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HCC biomarkers – state
of the old and outlook to
future promising biomarkers
and their potential in everyday
clinical practice

Sophie Schlosser, Deniz Tümen, Barbara Volz,
Katja Neumeyer, Niklas Egler, Claudia Kunst,
Hauke Christian Tews, Stephan Schmid, Arne Kandulski ,
Martina Müller and Karsten Gülow*

Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology,
and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
Hepatocellular carcinoma (HCC) is one of the most common and deadly

tumors worldwide. Management of HCC depends on reliable biomarkers for

screening, diagnosis, and monitoring of the disease, as well as predicting

response towards therapy and safety. To date, imaging has been the

established standard technique in the diagnosis and follow-up of HCC.

However, imaging techniques have their limitations, especially in the early

detection of HCC. Therefore, there is an urgent need for reliable, non/minimal

invasive biomarkers. To date, alpha-fetoprotein (AFP) is the only serum

biomarker used in clinical practice for the management of HCC. However,

AFP is of relatively rather low quality in terms of specificity and sensitivity. Liquid

biopsies as a source for biomarkers have become the focus of clinical research.

Our review highlights alternative biomarkers derived from liquid biopsies,

including circulating tumor cells, proteins, circulating nucleic acids, and

exosomes, and their potential for clinical application. Using defined

combinations of different biomarkers will open new perspectives for

diagnosing, treating, and monitoring HCC.
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1 Hepatocellular carcinoma – a high
disease burden

Hepatocellular carcinoma (HCC) is one of the most frequent

tumor types worldwide. Its clinical importance has been rising

tremendously in the past two decades: The incidence increased

about 75% (1). Concurrently, HCC is ranked 5th most common

tumor worldwide (2). In 2020 905,677 new cases of liver cancer

worldwide were diagnosed. About 80% of them were HCC (2).

Regarding death caused by cancer, HCC ranks 3rd place (2).

The World Health Organization expects more than one million

deaths due to liver cancer by 2030 (3). Men are almost three

times more likely to be affected than women.

73% of HCC cases occur in Asia (2). The reason for this

geographic variance is the endemic occurrence of hepatitis viruses,

the most common risk factor for HCC. Despite the decrease in the

number of Hepatitis B virus (HBV) infections due to the global

introduction of vaccination programs, one-third of all HCC cases

worldwide are still based on chronic HBV infection (33%) (1, 4).

Hepatitis C (HCV) infection is the secondmost important risk factor.

Even after the introduction of new, highly efficient combination

therapies with polymerase inhibitors, protease inhibitors, and non-

structural protein 5A (NS5A) inhibitors in 2013, more than one-fifth

of HCCs are due to HCV infection (1). Another relevant risk factor

with a substantial global disease burden and potential to grow is the

metabolic syndrome. Since 1975, overweight and obesity have tripled

worldwide (5). Other risk factors are alcohol-related liver cirrhosis

(30%), primary biliary cholangitis, primary sclerosing cholangitis,

hemochromatosis, and alpha1-antitrypsin deficiency (1). Aflatoxin is

a mycotoxin that can also trigger HCC and is mainly found in nuts,

dried fruits, and spices.

Physicians should regularly monitor the risk groups depicted

above for the occurrence of HCC. Given the high burden of

disease, there is a tremendous need for valid and cost-effective

biomarkers that can
Fron
• identify individual risks for developing HCC,

• detect HCC in an early stage,

• predict therapy response to specific therapies,

• monitor response to therapy and predict adverse side

effects of cancer therapies,

• and predict cancer recurrence.
These biomarkers should be easy to obtain and easy to

analyze routinely.
2 What characterizes an optimal
biomarker?

Modern medicine depends on reliable biomarkers for

screening, diagnosis, disease monitoring, prognosis, predicting
tiers in Oncology 02
therapy success, response to therapy, and treatment safety. The

BEST (Biomarkers, EndpointS, and other Tools) glossary of the

FDA-NIH Biomarker Working Group defines biomarkers as a

characteristic that is measured as an indicator of normal

biological processes, pathogenic processes or biological

responses to an exposure or intervention, including

therapeutic interventions.” (6). They contain molecular,

histologic, radiographic or physiologic characteristics.” (6, 7).

The FDA-NIH Biomarker Working Group distinguishes

between (6):
i. Susceptibility or risk biomarkers are associated

with the chance of developing cancer and are

essential to define risk populations for

surveillance.

ii. Diagnostic biomarkers detect cancer occurrence.

iii. Predictive biomarkers identify patients that might

benefit from specific cancer therapies.

iv. Monitoring biomarkers indicate the activity of

the disease and response to therapy.

v. Pharmacodynamics or response biomarkers show

changes in biological characteristics in response

to the dosage of cancer therapy.

vi. Safety biomarkers predict adverse side effects of

cancer therapies.

vii. Prognostic biomarkers anticipate cancer

recurrence or progression (Figure 1).
For clinical applicability, biomarkers must meet the

following criteria:
• The biomarker has to be valid, reliable, and objective.

• The sample collection must only involve a minimal risk

for the patient.

• The biomarker has to be easy to collect.

• The sample must be stable under clinical and laboratory

conditions.

• Samples should be able to be analyzed on a routine basis.

• Analysis has to be feasible and rapid.
3 State of the old – conventional
biomarkers recommended
by guidelines

Unfortunately, there are only a few biomarkers for HCC in

daily practice so far: alpha-fetoprotein (AFP), HSP70 (HSPA7),

glypican 3 (GPC3), and glutamine synthetase (GS). They are not

even considered in all major guidelines due to their limited

diagnostic quality. In the following, we will briefly review the use

of biomarkers for HCC in daily practice:
frontiersin.org
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3.1 Susceptibility biomarkers

Up to date, no susceptibility biomarkers are recommended

by HCC guidelines and in daily clinical practice for stratifying

the risk of HCC occurrence.
3.2 Diagnostic biomarkers

AFP is the most established clinical biomarker in clinical

practice for detecting HCC. It is a transport protein for copper,

nickel, fatty acids, and bilirubin expressed during the embryonic

phase in human cells. Serum AFP levels diminish rapidly after

birth and remain very low during adulthood (8). Of clinical

relevance, in adults, AFP is mainly found in tumor cells of the

liver, testes, and ovaries. It has been shown that AFP dampens

the immune response and can enhance immunological tolerance

toward tumors. In detail, secreted AFP interferes with the

maturation and function of dendritic cells, leading to a

decreased antigen presentation and induction of immune

responses (9, 10). Furthermore, AFP interferes with T cell

proliferation and shifts T cell response to a more regulatory

phenotype. Thus, AFP promotes the immune system’s tolerance

toward the tumor (11, 12).

Although AFP is commonly used as a biomarker for

detection, it imposes enormous limitations: AFP has a very low-

test sensitivity and specificity. Several studies showed

disappointing or even contradictory results (9). AFP expression

is absent in around 80% of early HCC (13). In many cases, liver

damage also leads to the upregulation of AFP expression and

secretion (14, 15). Especially in patients with high viral load, the

determination of AFP displays low reliability. Low cut-off levels

above 20 ng/ml show high sensitivity but low specificity, whereas

high cut-off levels above 200 ng/ml raise specificity but lower

sensitivity (16). Thus, serum AFP levels cannot reliably

discriminate between chronic liver damage (e.g., fibrosis and

cirrhosis) and HCC. Therefore, the Practice Guidance of the

American Association for the Study of Liver Diseases (AASLD)
Frontiers in Oncology 03
and the Pan-Asian adapted European Society for Medical

Oncology (ESMO) Clinical Practice Guidelines recommend

biannual ultrasound with or even without determination of AFP

levels for patients with liver cirrhosis and hepatitis-virus-infected

patients (17, 18). Child Pugh-Stage and co-morbidities should

allow curative or palliative therapy. The European Association for

the Study of the Liver (EASL) even explicitly opposes the

determination of AFP for the reasons given above (19).

Nevertheless, according to new meta-analyses, the combination

of ultrasound and AFP is a reliable diagnostic approach to detect

HCC (7, 20). Zhang et al. recommended 400 ng/ml AFP protein in

terms of sensitivity and specificity, whether AFP is used alone or

combined with ultrasound (21).

As for AFP, the EASL guidelines assess other conventional

diagnostic biomarkers, AFP-L3 and Des-gamma-carboxy-

prothrombin (DCP), as unsuitable for cost-efficiency reasons.

Nonetheless, studies of last years revealed that a combination of

the clinical markers gender and age with the biomarkers AFP-

L3, AFP, and DCP, is a good diagnostic marker (22). The

combination is named the GALAD score after the initials of

the biomarkers.

AFP-L3, an isoform of AFP, binds the lectin lens culinaris

agglutinin (LCA) and is produced by malignant hepatocytes

(23). A meta-analysis has shown that AFP-L3 has high specificity

but low sensitivity for the diagnosis of early-stage HCC,

suggesting that AFP-L3 is more valuable for ruling out HCC

in conditions with elevated AFP levels than for diagnosing early

HCC (24).

DCP is a defective prothrombin and results from a lack of

post-translational carboxylation of the prothrombin precursor

in HCC cells. Most large-scale studies have been performed in

patients mainly of HCV- or HCB-related etiology (25–28).

Johnson et al. developed the score initially (22). In their

study, the performance of the GALAD model was significantly

better than the simple combination of AFP-3, AFP, and DCP

alone. In a prospective phase 3 cohort study by Tayob et al. of 50

HCC patients and 484 controls, the GALAD score was

associated with a substantial improvement in sensitivity for
FIGURE 1

Overview of biomarker types.
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detecting HCC. However, in this study, a limitation of the

GALAD score also shows up since the advantage of increased

sensitivity was offset by a high number of false-positive results

(29). In contrast, the study of Best et al. showed a high specificity

of 93.3% (30) and was reliable in the subgroup of HCV and

NAFLD patients. In another case-control study from Germany

and a pilot cohort study in Japan, the GALAD score has been

shown to detect early-stage HCC with high accuracy in patients

with NASH, with and without cirrhosis (30–32) and thus could

facilitate the monitoring of patients with NASH. In addition,

another study shows that the GALAD score is also excellent for

distinguishing HCC from chronic liver disease in an HCV

subgroup of a cohort of Chinese patients (33). Therefore,

despite limitations, the GALAD score seems one of the best

options for HCC detection and will likely find its way into

the guidelines.

If the diagnosis of HCC cannot be confirmed by typical

contrast agent behavior in imaging, the EASL guidelines

recommend a biopsy (19), with subsequent staining of HSP70,

Glypican-3 (GPC3), and glutamine synthetase (GS).

HSP70 is a chaperone involved in protein folding, protein

translocation, and regulation of transcription. In contrast to

normal cells, many tumor entities, including HCC, overexpress

HSP70 and secrete it into the extracellular matrix. Expression

profiling identified HSP70 as a molecular marker for the

detection of early HCC (34, 35). In addition, HSP70 serum

levels enable discrimination between chronic hepatitis, cirrhosis,

and HCC. However, this observation is limited by analyzing a

relatively small cohort (86 healthy donors, 50 donors with

chronic hepatitis, and 47 HCC patients) (36), and HSP70 is

secreted by other tumors as well.

GPC3 belongs to a family of glycosylphosphatidylinositol-

anchored cell surface heparin-sulfate proteoglycans. Sung et al.

showed that GPC3 is upregulated in HCC tissue and plays an

important role in the proliferation of malignant cells (37). Hippo

et al. demonstrated that, compared to AFP, GCP3 is a more

reliable marker to distinguish between patients with small, well-

differentiated HCC and liver cirrhosis (38). However, a meta-

analysis by Xu et al. revealed that GCP3 is inferior to AFP in the

differential diagnosis between HCC and liver cirrhosis (39).

Indeed, GCP3 expression displays no correlation to the

expression of AFP.

The enzyme GS catalyzes the synthesis of glutamine, the

primary energy source of tumor cells, from glutamate and

ammonia in the liver. GS’s mRNA, protein, and activity were

increasingly upregulated in precancerous lesions to advanced

HCC (40, 41). GS displays a 50-59% sensitivity and specificity of

86-90% (42, 43).

A combination of the three markers, GCP3, the chaperone

HSP70, and glutamine synthase for early detection of HCC

revealed a sensitivity of 72% and a specificity of 100% (42).

Thus, the combination of multiple markers results in advanced

sensitivity and specificity.
Frontiers in Oncology 04
3.3 Predictive biomarkers

Predictive biomarkers play almost no role in the choice of

HCC therapy. There are two exceptions:

The curative treatment options for HCC are resection, local

ablation procedures, and liver transplantation. Due to the

pervasive organ shortage, bridging therapy to transplantation

is required, and patients must be carefully selected. According to

national guidelines, liver transplantation should not be

considered if AFP levels are above 1000 ng/ml due to poor

postoperative prognosis (18, 44–46).

Palliative treatment options for advanced-stage HCC include

immunotherapies (atezolizumab/bevacizumab, tremelimumab/

durvalumab, nivolumab/ipilimumab, pembrolizumab) and

protein tyrosine kinase inhibitors (sorafenib, lenvatinib,

donafenib, regorafenib, cabozantinib, apatinib). Ramucirumab is

a recombinant human monoclonal antibody that inhibits vascular

endothelial growth factor receptor (VEGFR) and is approved for

second-line therapy. The REACH-2 trial demonstrated that

ramucirumab improved overall survival compared to placebo in

patients with hepatocellular carcinoma and AFP levels of at least

400 ng/ml who had previously been treated with sorafenib (47).

Patients with lower AFP levels did not benefit.
3.4 Monitoring biomarkers

Imaging techniques primarily assess the response of patients

with HCC to local or drug therapies. None of the guidelines

recommend specific biomarkers for assessing response to

therapies. Bruix et al. analyzed two phase 3 studies of

prognostic factors and predictors of the benefit of sorafenib in

patients with HCC. AFP was not a predictive biomarker of

sorafenib benefit (48). However, a recent meta-analysis showed

that post-treatment AFP response was significantly associated

with overall and recurrence-free survival (49).
3.5 Prognostic biomarkers

Like the assessment of response to treatment, screening for

relapse after curative treatment is mainly performed by imaging

with MRI, CT, or ultrasound. Imamura et al. showed in a study

of 249 patients undergoing hepatectomy that AFP levels above

32 ng/ml indicate relapse (50).

In summary, AFP is the only biomarker used for early

detection, prediction, and monitoring of response to treatment

and disease recurrence. It has significant limitations in sensitivity

and specificity, especially when used alone without combination

with other biomarkers. Therefore, there is a great need for other

or complementary biomarkers to improve the quality of care for

patients with HCC.
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4 Promising new biomarkers for
clinical application

Conventional tissue biopsies are invasive and associated with

risks for patients. Sometimes tissue biopsies are impossible or

very difficult to perform due to the location of the tumor or the

presence of multiple lesions. In contrast, biomarkers from body

fluids are a promising tool for diagnosing and monitoring tumor

diseases, especially because they are not or only minimally

invasive and can therefore be obtained without or with low

risk. The idea of liquid biopsy is based on molecular analysis of

circulating cells that have been shed from the tumor and

products from malignant tissue that have been released into

biological fluids, such as the bloodstream. Thus, liquid biopsies

provide access to tumor-derived materials, including circulating

nucleic acids, proteins, exosomes, and circulating tumor cells

(CTCs). However, the differences between these various groups

of markers in terms of accessibility, stability, and detection must

be considered.
4.1 Circulating nucleic acids

Nucleic acids are released into the bloodstream after

induction of apoptotic or necrotic cell death of tumor cells.

These circulating nucleic acids can be divided into two

subgroups: (i) circulating tumor desoxyribonucleic acid

(ctDNA) and (ii) cell-free ribonucleic acid (RNA).
4.1.1 Circulating tumor DNA
In 1948 Mandel et al. described for the first time that freely

circulating DNA is released from dying cells into the peripheral

blood (51). Later Leon et al. observed that circulating DNA

appeared more frequently in the serum and plasma of cancer

patients (52) and reflected the tumor burden (53). Furthermore,

ctDNA provides direct access to molecular key information,

including genomic (point mutations or copy number variations

[CNV]) as well as epigenetic data (changes in DNA

methylation) (54).

Apoptotic and necrotic cells release DNA into the

extracellular matrix. This DNA can be detected as circulating

cell-free DNA in the blood. Solid tumors often show large

necrotic areas due to undersupply of oxygen and glucose.

Therefore, various tumors, including HCC, can be detected by

an increased level of cell-free DNA. Iizuka et al.’s study

highlighted the potential diagnostic value of monitoring the

amount of cell-free DNA to detect HCC (55). However, elevated

cell-free DNA levels have been observed in multiple cancers.

Therefore, the amount of cell-free DNA is not HCC-specific.

Nevertheless, combining the determination of the amount of

cell-free DNA with the detection of HCC-specific protein

biomarkers like AFP results in a sensitivity of 87% and
Frontiers in Oncology 05
specificity of 100% to detect HCC (56). A recent study

presents a novel computer-based prediction model that uses

comprehensive fragmentomic profiling of cell-free DNA in

plasma for early detection of liver tumors. The model showed

excellent performance with a sensitivity of 98.8% and 96.8%

specificity in detecting primary liver cancer (sensitivity for HCC

96.2% and intrahepatic cholangiocarcinoma 100%). In addition,

early-stage primary liver cancer detection was 95.9% (stage I)

and 97.9% (stage II). For tumors less than 3 cm in size, the

sensitivity was 98.2% (57).

The use of modern technologies such as next-generation

sequencing (NGS) allows the detection of mutations in DNA

isolated from the blood (58). For example, tumor-specific point

mutations of various genes have been detected in the ctDNA of

HCC patients. NGS analyses revealed that seven genes and DNA

regions derived from ctDNA harbor the most important

mutations associated with poor survival in HCC: (i) TERT

promoter, (ii) TP53, (iii) CTNNB1, (iv) AXIN1, (v) JAK1, (vi)

EPS15 and (vii) CACNA2D4 (59–67). Several studies have

shown that analysis of point mutations in these genes is a

valuable tool with a clinically relevant impact on prognosis

and early detection of HCC (59, 68, 69).

However, the use of somatic mutations previously detected

in primary tumor tissue as biomarkers is limited by their

variability and low concentration in plasma (70). Besides

detection and analysis of point mutations, CNV can be used as

early biomarkers and prognostic parameters for HCC (63–66,

71–78).

For example, a characteristic CNV was found in preresection

plasma samples of patients with HCC, whereas this CNV was

almost absent in post-resection plasma samples. Thus, CNV is

an additional marker for detection and treatment surveillance

(79, 80).

Furthermore, genomic alterations and epigenetic

modifications (e.g., DNA methylation) were detected in

ctDNA (81–85). DNA methylation is a mechanism to regulate

gene expression and control DNA stability and DNA-protein

interactions. DNA methylation is essential in cancer

development, especially in HCC formation (54, 86–88). The

methylation status of several tumor suppressor genes correlates

with HCC occurrence and progression. These genes include p15

and p16, APC, SPINT2, SFRP1, TFP12, GSTP1, and RASSF1A

(86, 89, 90). Moreover, specific hypomethylation of the long

interspersed nuclear element-1 (LINE-1) (91), methylation of

the insulin-like growth factor-binding protein 7 (IGFBP7) gene

(92) and hypomethylation of the promotor region of the

transcriptional repressor CTCFL were associated with reduced

survival in HCC patients (93).

Therefore, combined determination of (i) the amount of

circulating cell-free DNA, (ii) additional biomarkers, and (iii)

genetic analysis of ctDNA, including detection of tumor-specific

point mutations, CNV, and alteration in methylation patterns,

are essential tools for detection and prognosis of HCC.
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Furthermore, genetic aberrations detected in ctDNA provide

molecular information about tumor development and possibly

response towards treatment. Recent developments allow the

analysis of small amounts of ctDNA. This advance will

facilitate analyses of ctDNA in the future.

Conclusion: ctDNA provides a comprehensive representation

of genomic alterations of different tumor regions. Isolation

procedures are well-established. Improvements in technology

allow for higher sensitivity of analytical assays. The short half-life

of ctDNA allows real-time monitoring of cancer development with

more accurate clinical correlations. The amounts of blood required

for isolation are practical from the clinical point of view. The

number of patients and the control groups are also large enough in

most studies, and international studies are available in addition to

many Asian studies. Most studies with ctDNA are in biomarker

development phase 1 or 2 (57, 84, 94, 95). The limitations are that it

is difficult to distinguish between ctDNA and circulating free DNA

(released from non-malignant cells) and the low concentration of

ctDNA in blood. In addition, the short half-life, which on the one

hand allows real-time monitoring, is on the other hand a challenge

for the analysis and storage of the samples. In comparison to CTCs
Frontiers in Oncology 06
ctDNA is not suitable for functional assays. Furthermore, analysis is

time-consuming and costly, and most emerging assays have not yet

been clinically validated (Table 1; Figure 2).

4.1.2 Cell-free tumor RNA
In addition to DNA, RNA is also released into the extracellular

space. It should be highlighted that RNA is less stable compared to

DNA. Therefore, cell-free RNA is associated with proteins,

proteolipids, or encapsulated into exosomes preventing its

degradation. Three different groups of RNA can be detected in

the bloodstream and used as potential biomarkers: circular RNA,

micro (mi)RNA, and long-non-coding (lnc)RNA (Figure 3).

4.1.2.1 Circular RNA

Circular RNAs are differentially expressed in various cancer

tissues (111–114), including HCC (115), and they are closely

associated with the initiation and development of cancer.

Circular RNAs arise from aberrant by-products or abnormally

spliced transcripts (116). Most up-regulated circular RNAs are

positively associated with HCC progression, whereas down-

regulation usually displays suppressive effects and prevents
TABLE 1 Overview of relevant biomarker classes for HCC.

Biomarker Phase of biomarker
development

Biomarker type Sample Patient
risk

Availability Stability Analysis on a
routine basis

Rapid
analysis

ctDNA Phase 2 Diagnostic (0.57-0.97)1

(96, 97)
Blood
Hepatic
tissue

Blood: (+)
Hepatic
tissue: ++

+/- ++ + ++

Phase 2 Monitoring

Phase 2 Prognostic

circRNA Phase 3 Diagnostic (0.81-0.89)1

(98–101)
Blood
Hepatic
tissue

Blood: (+)
Hepatic
tissue: ++

+/- +/- + ++

Phase 2 Monitoring

Phase 3 Prognostic

miRNA Phase 3 Diagnostic (0.79-0.88)1

(102–105)
Blood (+) +++ + + ++

Phase 3 Prognostic

lncRNA Phase 2 Diagnostic (0.88-0.92)1

(106–108)
Blood
Hepatic
tissue

Blood: (+)
Hepatic
tissue: ++

++ + + ++

Phase 2 Prognostic

Proteins: AFP Phase 5 Diagnostic (0.61-0.93)1

(21, 97)
Blood
Hepatic
tissue

Blood: (+)
Hepatic
tissue: ++

+/- +++ +++ +++

Phase 5 Monitoring

Phase 5 Prognostic

Exosomes Phase 2 Diagnostic (n.a.) Blood (+) +++ +++ + +

Phase 2 Prognostic

CTCs Phase 2 Diagnostic (0.70-0.93)1

(97, 109, 110)
Blood (+) +++ +++ + +

Phase 2 Monitoring

Phase 2 Prognostic
fro
1 pooled AUC in systematic reviews.
Relative properties: - limited; + low; ++ medium; +++ high
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HCC development. Most data on circular RNA are based on

tissue analysis. Therefore, circular RNAs can also be used as

markers in normal biopsies. The particular advantage, however,

is that these RNAs can also be found in blood and thus be

sampled minimally invasively (117, 118).

Several circular mRNAs showed highly interesting results in

context with early detection and diagnosis of HCC (115, 119–

123). For example, the circular RNAs hsa_circ_001565

(B4GALT2 ) , h s a_ c i r c _000224 (C17o r f 1 07 ) , and

hsa_circ_000520 (VIM) display a sensitivity of up to 97% and

a specificity of up to 92% in the detection of HCC (124). Very

similar results were obtained for hsa_circRNA_104075

(NUP153), hsa_circ_0005075 (EIF4G3), hsa_circ_0028502

(SLC24A6) and hsa_circ_0076251 (ZFAND3). They showed

comparable sensitivities of up to 96% and specificities of up to

98% (115, 122, 125).

Besides their potential as biomarkers for the early detection

of HCC, circular RNAs are of high prognostic value (124, 126–

132). Exemplary is a study showing that hsa_circ_0001727

(circZK - SCAN1) expression was positively correlated with

HCC prognosis (129) . Moreover , the detect ion of

hsa_circ_001565 (B4GALT2), hsa_circ_000224 (C17orf107),

and hsa_circ_000520 (VIM) was associated with prolonged

relapse-free survival (124). In contrast, low expression of

hsa_circRNA8662-12 (TRIM33-12) was closely correlated with

poor prognosis (133).

Conclusion: Circulating free RNA provides an up-to-date

snapshot of the transcriptome. It can indicate cancer and trace it

back to its site of origin. Limitations are sample instability and

high variability of circulating free RNA expression between

different individuals. Therefore, studies aiming to define panels

of cell-free circulating RNAs that can be used as general
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biomarkers for HCC are needed. In addition to the small

amount and not yet very detailed purification protocols, the

high variability and heterogeneity of cell-free circulating RNA

are problematic and currently do not allow for clinical

application. In addition, there is always a risk that samples will

be contaminated with transcellular mRNA. Unfortunately, there

are only very few studies from Europe or the USA. Most of the

studies originate from East Asia and are in development phase 3

(121, 123, 131, 134) (Table 1). Thus, there is still much

development work to be done here.

4.1.2.2 Cell-free micro (mi)RNA

In 2008 Lawrie et al. were the first to describe microRNA

(miRNA) as tumor biomarker (135). miRNAs are a member of

endogenous non-protein-coding RNA with a size of

approximately 20-22 nucleotides. miRNAs are relatively

resistant to RNase degradation, boiling, and freeze-thaw cycles

(136, 137). miRNAs can be used as markers in tissues and the

blood. In terms of patient safety, miRNAs obtained in a liquid

biopsy are of particular interest. Especially the stability of these

RNAs and their release into the bloodstream makes them

attractive as a biomarker. Over the past ten years, miRNAs

have become the most intensively studied nucleic acid

biomarkers in HCC and have proven valuable in the diagnosis

and prognosis of the disease. Nevertheless, many studies have

conceptual weaknesses, such as very different non-validated

purification methods for miRNAs or unclear sequencing and

identification protocols.

miRNAs bind to the corresponding 3´UTR of their target

messenger RNA (mRNA) and induce mRNA degradation.

Interestingly, there is a correlation between abnormal

circulating miRNA levels and pathological characteristics of
FIGURE 2

Characteristics of the biomarker class circulating tumor desoxyribonucleic acids (ctDNA) in patients with HCC.
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certain tumors (138–140), including HCC (141). So far, over 70

miRNAs have been proposed as potential biomarkers for HCC

(86, 142–159). A meta-analysis evaluated miRNA-21 as a

biomarker for early diagnosis of HCC with a sensitivity of up

to 88% and a specificity of up to 87% (160). Interestingly, the

sensitivity and specificity of the combined miRNA panel miR-

29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-

505 were significantly higher than the sensitivity and specificity

of the established biomarker AFP regarding detection of small

(AUC: 0.833 vs. 0.727) and early-stage HCC (AUC: 0.824 vs.

0.754). Another panel of miRNAs (miR-192, miRNA-125b, and

miR-23a) was suitable for predicting the survival time of HCC

patients (161). Huang et al. developed in a phase 3 study an HCC

risk score consisting of 5 miRNAs (miR-18a, miR-26a, miR-27a,

miR-222, miR-223) that correlates with an increased risk of

HCC development in cirrhotic patients (162). Thus, miRNA

combinations represent a strategy to develop novel diagnostic

tools for HCC and improve treatment surveillance.

Conclusion: The advantage of using miRNA as a biomarker

is its wide range of applications, as miRNAs are involved in
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many pathogenic processes and have high specificity and

reproducibility. miRNAs display inherent stability, and the

serum concentration is relatively high. The main challenge in

establishing miRNAs as biomarkers is that although the available

studies have identified a large number of miRNAs as potential

markers, the miRNAs identified vary depending on the specific

study. Therefore, a “universal marker” is still lacking. This is due

to the lack of standardized protocols for the purification of

miRNAs and the fact that the expression of these miRNAs is

directly linked to the developmental stage and characteristics of

the individual tumor. In addition, comorbidities can lead to an

increase of unspecific miRNAs, which interfere with detecting

cancer-specific miRNAs. Nevertheless, it should be possible to

define miRNA panels that could act as universal markers. These

panels can then be used for both prognosis and diagnostics

purposes. In studies containing information about the required

blood volumes, the required volumes were in a range that could

be used in the clinic (≤10ml). Unfortunately, some studies lack

this information. Most studies include a relatively large number

of participants (>100). The control groups are also sufficiently
FIGURE 3

Characteristics of the biomarker class circulating tumor ribonucleic acids (cell-free RNA) in patients with HCC.
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big in most cases. Interestingly, most recent studies were

conducted in East Asia (China) or North Africa (Egypt).

However, the number of patients with HCC is increasing in

Western countries due to lifestyle and the resulting metabolic

syndrome. There is a high heterogeneity of the miRNAs found,

and each study finds different miRNAs that can be used as

biomarkers. Most studies are in phase 2 (155, 157), and few are

in phase 3 (162). We need more studies with clearly defined

protocols for the purification of miRNAs and also very precisely

characterized cohorts of patients. Therefore, very little can be

said about miRNAs as biomarkers for HCC. Generally, they are a

potential option that fulfills all the prerequisites for a good

marker (Table 1).

4.1.2.3 Cell-free long non-coding RNA (lncRNA)

Circular RNA and miRNA are not the only RNAs that can

serve as biomarkers for HCC. Furthermore, long non-coding

RNA (lncRNA) shifted into the focus as novel potential

biomarkers in HCC. Comparable to miRNAs, lncRNAs belong

to the group of non-protein-coding RNA transcripts. They

exceed a length of 200 nucleotides. Like other non-protein-

coding RNAs, lncRNAs can be detected in the blood. Upon

isolation, lncRNAs are stable in the plasma (163, 164). They can

interact with proteins, DNA, and other types of RNA. They act

as modulators of gene expression by regulating transcriptional

and post-transcriptional processes and controlling various

cellular processes, e.g., genomic imprinting, cell cycle, cell

proliferation, differentiation, and apoptosis (165, 166). Various

lncRNAs are involved in cancer pathogenesis, controlling

invasion, migration, and metastasis of tumor cells (167–169),

and several studies showed that dysregulation of lncRNAs

promoted the development of HCC (170).

Therefore, lncRNAs might contribute to the panel of

beneficial biomarkers in hepatic tumors. One of the first and

most studied lncRNAs in HCC is Highly Upregulated in Liver

Cancer (HULC). Several studies demonstrated that circulating

HULC could be used as a diagnostic marker, being up-regulated

in the blood of patients with HCC (171, 172). Another lncRNA

of clinical relevance is LINC00152. The amount of LINC00152

in the blood increases from healthy donors to patients with liver

cirrhosis and displays the strongest up-regulation in patients

with HCC. This close association with progress from liver

cirrhosis to HCC underlines LINC00152 abilities as a potential

diagnostic biomarker (172, 173). A further significant increase in

sensitivity and specificity was achieved by combining HULC

with LINC00152 or combining HULC, LINC00152, and AFP

(174). However, a more detailed analysis is needed to prove their

value as biomarkers for HCC (175).

Conclusion: The advantage of using lncRNA as a biomarker

is its relatively high stability. lncRNAs are involved in multiple

pathological processes and can obtain new insights into the

progression of the disease. The disadvantages are similar to those
Frontiers in Oncology 09
of miRNAs. Since lncRNAs are involved in many physiological

and pathophysiological processes, detecting tumor-specific

lncRNA is difficult. Interference by co-morbidities cannot be

excluded. Some studies directly compare tissue samples and

blood samples. However, many studies involve small patient and

control cohorts. In addition, most studies have been conducted

in East Asia. Care should be taken to include European and

American cohorts in the future. Most studies are in biomarker

development phase 2 (172, 176–179). Therefore, further detailed

studies are needed to improve data on individual lncRNAs and

establish defined lncRNA panels that can be used as general

markers for detecting HCC. The large heterogeneity of lncRNAs

identified in the previous studies, which unfortunately overlap

only partially, is the major obstacle to clinical application.

Overall, circulating nucleic acids occur in different forms,

e.g., circulating tumor DNA (ctDNA) or cell-free RNA.

Although circulating nucleic acids are relatively inert towards

degradation, it is still more elaborate to purify, store and analyze

them compared to proteins. The advantage of nucleic acids as

markers is that they contain essential biological information and

may be of prognostic value. But these properties provide a large

heterogeneity in terms of expression in tumors of different

patients, making clinical application difficult. Interestingly, a

combination of nucleic acids and marker proteins displays the

highest specificity and sensitivity in HCC diagnosis and could

thus help develop new identification panels that can be used

universally for detecting HCC. Therefore, combining different

biomarkers, regardless of nucleic acid, protein or CTC, might be

the most promising approach for the future (Table 1).
4.2 Proteins

Tumor cells secret various proteins into the extracellular matrix,

e.g., proteases required for invasion and metastasis, proteins

dampening the immune system, cytokines, growth factors, and

angiogenic factors for proliferation. In addition, tumor cells

undergo apoptotic or necrotic cell death due to a lack of oxygen

and energy. These dying cells release proteins into the bloodstream.

Proteins are very stable in the blood, and there are several

methods for identification by immune-linked and biochemical

methods. Detecting tumor-specific proteins is less complex and

expensive than identifying and purifying cell-free DNAs and

RNAs. As described above, proteins are the most commonly

used biomarkers in clinical routine (Figure 4).

4.2.1 Cytokeratin 19
Cytokeratin 19 belongs to the keratin family. It is a filament

protein essential for the structural integrity of cells. Cytokeratin

19 has been associated with poor clinical prognosis in HCC

patients in several studies. The co-expression of Cytokeratin 19,

AFP, and Glypican-3 is an excellent predictive factor for

metastasis and adverse treatment outcomes (180). In addition,
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concurrent expression of these three proteins was also associated

with poor survival (181–183).

4.2.2 Golgi protein 73
Golgi protein 73 is a transmembrane protein localized in the

Golgi apparatus. Its function is incompletely understood. Golgi

protein 73 expression is linked to patients with liver disease,

particularly HCC (184, 185). In the serum of HCC patients,

Golgi protein 73 concentration is significantly elevated

compared to patients with liver cirrhosis (186). Whether Golgi

protein 73 alone is superior to AFP in detecting HCC and

discrimination from liver cirrhosis is controversial (186, 187).

However, combining both markers has improved the detection

of early HCC and discrimination from liver cirrhosis (187).

4.2.3 Annexin 2
Annexin 2 is a calcium-dependent, phospholipid-binding

protein linked to cell mobility and protein interaction with the

actin cytoskeleton. Recent studies reported that Annexins,

including Annexin 2, can interfere with immune functions and

induce tolerance (188). Interestingly, Annexin 2 is upregulated in

HCC and can indicate tumor malignancy (189). Annexin 2 also

showed better sensitivity and specificity than AFP to detect early

HCC (190). Thus, Annexin 2 might be a helpful marker for early

tumor detection (189), although more detailed studies are needed

to estimate the potential of Annexin 2 for clinical application.
4.2.4 Osteopontin
Osteopontin (OPN) is an extracellular matrix (ECM) protein

whose elevation is associated with tumor invasion, proliferation, and

metastasis in several cancers (191). Using tissue microarrays, Desert

et al. analyzed 366 samples from patients with normal liver, cirrhosis,

dysplastic nodules, or HCC. They show that OPN increases in
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expression during hepatocarcinogenesis (192). Wu et al. showed in

a recent study that OPN induces JAK2/STAT3/NOX1-mediated

ROS production, leading to hepatocellular carcinoma progression

(193). Several phase 2 studies show osteopontin has diagnostic (194,

195) and prognostic potential (196, 197) as a biomarker.
4.2.5 Midkine
Midkine, also known as neurite growth-promoting factor 2

(NEGF2), is a secreted protein that functions as a cytokine and

growth factor and mediates its signal through proteoglycan and

non-proteoglycan receptors on the cell surface (198–201).

Midkine enhances the angiogenic and proliferative activities of

cancer cells. Expression of midkine (mRNA and protein

expression) is increased in several cancers, including HCC.

Thus, Midkine can serve as a biomarker in HCC, as shown in

phase 3 trials (202–205). Midkine is mainly overexpressed in AFP-

negative patients, so it increases detection rates of HCC (205).

4.2.6 Dickkopf-1
The glycoprotein Dickkopf-1 (DKK-1), expressed mainly in

the placenta and embryonic tissues, is an antagonist of the Wnt/

b-catenin signaling pathway and is elevated in several cancer

types. DKK-1 shows higher efficacy for detecting HCC than AFP

in phase 4 trials (206–208), but midkine is more precise than

DKK-1 in cirrhotic HCV patients (209). A combination of Golgi

protein 73, AFP, and Dickkopf-1 increases the sensitivity and

specificity of HCC detection (210).

4.2.7 Squamous cell carcinoma antigen 1
and 2

Squamous Cell Carcinoma Antigen (SCCA) consists of two

proteins, SCCA-1 and SCCA-2, which are serine protease

inhibitors. Several studies investigated the diagnostic value of
FIGURE 4

Characteristics of the biomarker class proteins in patients with HCC.
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SCCA and its immune complex SCCA-IgM in HCC. A recent

phase 4 trial with 203 cirrhotic patients revealed that patients

with HCC have higher levels of SCCA-IgM than those without it

during a five-year follow-up (211). Another phase 4 trial with 91

patients showed that SCCA-IgM also offers predictive value

(212). But gender differences have to be considered, as low

levels of SCCA-IgM after transarterial embolization indicate

more prolonged survival in males and shorter in females

(213). SCCA and SCCA-IgM show moderate diagnostic

accuracy in several meta-analyses (214–216). Combination

with AFP increases prognostic value significantly (214).

4.2.8 Alpha-l-fucosidase
Alpha-l-fucosidase (AFU) is a lysosomal enzyme that is

present in low concentrations in human cells, blood, and body

fluid and hydrolyzes fucose-containing sugars. Its activity is

increased in the serum and tissue of HCC patients. Still, it is not

specific to HCC, as high levels are also found in patients with

diabetes, pancreatitis, and hypothyroidism (217). A

retrospective phase 3 study with 280 HCC patients due to

HBV B AFU shows good early detection prosperities of HCC

(218), but midkine is a more sensitive predictor than AFU in

HCC due to HCV (209). The combination of AFU with AFP

raises sensitivity and specificity, especially in hepatitis-negative

patients (219), but is worse than AFP alone in patients with

HCC due to HBV (220).

Conclusion: The major advantage of protein biomarkers is

that the detection is easy to perform, less error-prone, and

inexpensive. Results can be obtained quickly and without

complex equipment. Therefore, protein biomarkers are

optimal for clinical use. The major disadvantage of protein

biomarkers is that tumors can escape from detection due to

individual differences in the protein expression pattern.

However, this can be overcome by using defined combinations

of different biomarkers. In the future, defined combinations of

protein biomarkers with other types of markers, e.g., circulating

nuclear acid and CTCs, may improve detection specificity and

sensitivity as well as the prognosis of HCC.
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4.3 Exosomes

Exosomes are extracellular vesicles with a diameter of 30-

200nm. They are formed in the endosomal compartment of

eukaryotic cells. Exosomes are specifically released, facilitating

intracellular transport processes, and enabling communication

between cells. Their content consists of various components, such

as proteins and nucleic acids (Figure 5). Therefore, exosomes give

detailed information about the secreting cell or tissue (221). In the

liver, mainly hepatocytes, immune cells, and non-parenchymal

liver cells release exosomes (222). It should be emphasized that the

administration of antibiotics from the subgroup of fluocinolones,

especially ciprofloxacin, can increase the secretion of exosomes

(223). Furthermore, it must be admitted that studies on exosomes

as markers are still in the early stages.

4.3.1 Exosomal lipids and proteins
Exosomal membranes are composed of lipids characteristic

for different tissue, including tumors. To date, mainly in vitro

data are available on the potential role of exosomal lipids as

biomarkers for HCC (224, 225). Thus, further analysis must

show whether exosomal lipids are suitable biomarkers in vivo.

Exosomes contain macromolecules, e.g., proteins protected

from extracellular degradation processes. Therefore, the

exosomal content is potentially interesting for tumor detection

and prognosis. One study identified an HCC-specific exosomal

protein profile that included CD44, cell division cycle 42

(CDC42), RAS related protein (RRAS), MET, G protein

subunit alpha 13 (GNA13), metalloproteinase domain 1

(ADAM1), GNAS complex locus (GNAS), eukaryotic

translation initiation factor 4A3 (EIF4A3) and S100 family

proteins (226). An additional study detected HSP70, Hsp90,

glypican 3, and the well-established marker AFP specific to HCC

(227). However, whether exosome-derived protein panels are

more valid biomarkers than freely circulating proteins needs to

be analyzed in clinical studies, comparing both parameters

according to the purification method, the stability, and thus

the robustness of the analysis.
FIGURE 5

Characteristics of the biomarker class exosomes from a liquid biopsy in patients with HCC.
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Probably the closest study to a clinical application is the

HCC EV ECG score, an extracellular vesicle-based protein assay

for detecting early-stage hepatocellular carcinoma (228). Here,

exosomes isolated from plasma are analyzed for surface

expression of EpCAM, CD63, CD147, CD63, and GPC3. The

analysis of this panel of surface markers results in a sensitivity of

91% and a specificity of 90% in the early detection of HCC. Thus,

this score could complement current monitoring methods and

improve patient outcomes.

4.3.2 Exosomal nucleic acids
In addition to proteins, exosomes also contain nucleic acids,

e.g., DNA and RNA. Our knowledge of exosomal DNA as

biomarkers for HCC is limited to date. Exosome-derived DNA

is protected against degradation; it is of high molecular weight

and, therefore, suitable as an HCC biomarker (56, 229). More

intensively than DNA, exosome-derived RNA has been explored

as a potential biomarker for HCC (230, 231). Several types of RNA

can be found in exosomes that are protected from degradation by

the exosomal membrane and thus have a significantly longer half-

life than free RNAs: mRNA, circular RNA, miRNA, and lncRNA.

These RNA species, alone or in combination with other exosomal

components, represent interesting biomarkers for HCC. For

example, RAB11A mRNA was present in exosomes purified

from the serum of patients with HCC. Combined with

exosomal lncRNA-RP11-513115.6 and miR-1262, it turned out

to be an effective biomarker with high sensitivity and specificity in

distinguishing patients with HCC from patients with chronic

hepatitis C virus infection (232). In addition, exosomal circular

RNAs are particularly interesting for predicting the prognosis of

HCC. Many circular RNAs are abundant and stable in exosomes

derived from patients with HCC, such as hsa_circ_0088030

(circPTGR1), Cerebellar degeneration-related protein 1

antisense RNA (Cdr1), and circDB. These circular RNAs

promote cancer cell proliferation and metastasis and are

indicators of aggressive tumors with poor prognosis (233–236).

Another RNA species detected in exosomes are miRNAs.

Detection of exosomal miRNA-210 and miRNA-224 is specific

for HCC. Both miRNAs promote angiogenesis and enhance the

proliferation and invasion of the tumor (237, 238). Exosomal

lncRNAs are also potentially significant for the HCC diagnosis.

For example, exosomal-derived lnc-FAM72D-3 and lnc-EPC1-4

levels are significantly increased in the serum of patients with

HCC (239, 240).

Overall, exosomes contain similar biomarkers compared to

those detected in the blood. The vesicle protects the marker

molecules from damage and degradation. This is particularly

important for nucleic acids as they are targets for degradation in

the blood. Further studies must confirm that exosomes and their

contents are suitable biomarkers in HCC.

Conclusion: Exosomes contain a multitude of important

information about the cells from which they originate. Their

lipid composition, protein, and nucleic acid content are like a
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fingerprint of the (tumor) cell from which they originate.

However, the purification of these small extracellular vesicles

and their analysis are complex and require sophisticated

equipment. The quality of the isolation of the inter-exosomal

proteins or nucleic acids is highly dependent on the

methodology, especially since standardized protocols are not

yet available.

Several phase 2 trials show promising results for diagnostic

and prognostic biomarker usage (82, 241–243). We need more

international studies to prove the importance of exosomes as

tumor markers, as most studies are from Asia. From a scientific

and clinical point of view, exosomes seem to fulfill all the

conditions for an ideal marker (Table 1).
4.4 Circulating tumor cells

In 1869, Ashworth detected “cells similar to those in the

tumours” in the blood of a patient with a metastatic tumor (244).

This was the first description of CTCs and the first detection of

tumors by blood analysis. However, at this time, reliable

detection and identification of these cells were a nearly

unsolvable challenge. Furthermore, in 1895, x-ray imaging by

Roentgen was developed as a novel diagnostic tool. Thus,

scientists primarily focused on this new imaging method, and

the idea of using CTCs to detect tumors was put on hold. Today

we know that imaging tools have their limitations, and

additional strategies for early detection and prognosis are

urgently needed. Therefore, CTCs again became a focus as

biomarkers, especially since detection, isolation, and analysis

to investigate CTCs have made tremendous progress (Figure 6).

CTCs are cancer cells that circulate in the blood upon being

shed off from the tumor. The genetic information of these cells

indicates mutations and, therefore, contains hints on sensitivity

and resistance towards therapy. In addition, CTCs can be used to

form organoids, which serve as personalized tumor models to

analyze cell signaling and mimic therapeutic approaches in vitro

(245–249).

Nevertheless, the isolation and analysis of these cells are still

challenging despite novel techniques. Once cells detach from the

extracellular matrix, apoptotic cell death, anoikis, is induced inmost

cells (250). Thus, most tumor cells die within a few hours upon

shedding, resulting in a low frequency of CTCs (251, 252). In the

blood of patients withmetastatic tumors, there is approximately one

CTC per 1x109 cells (253). This low frequency makes identification

and isolation extraordinarily challenging and asks for strict

definitions regarding identification.

The CellSearch™ definition is considered to be the current

state-of-the-art standard. This definition states that a CTC is a

circulating nucleated cell larger than 4µm, expressing the

epithelial cell adhesion molecule (EpCAM) and cytokeratins 8,

18, and 19. To separate CTCs from immune cells, the CTC has to

be negative for the leukocyte-specific antigen CD45 (254).
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However, only about one-third of CTCs derived from HCC

patients are positive for EpCAM and cytokeratins. Thus, the

application of CellSearch™ criteria is unsuitable for all

subgroups of HCC (255, 256). Another concern is that the

level of CTCs correlates with tumor burden. Therefore,

sensitivity in the early stage of the disease might be low (252).

Nevertheless, several studies using CellSearch™ showed

interesting results for CTCs as diagnostic and prognostic

markers. One study analyzed patients with HCC before and

one month after liver resection. The number of CTCs was a

reliable diagnostic and prognostic marker, indicating the

reoccurrence of the tumor (257). Another study using

CellSearch™ criteria demonstrated the frequent presence of

CTCs in patients with intermediate and advanced HCC (258).

Further CellSearch™-based studies showed that the appearance

of EpCAM-positive CTCs in HCC could be used to predict

recurrence and is associated with poor prognosis (259, 260).

In one study, the nanofiltration technique CanPatrol™ was

used to identify clusters of CTCs and white blood cells. Patients

exhibiting those clusters show significantly shorter disease-free

survival and overall survival (261). Another study using

CanPatrol™ shows that a high percentage of mesenchymal

CTCs are closely related to the expression of CK19, which is

associated with a poor prognosis in HCC patients (262). Qi et al.

use CanPatrol™ combined with an RNA-ISH assay to enrich

and classify CTCs from patients with HCC. In this study, a

slightly increased percentage (≥2%) of mesenchymal CTCs

before resection was shown to be a predictive factor for early

tumor recurrence (263).
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Interestingly, other identification criteria based on less strict

definitions also revealed good results for detecting HCC. One

study reported that CTCs identified only based on their

morphology were associated with shorter survival in HCC

(264). In another study, erythrocytes and CD45+ immune cells

were depleted from the pool of circulating cells. Afterward, the

expression pattern of the leftover cells was monitored by

polymerase chain reaction (PCR) using differential expression

of EpCAM, CD90, CD133, and CK19 as identifiers for CTCs. Of

note, this analysis revealed a sensitivity of 72.5% and a very high

specificity of 95% to detect HCC in healthy donors and

discriminate HCC from chronic HBV infection and benign

hepatic lesions. Using AFP as a biomarker displayed a

sensitivity of 57% and a specificity of 90%. Of clinical

relevance, this approach also performed well in patients with

early-stage HCC and showed a sensitivity of 71.8% and a

specificity of 95%. Thus, this method could be a risk

prediction and treatment surveillance tool enabling early

decision-making to adjust effective antitumor strategies (265).

Results of an interesting recent study showed that the detection

of CTCs in patients who have undergone LTx allows early

prediction of recurrence. Therefore, serial CTC detection may

be helpful in the postoperative monitoring of HCC recurrence.

However, it has to be considered that the study design is limited

due to its small patient cohort, relatively short follow-up of the

course, and its single-center design. Therefore, further clinical

studies have to follow (243).

Conclusion: The major advantage of CTCs as biomarkers is

that these cells contain all the information about the tumor.
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FIGURE 6

Characteristics of the biomarker class circulating tumor cells (CTCs) from a liquid biopsy in patients with HCC.
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Furthermore, looking for markers of epithelial-mesenchymal

transition determines metastasis formation and aggressiveness

of a tumor. Therefore, the analysis of CTCs will advance our

understanding of the biology of metastatic diseases and the

development of treatment strategies. The required blood

volumes are also practical and do not exceed 10ml. The

disadvantage of CTCs as biomarkers is that purification and

detection are complicated, time-consuming, and costly. The

necessary technical equipment may not be available in all

clinical settings. Thus, further improvement in the detection

and isolation of CTCs is required to use them routinely as

biomarkers in the clinic. On the one hand, PCR-based methods

might address the challenges in detecting and isolating CTCs

and lead to less time-consuming and cost-intensive

investigations. On the other hand, such strategies entirely

depend on the quality and definition of target transcripts for

the detection and staging of the tumor. It is important to note

that the control groups in most studies of CTCs were small. In

addition, most studies were conducted in East Asia (China,

Japan, and Taiwan). Thus, ethnic differences cannot be excluded.

Most studies are in phase 2 of biomarker development (257, 261,

263, 265–268) (Table 1). Prospective studies are needed.
5 Final conclusion

HCC is one of the most common tumor diseases with rising

incidence and high mortality. Management of HCC especially

requires early diagnosis and therapy. Therefore, we need reliable,

valid, and objective biomarkers for screening, diagnosis, disease

monitoring, prognosis, predicting response to therapy, and

treatment safety. Identification of novel non-invasive

biomarkers for HCC has become the focus of research. There

is an urgent need to define circulating markers that can replace

invasive methods like liver biopsies and provide additional

information about the tumor. These markers would enable

more personalized medicine, including the prediction of

therapeutic response. CTCs, ctDNA, circulating RNA, and

exosomes are attractive candidates for liquid biopsy since they

fulfill many essential characteristics of an ideal biomarker.

A big step towards ideal biomarkers is certainly the analysis of

ctDNAs. ctDNA is stable and provides epigenetic and genetic data

on the tumor. Detection of mutated DNA and methylation

profiling is suitable for early detection of HCC and estimation of

prognosis. However, NGS and methylation profiling is

complicated and time-consuming. In addition, the different

studies often identify completely different markers. It is difficult

to understand why there are often no similarities between the

markers identified in the studies. One reason is certainly a high

heterogeneity between individual tumors. However, this cannot

explain the lack of common markers in the studies. The differences

must also be due to different study conditions. Here we need

standardized and validated protocols for ctDNA purification and
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analysis. The quality of the samples is the key to a valid statement

on the quality of ctDNA as a potential tumor marker.

miRNA and lncRNAs have shifted into the focus of cancer

research. So far, more than 70 miRNAs have been proposed as

potential biomarkers for HCC, and more and more lncRNA

markers have been identified. Most remarkable results for the

detection and prognosis of HCC were obtained using well-

defined marker panels. These combinations of different RNAs

showed very good results in sensitivity and specificity. Other

combinations, e.g., with protein markers, are also possible.

However, there are often entirely different marker panels, and

the studies are not able to confirm the panels from other studies.

Again, the quality of the samples plays a crucial role. We need

standardized protocols to be used in studies worldwide. This is

the only way to identify unique markers that can be used

universally. This is true for HCC, but also all other tumors.

Proteins, including AFP, are the best-characterized biomarkers.

They do not need elaborate purification and detection methods.

Thus, they are optimal to be used in clinical routine. However, they

often lack specificity. This disadvantage can be overcome using a

combination of different markers or a panel of protein markers and

other parameters. A very good example for the combination of

several markers is the GALAD score. The score shows that

combining three protein markers that can be easily determined in

routine clinical practice (AFP, AFP-L3, and DCP) with patient

metadata can significantly improve the predictive value. The

combination of the three protein markers significantly increases

prediction sensitivity but decreases specificity. However, adding

simple patient metadata such as age and gender to the protein

markers significantly improves both sensitivity and specificity.

However, other combinations of tumor markers are also

conceivable. The combination of protein biomarkers and nucleic

acid markers also shows initial success and leads to improved

sensitivity and specificity in prediction. Again, it must be said that

more studies from Europe and North America are important to

support the findings and reconcile ethnical differences.

Even though fewer data are currently available, analysis of

exosomes could provide novel options to detect and understand

the development of HCC. Exosomes contain unique functional

information, e.g., about interactions between cancer cells and

distant cells or the tumor microenvironment. Thus, they are

important to gain more insights into tumor physiology. There is

certainly a long way to go for exosomes as biomarkers until

clinical application. However, they represent a tool with many

advantages. Many macromolecules are already degraded in the

body or during the purification process. In exosomes, they are

protected. Thus, errors can be avoided, and differences due to

purification can be prevented. This could help to solve the

challenges described above for nucleic acid biomarkers.

CTCs are the carbon copy of the tumor itself. On the one hand,

they can provide genetic information about mutations and

epigenetic alterations of the tumor. Moreover, CTCs exhibit the

transcriptome and proteome of the cancer of origin. Thus, they
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fulfill all criteria of an ultimate biomarker. On the other hand, they

occur sparsely in blood, and there are no optimal/general surface

markers for HCC-derived CTCs. Thus, purification and

identification are very challenging and costly. Nevertheless, the

blood volumes required for purification are practical (not exceeding

10ml). Regardless, new appropriate purification and analysis

methods must be developed to routinely use these biomarkers in

the clinic. Additionally, it is unfortunate to note that most studies

on CTCs and other tumor biomarkers were conducted in East Asia.

We need more studies in theWestern industrialized nations since it

is precisely here that an increase in HCC is apparent. This is

primarily due to lifestyle and associated malnutrition.

We are on the right track in identifying new biomarkers, but

we need more and better studies. Since HCC is a worldwide

challenge, we need international studies to consider ethnical

differences. To establish reliable universal markers, we need

standardized and validated purification, storage, and processing

protocols for the corresponding macromolecules or CTCs. This is

the only way to identify and develop new good tumor markers.

After developing and validating novel biomarkers, the final

step has to be their integration into the clinical routine. The novel

liquid biopsy-based tools will not replace the established methods

but will supplement them to optimize patient care. These markers

are non-invasive or minimally invasive and, therefore, easier to

implement, as only small volumes of biological material (e.g.,

blood) are required. As mentioned before, the challenge is

certainly the purification and analysis of the samples. However,

there are great technological advances that help us to overcome

these obstacles. Therefore, we can look optimistically into the

future and assume that we will have significantly more and better

biomarkers for HCC in the near future.
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