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Alternative and aberrant
splicing of human
endogenous retroviruses in
cancer. What about head and
neck? —A mini review

Lorenzo Agoni*

Unit of Gynecology and Obstetrics, Fondazione Poliambulanza Hospital, Brescia, Italy
Human endogenous retroviruses (HERVs) are transcribed inmany cancer types,

including head and neck cancer. Because of accumulatingmutations at proviral

loci over evolutionary time, HERVs are functionally defective and cannot

complete their viral life cycle. Despite that, HERV transcripts, including full-

length viral RNAs and viral RNAs spliced as expected at the conventional viral

splice sites, can be detected in particular conditions, such as cancer.

Interestingly, non-viral–related transcription, including aberrant, non-

conventionally spliced RNAs, has been reported as well. The role of HERV

transcription in cancer and its contribution to oncogenesis or progression are

still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker

or a target for therapy. Thus, ongoing research aims both to clarify the basic

mechanisms underlying HERV transcription in cancer and to exploit its

potential toward clinical application. In this mini-review, we summarize the

current knowledge, the most recent findings, and the future perspectives of

research on HERV transcription and splicing, with particular focus on head and

neck cancer.
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Introduction

Human endogenous retroviruses (HERVs) are remnants of

ancient retroviral infections integrated into the human genome.

Because of recombination events over evolutionary time, most

HERV loci are reduced to solitary Long Terminal Repeats

(LTRs) (soloLTRs) or viral genomic fragments of various

lengths. There are many different families of HERVs, and

altogether, they comprise 8% of the human genome. Among

these, the HERV-H family is the largest group, consisting of full-

length elements (about 100 copies), fragmented elements (800–

900 copies), and soloLTRs (about 1,000 copies) (1, 2). None of

the full-length proviruses can complete their viral life cycle, due

to mutations that accumulated at the provirus loci over

evolutionary time, not even HERV-K, although it is the most

recent retrovirus that infected the human germline and thus the

most intact among all the HERVs. There are approximately 30

full-length HERV-Ks in the human genome out of the several

hundreds of HERV-K loci detected, most of which contain

fragments or soloLTRs (3). Although none of such full-length

HERVs is any longer fully active as virus, transcription has been

detected in particular conditions, such as cancer. RNAs from

members of multiple HERV families, including HERV-H,

HERV-K, HERV-W, HERV-E, HERV-P, HERV-T, HERV-F,

HERV-R, and HERV-S, have been identified in cancer (4–13).

HERVs have been found active as well as in other conditions

such as autoimmune diseases (14, 15), particularly in Systemic

Lupus Erythematosus (16, 17), in neurodegenerative diseases

(18, 19), particularly in multiple sclerosis (18, 20, 21), and have

implications with immunity and other viral infections (22),

particularly with HIV (23, 24). Transcription at HERV loci

may start from the viral promoter within the 5′LTR and from

an upstream promoter. In fact, transcription has been detected

also at heavily rearranged and mutated HERV genomic

fragments, even in the absence of a functional viral promoter

(25–27). The role of such transcripts, often part of long non-

coding RNAs (lncRNAs), and their function as RNAs or

potential for translating into proteins are largely unknown.

However, some viral fragments have been highly conserved

through evolution and the derived translated protein exploited

by the host for its own purposes. The most notable example is

Syncytin-1 that is a protein encoded by ERVW-1 gene, a

remnant of an ancient HERV-W env gene and that is a

fundamental protein for placenta formation in humans. On

the other hand, translation of canonical viral proteins (Gag,

Pro, Pol, and Env) from full-length HERV-K loci has been

described. It is relevant to point out that some HERV-K

proteins (Env and accessory proteins Rec and Np9) are

translated from spliced viral transcript. In an effort to better

characterize full-length HERV-K transcription at specific

proviral loci, in our previous work (28), we detected

transcripts derived from aberrant alternative splicing events,
Frontiers in Oncology 02
across different cancer types, including head and neck cancer

cell lines.
Human endogenous retroviruses
are, in essence, retroviruses

Endogenous retroviruses (ERVs), including HERVs, follow

the same replicative life cycle of all retroviruses, with the specific

characteristic of infecting the genome of germ cells and thus

integrating into the genome of the host and being passed to

the progeny.

The provirus, which is the integrated DNA form of the

retrovirus, is composed of an internal genome segment

containing the viral protein coding genes and an LTR at each

end of the viral genome. Enhancers and promoters and initiation

start site for viral transcription are located in the LTR.

The retroviral genome consists of at least four basic genes:

gag, pro, pol, and env. These genes encode structural and

enzymatic proteins that are essential for viral replication,

including the viral capsid components (gag); protease (pro);

reverse transcriptase (RT), ribonuclease H, and integrase (pol);

and the envelope protein (env). Many, but not all, retroviruses

have additional genes that encode accessory proteins, such as rec

in HERV-Ks. For almost all retroviruses, some of these genes

(gag, pro, and pol) are translated from the primary mRNA

transcript. For the other viral genes including env, one or

more splicing events must occur.
Death of the virus: HERVs are now
viral remnants

ERVs, once stably integrated in the host genome in the form

of DNA proviruses, have to face several challenges to survive.

Mutations and other recombination events inevitably

accumulate at these loci over evolutionary time, just as they do

at any host locus. Because, per se, there is no selection pressure

on the host to maintain the ERV proviruses in an intact form,

with certain exceptions at least for parts of certain proviral

genomes, these will eventually include lethal mutations that

prevent each ERV from encoding new, fully infectious viral

particles and thus the genetic death of that element.

These mutagenic events include nucleotide substitutions,

deletions, insertions, and translocations. One particularly

important and common type of event for ERVs is the

recombination between two homologous LTRs in the same

provirus, leading to a soloLTR, with one LTR and the internal

viral genome being excised. Even point mutations can

irremediably inactivate a provirus if they compromise the

function of essential viral proteins.
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Thus, to date, no individual HERV-K provirus present in the

human genome has been found to retain a full capability of

encoding an infectious genome capable of completing the viral

life cycle.
Life in death: HERVs are
transcribed, nonetheless

HERV expression is regulated at the level of the LTRs, which

function as promoter and contain the transcription starting site

and numerous transcription factor binding sites (29, 30).

Because HERVs infect the germline, it is reasonable that

specific transcription factors that are active during oogenesis,

spermiogenesis, or early embryo development are exploited for

viral activation. Such factors have not been clearly characterized

yet (31, 32). In addition to the viral life cycle, HERVs have been

detected in several physiologic and pathologic conditions (33–

37). Thus, the LTR is likely to be able to bind also with

transcription factors other than those specifically active in

germline (30).

The implications of transcription of heavily mutated or

rearranged HERV genes are mostly unknown. HERVs may

translate for viral proteins, which are mostly non-functional as

explained above, truncated viral proteins, and non-viral proteins

resulting from frameshift mutations, indels, or various genetic

rearrangements. In addition, transcripts from these loci may lack

obvious Open Reading Frame (ORF).

However, most HERV loci are soloLTRs. In such cases, the

virus no longer exists at the specific genomic locus, and the

soloLTR constitutes a relic of the previous infection (38).

Nonetheless, sequences within the LTR may still be usable by

the host transcription factors. In fact, LTRs can serve as

promoters in both sense and antisense orientations (39). Thus,

they can influence the expression of nearby host genes (27, 40,

41). Moreover, soloLTR may promote transcription of long

intergenic non-coding RNAs (lincRNAs) (42). The

SAMMSON lncRNA is promoted by a soloLTR (LTR1A2) and

was recently reported as involved in oncogenesis in melanoma

(43). Other examples of LTR-promoted oncogenic lncRNAs

include HULC in hepatocarcinoma (44), UCA1 in urotelial

carcinoma (45), and LCT13, which is another lncRNA that is

promoted by an antisense soloLTR (L1PA2), in colorectal

cancer (46).

To avoid potentially deleterious transcription, both from

soloLTRs and full-length proviruses of fragments, it is

commonly assumed that HERVs are mostly silenced by

epigenetic regulation (47, 48). Multiple strategies are used to

regulate HERV transcription such as localization of soloLTRs

and proviruses to heterochromatin and CpG methylation and

histone deacetylation (49).
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HERVs in cancer and other
conditions: Friend or foe?

Although HERVs’ role in health and disease has been

explored for many years, it remains poorly understood (33–37).

An oncogenic role for HERV-K has been proposed. In fact,

HERV-K transcripts and proteins have been detected in several

cancer types, including teratocarcinoma (50–55), trophoblastic

tumors and germ cell tumors (56, 57), seminomas (58–60),

breast cancer (61–67), prostate cancer (68–71), leukemias (72–

77), renal cancer (78), ovarian cancer (79–81), cervical cancer

(28, 82), melanoma (83–87), soft tissue sarcoma (88),

osteosarcoma (89), Kaposi’s sarcoma (90), glioblastoma (91),

astrocytic tumors (92), hepatoblastoma (93, 94), and

hepatocellular carcinoma (95).

The correlation between HERV-K expression and cancer is

not sufficient in itself to clarify whether HERV-K has

tumorigenic activity. In fact, overexpression of Rec or Np9 in

transgenic mice has been shown to cause tumors (96).

HERV-K expression has also been detected in normal tissues

and physiological conditions. In the human placenta, in addition

to the abovementioned HERV-W and HERV-FRD, HERV-K

has been detected as well (73, 97), but its role in physiology or

disease, if any, has not been elucidated yet. In fact, HERV-K has

been speculated to have a role in placental dysfunctions such as

preclampsia (98). HERV-K viral particles can be detected by

electron microscopy in normal human placenta (36).

As abovementioned, the well-conserved env genes from

HERV-W1 and HERV- FRD transcribe for Syncytin-1 and

Synicitin-2, respectively, and mediate the fusion of villous

cytotrophoblasts during placentation (99, 100). In fact, Env

protein has fusogenic properties and has been proposed to

have a role in cancer, including in epithelial-to-mesenchymal

transition (101, 102).

Moreover, env genes have been proposed to exhibit an

immunosuppressive role that is important for preventing

maternal rejection of the semi-allogenic fetus during

pregnancy (103). Such property has been speculated to be

exploited by cancer cells as well to facilitate tolerance.

HERV-H has been detected in human normal tissue,

specifically in placenta, and cancer, including breast cancer

(104), pancreatic cancer (105), liver cancer (106, 107), prostate

cancer (108), ovarian cancer (109), lung cancer (110), colon

cancer (111, 112), cervical cancer (104), and others (2, 107, 113).

An interesting regulatory role for pluripotency in human

embryonic stem cells and induced pluripotent stem cells has

been described for HERV-H, including ncRNAs, enhancers, and

alternative promoters, and markers of topologically associating

domain (TAD) boundaries (114).

Little is known regarding HERV-K and HERV-H

transcription in normal tissues other than placenta.
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Bioinformatic search for HERV-conserved ORFs led to the

identification of a small but interesting number of env-related

genes with a full-length coding sequence, such as syncytin-1 and

syncytin-2 (115, 116).

Recent research led to the identification of a peculiar HERV

locus transcribing for a unique Env protein, called HEMO,

which is released in the human blood circulation. HEMO has

also been detected in placenta and various cancers as well,

including ovarian cancer and endometrial cancer, and in

germline, liver, lung, or breast tumors (117). The HEMO

retroviral env gene belongs to the MER34 family, which

comprise only highly degenerated and rearranged elements.

Little or none is known about the vast world of HERV-

containing lncRNAs. Several examples have been described but

functions and significance is mostly unknown (118–120).

One example is lncMER52A, a liver cancer–specific oncogenic

lncRNA transcribed by MER52A LTR retrotransposon of the

ERV1 class (121).

Another example is the overexpression in breast cancer of

the TROJAN lncRNA, which contains a complete LTR70

sequence of several mosaic LTRs flanked by MER67C and

LTR56 (122).

The good, the bad, and the ugly:
Canonical, alternative, and aberrant
splicing of HERV transcripts

Intact full-length HERVs produce a single full-length RNA

transcript, from 5′LTR to 3′LTR. Then, a single splicing event

must occur to produce the 1X-spliced env transcript. An
Frontiers in Oncology 04
additional splicing event is needed to produce the 2X-spliced

np9 and rec transcripts in HERV-Ks.

In the previous paragraph, we list the many examples of

detection of Env, Rec, and Np9 proteins in cancer. All of them

must have derived from canonical splicing events of the HERV

full-length transcript. Splicing occurs when specific splicing

signal sequences, namely, splice donor (SD) and splice

acceptor (SA), are recognized by the spliceosome machinery,

and intronic sequence is excised. Typically, only a fraction of

HERV full-length transcript undergoes splicing, because the full-

length transcript constitutes the genome for the forming virions.

It has been speculated that the highly mutated HERV

genome may disrupt canonical SD/SA signals and allow

cryptic splicing sites to emerge. In fact, many of such sites

have been identified throughout the HERV genome (123, 124).

Previous work from Lindeskong and Blomberg (113) has

shown alternative splicing for HERV-H env transcripts from

normal and leukemia lymphocytes (Figure 1). These alternative

splicing sites use canonical consensus signals for major

spliceosome. Although the function and significance of such

findings is unknown, it can be speculated that these constitute

cryptic SD/SA sequences. The shift to these cryptic signals was

not due to mutations at the canonical splice sites, as the

functional canonical splice sites could be sequenced. In fact,

multiple SD and SA signals have been predicted in HERV-H by

bioinformatic analysis (125). Moreover, normal and leukemia

lymphocytes showed different levels of amplification of the

spliced env transcripts, thus indicating that the cellular type

could determine which alternative splicing event to favor. Thus,

the molecular mechanisms for the SD/SA choice were not

identified. It is relevant to point out that some of these
FIGURE 1

Structure of the HERV-H genome, canonical spliced mRNAs, and spliced RNAs detected in (113), from which the figure was adapted. A genetic
map of a HERV-H provirus (gray) inserted into flanking host genome sequences is shown. The unspliced primary viral transcript and singly
spliced env mRNA are shown below the viral genome. Poly (A) tails are indicated (AAAA). The dashed, angled line shows the excised intronic
sequences. Colored boxes indicated the different genes, indicated in the figure by name and ORF. Splice donor (SD) and splice acceptor (SA)
sites are indicated on map, including canonical sites for 1x-spliced mRNA (SD1x and SA1x) and canonical sites for 2x-spliced mRNAs (SD2x’ for
type I proviruses, SD2x” for type II proviruses, and SA2x), and individual alternative SD/SA are identified by stars (*, **). Black vertical dashed lines
identify canonical SD/SA sites across the panel; black arrows show alternative SD/SA sites. D1, D2, and D3 are fictitious names of individual
HERV-H viruses detected in the study.
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transcripts have ORFs that could possibly be translated into

novel proteins, not per se related to the original viral proteins.

With the purpose of screening for viral splicing transcripts in

cancer cell lines, in our previous work (28), we undertook RT-

PCR across splicing sites of full-length HERV-K in various

cancer cell lines, including breast cancer, cervical cancer,

prostate cancer, and head and neck cancer, which are expected

to find 1X-spliced transcript for env and 2X-spliced transcript

for np9 or rec, respectively, for type I and type II HERV-K-

HML2 viruses (25). Indeed, the spliced transcripts were detected

in almost all cancer cell lines across the tested panel (Figure 2).

Sequencing of the RT-PCR products was performed to identify

the specific loci of origin of the transcripts. These analyses

identified a total of seven different individual HERV-K loci

among the 12 cell lines tested: HERV-K102, HERV-K108, K

(I), HERV-K106, HERV-K107, HERV-K111, and HERV-K117.

Unexpectedly, while most RT-PCR products showed

splicing at the expected positions within the HERV-K genome,

the transcripts spliced at the additional previously unidentified

sites were also detected (Figure 2). The conventional 1X-env

splicing sites were detected for HERV-K108, HERV-K109,

HERV-K(I), HERV-K102, and HERV-K117. Four loci—

HERV-K102, HERV-K(I), HERV-K117, and HERV-K111—
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showed unusual 1X-env splicing variants formed from the use

of alternative SD/SA sites. The splice sites that were detected in

some instances matched the consensus signals for the major or

minor spliceosomes, whereas, in other instances, they did not.

For HERV-K102, the same splice sites were detected in six

different cell lines, and for HERV-K117, the same sites were

detected in two. Such aberrant spliced transcripts were detected

in the majority of the cell lines, and in some instances, both the

conventional and aberrant splice sites were detected for

particular proviruses [HERV-K102, HERV-K(I), and

HERV-K117].

This finding was unexpected, and the possible biological

significance and the underlying molecular mechanism

are unknown.
What about HERVs in head and
neck cancer?

Although HERV expression has been detected in many

cancer types, in head and neck cancers, it has been rarely tested.

The most relevant example comes from Kolbe et al. (126)

who analyzed 43 paired tumor and adjacent normal tissue
FIGURE 2

Structure of the HERV-K genome, canonical spliced mRNAs, and spliced RNAs detected in (28), from which the figure was adapted. A genetic
map of a HERV-K provirus (gray) inserted into flanking host genome sequences is shown. The unspliced primary viral transcript, singly spliced
env mRNA, and doubly spliced rec and np9 mRNAs are shown below the viral genome. Poly (A) tails are indicated (AAAA). The 292 nucleotide
deletion of type 1 HERV-K proviruses spanning the pol-env junction is indicated (D292). The dashed, angled line shows the excised intronic
sequences. Colored boxes indicated the different genes, indicated in the figure by name and ORF. Splice donor (SD) and splice acceptor (SA)
sites are indicated on map, including canonical sites for 1x-spliced mRNA (SD1x and SA1x) and canonical sites for 2x-spliced mRNAs (SD2x’ for
type I proviruses, SD2x” for type II proviruses, and SA2x), and individual alternative SD/SA are identified by stars (*, **, and ***) and are written in
red in case of aberrant sites, without canonical sequences for spliceosomes. Black vertical dashed lines identify canonical SD/SA sites across the
panel, black arrows show alternative SD/SA sites, and red arrows show SD/SA aberrant sites. HERV-K108, HERV-K(I), HERV-K102, HERV-K117,
and HERV-K111 are the names of individual HERV-Ks detected in the study.
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samples from The Cancer Genome Atlas program. Transcripts

were detected from over 3,000 specific HERV loci, in tumor and

adjacent normal tissue. Approximately one-third of them were

differentially expressed between the two tissue types. Most

differentially expressed HERVs showed higher levels in tumor

tissue. Differentially expressed HERVs were enriched in

members of the HERV-H family. A hierarchical clustering

based on HERV expression was performed, and the two

resulting distinct clusters showed significant difference

in survival.

Although this study was performed by looking at the single

loci level, a clustering algorithm was used to generate two

prognostic distinct clusters. Thus, the contribution of specific

HERV loci to survival was not investigated—not the details at

the molecular level regarding which portion of the viral genome

and genes were transcribed and whether any splicing

event occurred.

Cuffel et al. (127) studied the expression of cancer-testis and

other tumor-associated antigens in head and neck squamous cell

carcinoma (HNSCC). Samples from 57 HNSCC patients were

analyzed by RT/PCR, Immunohistochemistry (IHC), and

correlated with survival. Among the results, it is relevant to

highlight that a HERV-K–related antigen, HERV-K-MEL, was

among the most frequently expressed genes as it was detected in

42% of the patients. However, in their analysis, HERV-K-MEL

expression did not impact survival. HERV-K-MEL is an HERV-

K env-related antigen that was first identified as recognized by

cytolytic T lymphocytes in melanoma (84).

A recent study by Zapatka et al. (128) has shown ERV1

expression in HNSCC. The authors, as part of the Pan-Cancer

Analysis of Whole Genomes Consortium, performed a whole-

transcriptome sequencing data from over 2,000 cancer samples

across 38 tumor types. Among these, HERV expression,

particularly ERV1, was detected in HNSCC, although no

correlation with survival was evident.

Michna et al. (129) reported the expression of ERVMER34-1

and ERV3-1 (HERV-R) in CAL-33 HNSCC cell line.

Interestingly, ERV3-1 was upregulated in response to

irradiation. The authors speculated that these findings may

have implications in radiosensitivity in cancer.

Landriscina et al. (130) have shown that RT is active in FRO,

WRO, and ARO human thyroid carcinoma cell lines. They

showed that nevirapine and efavirenz, two RT inhibitors that

are usually employed in HIV treatment, reversibly inhibit cell

proliferation in the undifferentiated thyroid carcinoma ARO and

FRO cells. However, they did not characterize RT origin. In fact,

in addition to HERVs, most retroelements, including LINE

elements, have an RT coding gene (131).

Indeed, HERV-K is expressed in head and neck cancer cell

lines, and splicing events are detected.

In our abovementioned study (28), we tested the head and

neck cancer cell lines FaDu, UPCI-SCC-90, and UM-SCC-47.

1X-env and 2X-rec transcripts were detected in all three cell
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lines, whereas 2X-np9 was only detected in UPCI-SCC-90.

Specifically, HERV-K102, HERV-K108, K(I), and HERV-K106

were detected. In all three cell lines, aberrant 1X-env transcripts

were detected: HERV-K(I) in UPCI-SCC-90, and HERV-K102

in FaDu and UM-SCC-47.

To the author’s knowledge, no other examples of HERV

detection in head and neck cancer appear available in the

scientific literature.
Discussion

HERV activation is a common feature in cancer. However,

its role, if any, has not been fully elucidated yet.

Although HERVs are highly mutated, they have been shown

to retain, at least in some cases, enough viral functions to

translate to the canonical viral proteins, including those that

require splicing events. Moreover, alternative and aberrant

splicing variants have been detected.

Pre-mRNA splicing is a common post-transcriptional event

for both the host cell and retroviruses, including HERVs. There

are several different types of alternative splicing, among which

the most common include exon skipping, selection of splice

donor, and selection of splice acceptor. Alternative splicing

allows to expand the variety of encoded proteins, but it may

also be involved in regulation of translation, for example, by

including an early stop codon. The splicing process involves the

spliceosome machinery, which is formed by five small nuclear

ribonuleoproteins and several proteins. The cell has two different

types of spliceosome: the U2-type “major” spliceosome and the

U12-type “minor” spliceosome. They recognize different specific

intronic sequences for the splice sites. Most splicing occurs

through the major spliceosome. Alternative and aberrant

splicings have been involved in cancer initiation and

progression (132).

Transcription of the HERV provirus, by RNA polymerase II,

generates a primary viral RNA that is both 5′ capped and 3′
polyadenylated, as any other mRNA of the host cell (124).

Similarly to the host RNA, the primary RNA can be regulated

by internally m6A and m5C methylations (133).

The primary transcript translates the gag-pro-pol genes into

capside (MA, CA, and NC), protease (Pro), RT, and integrase

(IN) proteins and constitutes the genome for the new virions.

Env requires a splicing event to occur, and the accessory proteins

Rec and Np9 require a second splicing event. Both alternative

splicings require simple intron excision. Thus, the primary RNA

must escape splicing to reach packaging into the forming virions.

How this selection between splicing and packaging is made is

unclear. It has been speculated that this may depend on splice

site efficiency. In fact, the spliceosome machinery would

intercept every single primary RNA transcript displaying splice

sites with high efficiency, thus entirely preventing full-length

RNA packaging. Conversely, the presence of low-efficiency
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splice sites would allow both RNA forms to co-exist. This

ensures the correct life cycle of the retrovirus, but it may also

facilitate alternative, cryptic, splice sites to emerge and be

utilized. This may explain the findings of alternative splicing

of HERV-H (113) and HERV-K (28) of the splice site selection

type. Similar mechanisms have been observed for HIV (134) and

other retroviruses (124). However, some splice site sequences in

HERV-K alternative splicing do not match with signal sequences

for either U2- or U12-type spliceosomes. This observation is

unexpected and unexplained.

The alternative and aberrant splice sites detected highlight

the possibility of new research in the field of spliceosome

functions. In fact, the sequences of most of the alternative sites

that were detected shared only partial overlap with those of the

conventional splicing signals. What determinants within the

viral genome affect the utilization of alternative splice sites is

currently unknown, and further studies may shed light on the

basic mechanisms of splicing.

The use of non-canonical SA/SD sequences has been shown

to some extent in trans-splicing (135), which is an unusual form

of splicing between two individual pre-RNA transcripts. Most

trans-splicing is expected to follow the canonical spliceosome-

mediated splicing process. However, a transfer RNA (tRNA)-

mediated splicing, which does not require the canonical

consensus sequences for splice sites nor the spliceosome

machinery, has been described, at least for trans-splicing (136).

The potential for translating into protein may vary. In fact,

the assumption that a viral transcript will translate into a viral

protein must be verified, especially for HERVs that carry

numerous mutations in their sequence and that not only may

affect viral protein function but also may prevent correct

polypeptide three-dimensional conformation. In fact, HERV

transcripts may be part of lncRNAs, by polymerase read-

through transcription of proviral loci (137). Such transcripts

may bear regulatory functions, particularly on gene expression

(138). lncRNAs may interact with DNA, RNA, or proteins:

lncRNAs may promote or repress transcription, by working as

signals or decoys, respectively, or may function as epigenetic

regulators or even as scaffolds by interacting with various protein
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partners (139–141). The inclusion of HERV components into

lncRNAs has been reported (142).

HERVs’ proteins and transcripts constitute an attractive

target for therapy. Many authors have been exploiting such

knowledge to refine various strategies against HERVs to

selectively target cancer cells (84, 103, 143–145).

The need for locus-specific analyses is evident. However, the

high degree of repetitive and highly similar sequences in HERV

elements has made locus-specific characterization of HERVs a

significant challenge.

Although HERVs have been detected in head and neck

cancer, the research in this cancer type is still at a very early

stage and warrants further study.
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