interval (CI)

were calculated for each risk factor.
Frontiers in Oncology 03
Segmentation of tumor images and
radiomics feature extraction

In order to remove the potential differences of CT images

acquired from different CT scanners, normalization was

performed on all original CT images using the gray-scale

discretization method before extracting the radiomics features.

Corticomedullary phase and nephrographic phase images at

5.0-mm thickness were retrieved for radiomics feature

extraction. The three-dimensional region of interest (ROI)

were manually segmented along the tumor contour on each

transverse section, avoiding covering the paratumoral renal

parenchyma and perinephric fat, by using RadCloud (Huiying

platform Medical Technology Co., Ltd.), which was an available

platform reliably used in previous studies. Finally, 1409

radiomics feature were extracted, detailed in Supplementary S3.

Inter- and intra-class correlation coefficients (ICCs) were

calculated to estimate the inter-observer reliability and intra-

observer reproducibility of features extraction. Fifty cases of CT

images containing 17 SDM ccRCCs and 33 without SDM ccRCCs

were randomly chosen; region-of-interest segmentation was

drawn by one radiology resident (Reader 1, BK) and one

radiologist (Reader 2, XMW) independently; both were aware of

the diagnosis of ccRCC but were blinded to the SDM status.

Reader 1 then repeated the contouring procedure 8 weeks after the

initial analysis to assess the agreement of feature extraction. The

remaining image segmentation was performed by Reader 1.
FIGURE 1

Recruitment pathway for patients in this study. ccRCC, clear cell renal cell carcinoma.
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Development of radiomics signature and
radiomics nomogram

Only were the radiomics chosen to be kept when meeting a

criterion of inter- and intra-observer ICCs greater than 0.75, then

the minimum redundancy maximum relevancy method was

performed to eliminate the redundant and irrelated features and

kept 30 features. The remaining features were enrolled into the

least absolute shrinkage and selection operator (LASSO)

regression model to choose the optimized subset of features

from the training cohort to construct the final model. A

radiomics model was created by summing the selected feature

values weighted by their respective coefficients, and the

corresponding radiomics score was calculated for each patient.

To provide a more individualized predictive model, a

nomogram combining the final radiomics model and clinical

factors model was built in the training cohort. The calibration

of the nomogram was evaluated with a calibration curve. The

Hosmer–Lemeshow test was conducted to assess the goodness-of-

fit of the nomogram. A radiomics nomogram score for each

patient was obtained in the testing and external validation cohorts.
Assessment of the performance of
different models

The predictive accuracy of the clinical factors model,

radiomics model, and radiomics nomogram for predicting

SDM were quantified by the area under the receiver operating

characteristics (ROC) curve (AUC). Decision curve analysis

(DCA) was used to calculate the net benefits for a range of

threshold probabilities in the whole cohort to assess the clinical

usefulness of the nomogram.
Statistical analysis

Statistical analysis were performed using R statistical

software (version 3.6.3, https://www.r-project.org). Group

differences of the clinical factors were figured out by means of

chi-square test or Fisher exact test for categorical variables and

Mann-Whitney U test for continuous variables, where

appropriate. The clinical factors model was constructed using

the backward step-wise multivariate logistic regression with

Akaike information criterion (AIC) as criterion. The LASSO

logistic regression was performed using the “glmnet” package;

the ROC curves were plotted using the “pROC” package; the

nomogram and calibration curves were performed using the

“rms” package; and the DCA was performed using

“rmda” package.
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Results

Clinical factors of the patients and
construction of the clinical factor model

The patients’ demographic baseline characteristics are

summarized in Table 1. There are 325 ccRCC patients in the

training cohort (216 men and 109 women; mean age, 55.3 ± 11.1

years), 138 patients in the internal validation cohort (95 men and

43 women; mean age, 55.4 ± 10.4 years) and 115 patients in the

external validation cohort (84 men and 31 women; mean age,

53.9 ± 10.9 years). The rates of SDM ccRCCs were 27.4% (89 of

325), 27.5% (38 of 138), and 25.2% (29 of 115) in the training,

internal validation, and external validation cohorts, respectively,

whereas no statistically significant difference was found among

the three cohorts (P=0.891). The confirmation approaches of

SDM and sites of metastases are shown in Table 2.

The results of multiple logistic regression analysis are listed

in Table 3. According to the backward step-wise multivariate

logistic regression, age, sex, maximum diameter, shape, margin,

calcium, hemoglobin, and AFR were incorporated into the

development of the clinical factor model. The clinical score

(Cli-score) was calculated with the following formula:

Cliscore ¼ 0:029   �   age  +  1:359   �   sex + maximum  

�   0:036  +  shape   �   0:456
+ margin  �  1:102  +  calcium  �  0:957 + hemoglobin 

�   0:944 + AFR 
�  2:442-8:159

ROC curves of clinical factors model are displayed in

Figure 2, which yielded an AUC of 0.924 (95% CI: 0.890,

0.959) in the training cohort, 0.896 (95% CI: 0.826, 0.966) in

the internal validation cohort, and 0.920 (95% CI: 0.850, 0.990)

in the external validation cohort.
Radiomics feature extraction, selection,
and radiomics signature establishment

Among 2818 radiomics features extracted from

corticomedullary phase and nephrographic phase CT images,

1704 features showed high stability, and then were reduced to 30

features by minimum redundancy maximum relevancy. In the

final feature selection with the LASSO method (Figures 3A, B),

10 most valuable features were kept, and displayed in Figure 3C.

Violin plots showed that the difference of the 10 radiomics

features between the SDM ccRCC and without SDM ccRCC

groups (Supplementary Figure S1). The radiomics score (Rad-

score) was attained with the following formula:
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TABLE 1 Comparison of patient clinicoradiological characteristics of with and without SDM ccRCC.

Characteristics

Training cohort Internal validation cohort External validation cohort

With SDM
(n=89)

Without
SDM

(n=236)

P
Value

With SDM
(n=38)

Without
SDM

(n=100)

P
Value

With SDM
(n=29)

Without
SDM (n=86)

P
Value

Age (y)* 58.5 ± 9.2 54.1 ± 11.5 0.001 57.9 ± 10.0 54.5 ± 10.4 0.082 56.8 ± 10.2 52.9 ± 11.0 0.093

Sex <0.001 0.889 0.524

Female 12 (13.5) 97 (41.1) 11 (28.9) 32 (32.0) 6 (20.7) 25 (29.1)

Male 77 (86.5) 139 (58.9) 27 (71.1) 68 (68.0) 23 (79.3) 61 (70.9)

Hypertension 0.524 0.826 0.555

Absence 54 (60.7) 154 (65.3) 22 (57.9) 54 (54.0) 19 (65.5) 49 (57.0)

Presence 35 (39.3) 82 (34.7) 16 (42.1) 46 (46.0) 10 (34.5) 37 (43.0)

Diabetes 0.573 1.000 0.185

Absence 79 (88.8) 202 (85.6) 33 (86.8) 88 (88.0) 27 (93.1) 69 (80.2)

Presence 10 (11.2) 34 (14.4) 5 (13.2) 12 (12.0) 2 (6.9) 17 (19.8)

Coronary heart
disease

0.442 0.852 0.684

Absence 77 (86.5) 213 (90.3) 36 (94.7) 92 (92.0) 26 (89.7) 81 (94.2)

Presence 12 (13.5) 23 (9.7) 2 (5.3) 8 (8.0) 3 (10.3) 5 (5.8)

History of
smoking

0.248 0.279 1.000

Absence 52 (58.4) 156 (66.1) 21 (55.3) 67 (67.0) 58 (67.4) 19 (65.5)

Presence 37 (41.6) 80 (33.9) 17 (44.7) 33 (33.0) 28 (32.6) 10 (34.5)

Weight* 70.8 ± 11.3 71.5 ± 12.2 0.654 70.4 ± 11.5 74.2 ± 10.5 0.067 72.3 ± 12.3 68.5 ± 12.9

Hemoglobin (g/L) <0.001 <0.001 0.001

Female≥115;
Male≥130

54 (60.7) 218 (92.4) 24 (63.2) 95 (95.0) 21 (72.4) 83 (96.5)

Female<115;
Male<130

35 (39.3) 18 (7.6) 14 (36.8) 5 (5.0) 8 (27.6) 3 (3.5)

Calcium (mmol/L) 0.043 0.875 0.056

≤2.4 53 (59.6) 170 (72.0) 25 (65.8) 69 (69.0) 12 (41.4) 55 (64.0)

>2.4 36 (40.4) 66 (28.0) 13 (34.2) 31 (31.0) 17 (58.6) 31 (36.0)

Creatinine (mmol/
L)

0.014 0.299 0.866

≤90 76 (85.4) 223 (94.5) 32 (84.2) 92 (92.0) 25 (86.2) 71 (82.6)

>90 13 (14.6) 13 (5.5) 6 (15.8) 8 (8.0) 4 (13.8) 15 (17.4)

RLR <0.001 0.022 0.648

<8.6 45 (50.6) 179 (75.8) 22 (57.9) 79 (79.0) 20 (69.0) 65 (75.6)

≥8.6 44 (49.4) 57 (24.2) 16 (42.1) 79 (79.0) 9 (31.0) 21 (24.4)

PLR <0.001 <0.001 0.008

<146 29 (32.6) 140 (59.3) 12 (31.6) 72 (72.0) 10 (34.5) 56 (65.1)

(Continued)
F
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TABLE 1 Continued

Characteristics

Training cohort Internal validation cohort External validation cohort

With SDM
(n=89)

Without
SDM

(n=236)

P
Value

With SDM
(n=38)

Without
SDM

(n=100)

P
Value

With SDM
(n=29)

Without
SDM (n=86)

P
Value

≥146 60 (67.4) 96 (40.7) 26 (68.4) 28 (28.0) 19 (65.5) 30 (34.9)

NLR <0.001 <0.001 0.004

<3 51 (57.3) 199 (84.3) 18 (47.4) 85 (85.0) 18 (62.1) 76 (88.4)

≥3 38 (42.7) 37 (15.7) 20 (52.6) 15 (15.0) 11 (37.9) 10 (11.6)

AFR <0.001 <0.001 <0.001

≥9 42 (47.2) 218 (92.4) 14 (36.8) 98 (98.0) 10 (34.5) 82 (95.3)

<9 47 (52.8) 18 (7.6) 24 (63.2) 2 (2.0) 19 (65.5) 4 (4.7)

Maximum
diameter (mm)*

76.2 ± 27.2 46.8 ± 18.5 <0.001 70.5 ± 26.0 42.0 ± 13.7 <0.001 73.6 ± 29.8 42.3 ± 14.2 <0.001

Tumor side 0.517 1.000 0.479

Left 45 (50.6) 108 (45.8) 18 (47.4) 46 (46.0) 14 (48.3) 50 (58.1)

Right 44 (49.4) 128 (54.2) 20 (52.6) 54 (54.0) 15 (51.7) 36 (41.9)

Tumor polarity 0.693 0.304 0.035

Superior 30 (33.7) 71 (30.1) 12 (31.6) 29 (29.0) 13 (44.8) 20 (23.3)

Middle 31 (34.8) 94 (39.8) 12 (31.6) 45 (45.0) 7 (24.1) 42 (48.8)

Inferior 28 (31.5) 71 (30.1) 14 (36.8) 26 (26.0) 9 (31.0) 24 (27.9)

Tumor margin <0.001 <0.001 <0.001

Well defined 34 (38.2) 213 (90.3) 17 (44.7) 95 (95.0) 11 (37.9) 82 (95.3)

Poorly defined 55 (61.8) 23 (9.7) 21 (55.3) 5 (5.0) 18 (62.1) 4 (4.7)

Tumor shape <0.001 <0.001 <0.001

Round 11 (12.4) 103 (43.6) 4 (10.5) 47 (47.0) 3 (10.3) 25 (29.1)

Lobulated 18 (20.2) 95 (40.3) 15 (39.5) 43 (43.0) 10 (34.5) 51 (59.3)

Irregular 60 (67.4) 38 (16.1) 19 (50.0) 10 (10.0) 16 (55.2) 10 (11.6)

Enhancement
degree

0.476 0.453 0.910

High 71 (79.8) 198 (83.9) 30 (78.9) 86 (86.0) 23 (79.3) 71 (82.6)

Low 18 (20.2) 38 (16.1) 8 (21.1) 14 (14.0) 6 (20.7) 15 (17.4)

Necrosis <0.001 <0.001 0.006

Absence 22 (24.7) 148 (62.7) 11 (28.9) 70 (70.0) 15 (51.7) 69 (80.2)

Presence 67 (75.3) 88 (37.3) 27 (71.1) 30 (30.0) 14 (48.3) 17 (19.8)

Rad-score† 0.1 [-0.9, 1.5] -2.2 [-2.8, -1.2] <0.001
-0.6 [-1.4,

1.0]
-2.4 [-3.0, -1.5] <0.001 0.4 [-0.5, 1.8] -1.8 [-2.3, -1.1] <0.001

Unless otherwise indicated, data are numbers of patients, and data in parentheses are percentages. *Data are mean ± standard deviation. †Data in parentheses are interquartile range.
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TABLE 2 Confirmation approaches of SDM and sites of metastases.

Total (n=156) Training cohort (n=89) Internal validation cohort (n=38) External validation cohort (n=29)

Number of metastasis sites

Single 105 (67.3%) 64 (71.9%) 20 (52.6%) 21 (72.4%)

Multiple 51 (32.7%) 25 (28.1%) 18 (47.4%) 8 (27.6%)

Sites of metastases

Lung 93 (59.6%) 52 (58.4%) 26 (68.4%) 15 (51.7%)

Bone 53 (34.0%) 27 (30.3%) 18 (47.4%) 8 (27.6%)

Adrenal
gland

27 (17.3%) 14 (15.7%) 7 (18.4%) 6 (20.7%)

Lymph nodes 27 (17.3%) 17 (19.1%) 7 (18.4%) 3 (10.3%)

Liver 13 (8.3%) 8 (9.0%) 4 (10.5%) 1 (3.4%)

Pleura 10 (6.4%) 4 (4.5%) 4 (10.5%) 2 (6.9%)

Brain 9 (5.8%) 4 (4.5%) 3 (7.9%) 2 (6.9%)

Pancreas 5 (3.2%) 4 (4.5%) – 1 (3.4%)

Others* 5 (3.2%) 2 (2.2%) – 3 (10.3%)

Confirmation approaches

By pathology 58 (37.2%) 31 (34.8%) 13 (34.2%) 14 (48.3%)

By follow-up 98 (62.8%) 58 (65.2%) 25 (65.8%) 15 (51.7%)

Data are numbers of patients, and data in parentheses are percentages. *Other sites included the bladder, gall bladder, muscles and spleen.
F
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TABLE 3 Multivariate logistic regression analysis of clinicoradiological characteristics.

OR (95% CI) P Value

Age 1.04 (1.00,1.08) 0.076

Male 4.99 (1.9,13.15) 0.001

Decreased hemoglobin 2.3 (0.77,6.88) 0.137

Elevated calcium 2.88 (1.24,6.69) 0.014

Elevated creatinine 1.11 (0.24,5.22) 0.892

Elevated RLR 0.72 (0.27,1.95) 0.521

Elevated PLR 1.23 (0.47,3.22) 0.680

Elevated NLR 0.84 (0.3,2.36) 0.740

Decreased AFR 14.94 (5.44,41.08) <0.001

Maximum diameter 1.04 (1.01,1.06) 0.003

Poorly defined 2.32 (0.86,6.25) 0.096

Lobulated 0.39 (0.13,1.23) 0.109

Irregular 2.06 (0.61,6.97) 0.244

Necrosis 1.67 (0.68,4.09) 0.264
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Radscore ¼ 1:051  �  original_shape_Maximum3DDiameter_A+ -0:268 

� wavelet_LHH-gldm_DependenceEntropy_A + 0:183 

� wavelet_LLH_firstorder_Variance_V + 0:156 

� wavelet_LHL_firstorder_Mean_A + -0:148 

� wavelet_HLH_gldm_DependenceEntropy_A + 0:343 

� squareroot_firstorder_Maximum_V + -0:309 

�wavelet_LHH_gldm_DependenceVariance_V + -0:002 

� square_firstorder_Variance_A + -0:115 
� wavelet_LLH_firstorder_RobustMeanAbsoluteDeviation_V + 0:391 

�squareroot_gldm_SmallDependenceLowGrayLevelEmphasis_A + -1:335

Rad-score [median (interquartile range)] differed significantly

between the SDM ccRCC and without SDM ccRCC groups in the

training cohort [0.1 (-0.9, 1.5) vs. −2.2 (−2.8, −1.2), respectively,

P < 0.001]; this finding was verified in the internal validation

cohort [−0.6 (−1.4, 1.0) vs. −2.4 (−3.0, −1.5), respectively, P <

0.001] and external validation cohort [0.4 (−0.5, 1.8) vs. −1.8 (−2.3,

−1.1), respectively, P < 0.001].
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ROC curves of radiomics signature are displayed in Figure 2.

The radiomics signature yielded an AUC of 0.871 (95% CI:

0.828, 0.914) in the training cohort, 0.869 (95% CI: 0.806, 0.933)

in the internal validation cohort, and 0.882 (95% CI: 0.796,

0.967) in the external validation cohort, showing favorable

predictive efficacy.
The radiomics nomogram establishment
and assessment of the performance of
different models

By incorporating the Cli-score and Rad-score, a radiomics

nomogram was developed in the training cohort (Figure 4A).

The calibration curve of the radiomics nomogram demonstrated

good agreement between the predicted and expected

probabilities for SDM ccRCC (Figure 4). The P values of

Hosmer–Lemeshow test were 0.471, 0.183, and 0.340 in
A B

C

FIGURE 2

Radiomics feature selection by using the least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of the tuning
parameter (l) in the LASSO model via 10-fold cross-validation based on minimum criteria. Binomial deviances from the LASSO regression cross-
validation model are plotted as a function of log(l). The y-axis shows binomial deviances and the lower x-axis the log(l). Numbers along the
upper x-axis indicate the average number of predictors. Red dots indicate average deviance values for each model with a given l, and vertical
bars through the red dots indicate the upper and lower values of the deviances. The vertical black lines define the optimal values of l, where the
model provides its best fit to the data. An optimal l value of 0.007 with log(l) =-4.962 was selected. (B) The coefficients have been plotted
vs. log(l). (C) The 10 features with nonzero coefficients are shown in the plot.
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training, internal validation, and external validation

cohorts, respectively.

ROC curves of radiomics nomogram are displayed in

Figure 2. The AUC, sensitivity, specificity, and accuracy of the

radiomics nomogram, respectively, were 0.929 (95% CI: 0.896,

0.961), 82.0%, 91.9%, and 89.2% in the training cohort, 0.916

(95%CI: 0.857, 0.975), 84.2%, 88.0%, and 87.0% in the internal

validation cohort, 0.925 (95%CI: 0.855,0.994), 86.2%, 94.2%, and

92.2% in the external validation cohort. The distribution of

Nomo-score with regard to SDM status in the training,

internal validation and external validation cohorts is presented

in Figure 5.

The diagnostic performance of every model is demonstrated

in Table 4. A slightly higher AUC was observed for the radiomics

nomogram after integrating Cli-score both in the internal

validation cohort (0.916 vs. 0.869) and in the external

validation cohort (0.925 vs. 0.882). Nevertheless, incorporation

of the Cli-score into the radiomics nomogram did not show

significantly improved prediction efficiency (P =0.181 and

0.133, respectively).

The DCA of the three model were presented in Figure 6. It

showed that the radiomics nomogram and clinical factor model

had a higher overall net benefit in differentiating SDM ccRCC

from without SDM ccRCC than the radiomics signature across

the full range of reasonable threshold probabilities.
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Discussion

It is necessary to preoperatively identify the SDM status

timely to certify the reasonable, personalized, and efficient

treatment decision. In this retrospective study, we developed

and validated a radiomics nomogram that incorporates the

radiomics signature and clinical factors for individualized

prediction of SDM in ccRCC patients before treatment. The

proposed radiomics nomogram demonstrated favorable

discrimination in both internal validation cohort (AUC, 0.916)

and external validation cohort (AUC, 0.925), outperforming

radiomics signature (internal validation, 0.869; external

validation, 0.882) and clinical factor model (internal

validation, 0.896; external validation, 0.920).

As far as we know, only few studies have been reported in the

literature including radiomics-based methods for prediction of

SDM ccRCC. Bai et al. (17) developed a MRI-based radiomics

nomogram combining patient age, regional lymph node,

pseudocapsule and Rad-score, and demonstrated the

nomogram can be useful for differentiating SDM ccRCC from

without SDM ccRCC, with an AUC of 0.854 (95%CI, 0.736-

0.971) in the internal validation cohort and 0.816 (95%CI, 0.661-

0.971) in the external validation cohort. Compared with MRI,

CT has a wider range of uses for the detection, identification, and

staging of ccRCC due to its high diagnostic accuracy. A study by
D

A

B C

FIGURE 3

Radiomics nomogram and calibration curves. (A) The radiomics nomogram, combining Cli-score and Rad-score, developed in the training set.
Calibration curves for the radiomics nomogram in the training (B), internal validation (C), and external validation (D) cohorts. Calibration curves indicate
the goodness-of-fit of the nomogram. The 45° gray line represents the ideal prediction, and the pink line represents the predictive performance of the
nomogram. The closer the pink line approaches the ideal prediction line, the better the predictive efficacy of the nomogram is.
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Wen et al. (18) showed that radiomics features extracted from

contrast enhanced CT images demonstrated a good performance

for prediction of SDM ccRCC (AUC, 0.83 [95%CI, 0.69-0.95]).

However, the weakness of their study is lack of relevant clinical

factors. Therefore, we tried to develop a novel CT-based

radiomics nomogram combined radiomics signature and

clinical factors to predict the SDM status. In addition, our

study had a larger sample size with 578 ccRCC patients while

the previous studies only had modest sample size ranging from

172 to 201 patients. Our study showed a better performance

compared with previous studies, with an AUC of 0.916 (95%CI,

0.857-0.975) in the internal validation cohort and 0.925 (95%CI,

0.855-0.994) in the external validation cohort.

The radiomics signature consisting of 10 radiomics features

in our study was able to differentiate SDM ccRCC from without

SDM ccRCC with acceptable performance in the internal

validation (0.869 [95%CI, 0.806-0.933]) and external validation

(0.882[95%CI, 0.796-0.967]) cohorts. In our radiomics

signature, most of the features were transformed by wavelet

filter, which splits imaging data into different frequency

components on three axis of the tumor region (19), indicating

that the wavelet features may further explore the spatial

heterogeneity at multiple scales within tumor regions. Some

previous studies have reported that wavelet features might better

reveal tumor biology and heterogeneity (20, 21). Liang et al.

found that wavelet features were of great importance to predict
Frontiers in Oncology 10
early recurrence of intrahepatic cholangiocarcinoma after partial

hepatectomy (20). The shape feature, Maximum 3D Diameter,

defined as the largest pairwise Euclidean distance between tumor

surface mesh vertices, had the highest weights in the radiomics

model. The Maximum 3D Diameter was positively correlated

with SDM ccRCC, suggesting that larger tumor may be seen

more commonly in SDM ccRCC, which is consistent with

previous studies (22, 23). Small Dependence Low Gray Level

Emphasis (SDLGLE) is defined as the joint distribution of small

dependence with lower gray-level values, and the greater value

indicates less homogeneous textures and a greater concentration

of low gray-level values in the image (24). We assumed the

greater value of SDLGLE in SDM ccRCC might be related to the

combination of a larger range of necrosis components with

lower gray values (25, 26).

Our study took plenty of clinical factors into account. In line

with previous studies, AFR was selected as an independent

predictor for without SDM ccRCC, which suggested that

ccRCC patients with decreased AFR are more likely to have

SDM (27–29). Numerous experimental researches have

convincingly supported the concept that inflammation is an

imperative ingredient of tumor progression (30–32). Serum

albumin has protective effects such as nutrition and anti-

inflammatory, and fibrinogen can promote the invasion and

metastasis of tumor cells through epithelial-mesenchymal

transition and induce tumor blood vessel formation, thereby

participating in tumor progression (33, 34). Therefore, decreased

serum albumin and elevated fibrinogen are symptoms of

elevated systemic inflammation, and decreased AFR might be

connected with a worse prognosis (27). According to the

equation for the Cli-score developed in our study, ccRCC with

decreased AFR tended to be accompanied with SDM, which was

consistent with the previous studies. It should be noted that, for

the other clinical features associated with inflammation,

including PLR, NLR and RLR, we found they were

significantly different between SDM ccRCC and without SDM

ccRCC in training cohort. However, these clinical features were

not independent factors after multivariate analysis and were

excluded in the final model. We presume that the difference in

endpoint event and the unbalance of the two groups might

explain the discrepancy between study results.

There are several limitations to our study. First, the

retrospective nature might have inevitably introduced bias in

population selection. The two groups in our study population

was unbalanced, which might indicate a spectrum bias and

might have influenced the diagnostic performance. Besides,

there was an imbalance between the training and internal

validation cohort, due to the relatively small sample size.

Prospective multicenter studies with considerably large

datasets are needed to further validate the robustness and

reproducibility of our model. Second, owing to the limitation

of the small number of SDM ccRCC, there is not enough data to

differentiate various site of SDM to perform a stratified analysis,
A

B

C

FIGURE 4

The distribution of Nomo-score with regard to SDM status in the
training (A), internal validation (B) and external validation (C)
cohorts.
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which is meaningful. A large-scale prospective study is needed to

predict the exact location of SDM. Third, CT acquisition

parameters and reconstruction techniques were not consistent

due to the retrospective and multi-institutional nature of the
Frontiers in Oncology 11
study. Fourth, not all SDM were diagnosed with pathologic

examination. Some lesions were diagnosed with typical

radiologic findings and follow-up imaging. Finally, different

observers for segmentation could have affected the stability of
A B

C

FIGURE 5

Diagnostic performance of the clinical factors model, radiomics signature, and radiomics nomogram was assessed and compared through ROC
curves in the training (A), internal validation (B) and external validation (C) cohorts. ROC = receiver operating characteristics; AUC = area under
the receiver operating characteristic curve.
TABLE 4 Results of radiomics nomogram, radiomics signature, and the clinical factors model predictive ability for distinguishing between SDM
ccRCC and without SDM ccRCC.

Parameter Cutoff AUC (95% CI) ACC* SEN* SPE*

Clinical factors model Training cohort -0.396 0.924 (0.890-0.959) 88.6% (288/325) 78.7% (70/89) 92.4% (218/236)

Internal validation cohort 0.896 (0.826-0.966) 87.0% (120/138) 84.2% (32/38) 88.0% (88/100)

External validation cohort 0.920 (0.850-0.990) 91.3% (105/115) 82.8% (24/29) 94.2% (81/86)

Radiomics signature Training cohort -0.884 0.871 (0.828-0.914) 81.2% (264/325) 76.4% (68/89) 83.1% (196/236)

Internal validation cohort 0.869 (0.806-0.933) 77.5% (107/138) 84.2% (32/38) 75.0% (75/100)

(Continued)
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TABLE 4 Continued

Parameter Cutoff AUC (95% CI) ACC* SEN* SPE*

External validation cohort 0.882 (0.796-0.967) 81.7% (94/115) 86.2% (25/29) 80.2% (69/86)

Radiomics nomogram Training cohort 0.419 0.929 (0.896-0.961) 89.2% (290/325) 82.0% (73/89) 91.9% (217/236)

Internal validation cohort 0.916 (0.857-0.975) 87.0% (120/138) 84.2% (32/38) 88.0% (88/100)

External validation cohort 0.925 (0.855-0.994) 92.2% (106/115) 86.2% (25/29) 94.2% (81/86)

Note.—CI, confidence interval.

ACC = TP+ TN
TP + TN  + FP + FN

SEN = TP
TP + FN

ACC = TP + TN
TP + TN  + FP + FN

where TP, FP, TN, and FN denote true positive, false positive, true negative, and false negative, respectively.
*Numbers in parentheses were used to calculate percentages.
F
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C

FIGURE 6

Decision curve analysis for the three models in the training (A), internal validation (B) and external validation (C) cohorts. The y-axis shows the
net benefit; x-axis shows the threshold probability. The red, orange, and green line represent net benefit of the radiomics nomogram, clinical
factors model, and radiomics signature, respectively.
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radiomics features. Although only features with ICCs greater

than 0.75 were kept for radiomics signature construction in our

study, automated and accurate tumor segmentation must be

developed to facilitate the efficiency of the radiomics process. In

addition, it would be more interesting to develop a model to

predict metachronous disease, which could be helpful in

managing follow-up schedule.

In conclusion, our study presented a CT-based radiomics

nomogram that showed satisfactory performance in predicting

SDM among ccRCC patients, which can enable physicians to make

more informed diagnostic examinations and treatment decisions.
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